The present invention is a heat exchanger of a structurally self-supporting plate type provided with an internal fluid passage between a first and a second plate (2, 3) whereof at least the first of the plates (2) is arranged to be exposed to a warmer or colder medium.
Swedish patent SE 533035 shows a heat exchange element of the plate type, with an internal fluid flow passage comprising two plates between an inlet and an outlet, and an interior passage that forms an extension between the inlet and outlet, where the passage is constrained between two parallel plates that are formed by a self-supporting polymer material. The two plates are joined with a number of point weldings distributed over the fluid passage area. A disadvantage of the Swedish patent is that the point welding process results in a quite flat surface. Such a flat surface reflects sunlight from the plate, particularly when the angle of the sun is inclined. An inclined sun angle also provides a small exposed area and a large degree of reflection. Another disadvantage is that the point weldings easily detach when the fluid is pressurized, incurring delamination of the plates.
U.S. Pat. No. 4,473,066 to Clark describes a so-called sun energy collector which is a panel with several flow channels formed as a multi-layered corrugated panel with manifolds for inlet and outlet. The flow channels are stacked convex channels.
U.S. Pat. No. 4,858,594 to McCurdy describes a sun heating panel with a series of flow channels formed as a two-layer corrugated panel with manifolds for inlet and outlet, and wherein the flow channels in addition to provide convex channels in their cross-section also are provided with indentations in the channel walls in order to induce turbulence in the flow channels so as for bringing more of the liquid in contact with the sun exposed surfaces inner face.
U.S. Pat. No. 4,346,695 to Kitzmiller flow channels with convex channels in their cross sections, wherein the underlying and overlying plates are convex towards the same face direction of the base plane. The parts of the plates which are in the base plane are plane.
The invention is a heat exchanger of a structurally self-supporting plate type and provided with an internal flow passage (6) constrained between a first and a second plate (2, 3) and extending between an inlet (4) and an outlet (5),
The arc-shape is preferably in the direction of the desired exposed face.
In an advantageous embodiment of the invention the exposed plate (2) is formed in a heat conductive material, which increases the efficiency if the heat exchanger is used e.g. as a “sunlight collector”.
In an advantageous embodiment of the invention the second pate (3) is thermally insulated to reduce heat loss if the heat exchanger should increase the temperature of the through flowing fluid, or to control the heat loss towards only one side of the heat exchanger, if it is a wall installed radiator for heating in a house.
An advantage of the crescent-shape of the cross-section of the channels (7) is that a ratio of exposed surface area to volume of contained liquid is high, thus it has a large exposed area relative to the weight. This is an advantage if the panel is to be mounted as roof panels on a roof to collect sunlight, or if mounted as ceiling panels without having to increase the dimensions of existing girders.
The feature that the generally parallelly running longitudinally extending channels (7) comprise several laterally directed arches kinked about 45 degrees relative to their main axis in their longitudinal extension, please see
In an embodiment of the invention the longitudinally extending channels (7) have a corrugated surface generally across the longitudinal direction. This create microturbulence in the through flowing fluid, which promotes heat transfer from the wall to the contained through flowing liquid or vice versa, which is an advantage.
The feature of the continuous joints (8) between those two plates (2, 3) forming a long zig-zag pattern at either sides of each channel (7) will result in a large joint area between the two plates (2, 3). This will allow a higher liquid pressure before delaminating than for the point-welded heat exchange element shown in SE 533035 wherein the two plates are joined with a number of point weldings distributed over the fluid passage area, which has a far lower welding area than for the present invention, and which may not withstand much liquid internal pressure.
The feature that in the cross-section of the channel (7) both the lower and the upper plate will form a bridge structure, and that the contained liquid sets up an internal liquid pressure between the upper and lower plate will make the structure form a small bridge which will counteract bending down of the structure.
The invention is illustrated in the attached drawing figures, wherein
a and 6b are photographic images of an embodiment of the invention wherein the generally parallel longitudinally directed channels (7) are separated by continuous joints (8) preferably comprising many laterally directed arcs or kinks relative to their main axis in the longitudinal direction. The channels (7) are wavy or zigzag-shaped.
The invention is a heat exchanger of the plate type, please see
In an advantageous embodiment there is arranged an inlet manifold (4a) between said inlet (4) and said channels (7). Between said channels (7) and said outlet (5) is and is an outlet manifold (4b), please see
The passage is subdivided into a number of generally parallelly directed longitudinal channels (7) separated by continuous junctions (8) between two plates (2, 3) please see
In an advantageous embodiment of the invention the second plate (3) is thermally insulated in order to reduce heat loss if the heat exchanger shall increase the temperature of the through flowing liquid or to control the heat loss only to one side of the heat exchanger, if it is a wall installed radiator for heating in a house.
According to an embodiment of the invention, the second plate (3) is formed in a thermally conductive material. This is to increase the heat loss if the heat exchanger is used for reducing the temperature of the flowing through liquid, for example, used as a cooler, or used in a tank or in the ground to heat up the surroundings.
In an advantageous embodiment of the invention the generally parallel longitudinally directed channels (7) are separated by continuous joints (8) preferably comprising many laterally directed arcs or kinks relative to their main axis in the longitudinal direction, i.e. that the channels (7) are wavy or zigzag-shaped, please see the drawings of moulds for the formation of the first and the second plates shown respectively in
The moulds are in an embodiment of the invention made by cutting the mould using a computer controlled milling machine. The milling cutter may be run at intervals of 0.5 mm resulting in a slightly corrugated surface of the mould. This slightly corrugated surface of the mould results in that the longitudinally extending channels (7) have a corrugated surface generally across the longitudinal direction. This creates microturbulence in the through flowing fluid.
In an embodiment of the invention, one of the plates (2, 3) may have a surrounding rim (10) formed as a self-supporting structural frame (11). This frame may be arranged for bracketing of the plates (2, 3) and for constituting an independent, self supporting structure or for being installed in a building structure. The surrounding rim (10) will provide a more precise positioning of the plates (2, 3) relative to each other so as for obtaining the desired shape of the channels (7).
In a preferred embodiment, e.g. for mounting on a roof as part of a solar collector, at least the first of the plates (2) is covered by a transparent cover (12). The transparent cover (12) may be of glass. In a preferred embodiment of the invention it may be formed of toughened glass, preferably of low iron content. It is important that the transparent cover has little absorption of solar radiation. The transparent cover (12) may alternatively be formed of a polymer material such as polycarbonate, PET (polyethylene teraphthalate), acrylic or a similar transparent polymer material.
In a preferred embodiment of the invention the polymer material of the first and second plate (2, 3) is ABS, polypropylene, PET, or epoxy. This is because these materials are easy to vacuum form. They also have a low weight and low price.
It may be advantageous that the first plate (2) has a high thermal conductivity. Therefore, the polymer material in at least the first plate (2) preferably comprises carbon or CNT (carbon nanotube) reinforced polymer material. This is also to increase the mechanical strength. For carbon reinforcement in the polymer one may use carbonized bamboo particles which are strongly absorbing for infrared radiation and also thermally conductive.
The heat exchanger according to the invention may also comprise a second passage (16) for a second fluid between a second inlet (24) and a second outlet (25) which are formed by arranging a third plate (17) below the second plate (3), wherein the second passage (16) is subdivided into a number of generally parallelly directed longitudinal second channels (18) extending along the first elongated channels (7), separated by continuous joints (19) between the second and the third plate (2 , 3) and extending along the continuous joints (8). Thus there a liquid-liquid heat exchanger is formed. Such an embodiment is indicated in a cross-section in
In an advantageous embodiment according to the invention, please see
In an advantageous embodiment of the invention, low notches (9) are made in one or both of the moulds, please see
If used as a heat exchanger under the waterline on a boat hull, one or both of the plates (2, 3) are preferably covered by an antifouling agent.
Number | Date | Country | |
---|---|---|---|
61414165 | Nov 2010 | US |