The present invention concerns a heat exchanger plate of a heat exchanger for a refrigerant fluid circulation circuit fitted for an automotive vehicle. The object of the present invention is such a heat exchanger plate and a heat exchanger comprising at least one of these plates.
An automotive vehicle is currently equipped with a heating, ventilating and air conditioning system, usually called the HVAC system, for thermally treating the air present in or sent inside a passenger compartment of the automotive vehicle. The HVAC system is associated with a refrigerant fluid circulation circuit inside which a refrigerant fluid circulates. The refrigerant fluid circulation circuit comprises successively a compressor, a condenser or gas cooler, an expansion device and a heat exchanger. The heat exchanger is housed inside the HVAC system to allow a heat exchange between the refrigerant fluid and an air flow that is circulating inside the HVAC system before being delivered inside the passenger compartment.
According to a mode of operation of the refrigerant fluid circulation circuit, the heat exchanger is used as an evaporator to cool down the air flow. In this case, the refrigerant fluid is compressed inside the compressor, then the refrigerant fluid is cooled inside the condenser or gas cooler, then the refrigerant fluid expands within the expansion device and finally the refrigerant fluid cools down the air flow passing through the heat exchanger.
The heat exchanger comprises a plurality of heat exchanger plates that are assembled together to make the heat exchanger. The heat exchanger plate has a rectangular shape and comprises openings that are extending from a first face of the heat exchanger plate to a second face of the heat exchanger plate. The openings are located at extremities or angles of the heat exchanger plate. Each opening is delimited by a collar that is arranged around the opening.
Two heat exchanger plates are joined together to make a tube and several tubes are assembled together to make the heat exchanger plate. The collars of two plates are assembled together as well as longitudinal edges and lateral edges of both heat exchanger plates to realize the tube. Then, the tubes are assembled together to realize the heat exchanger. Finally, the heat exchanger comprises two header boxes, made of the assembled collars, between which a core, made of the extended portion of the heat exchanger plates, is interposed.
Before being used in the refrigerant fluid circuit, the heat exchanger undergoes some tests to check its pressure resistance and to identify any assembling defects. For example, the heat exchanger undergoes pressure tests during which the refrigerant fluid inside the heat exchanger is currently at 100 bars pressure. This test pressure is much higher than a current utilization pressure of the refrigeration fluid that is in a range of 15 bars to 20 bars.
It appears that during the pressure tests the heat exchanger tends to go through differential deformations in the core and the header boxes. More specifically, the header boxes tend to be more extended than the core of the heat exchanger. These differential deformations may generate cracks within the heat exchanger that could provoke refrigerant fluid which is mostly inconvenient.
There is a need to have a heat exchanger comprising heat exchanger plates that are arranged so that no leak appear in order to have a robust and sustainable heat exchanger.
The heat exchanger plate of the invention is a heat exchanger plate of a heat exchanger. The heat exchanger plate comprises two faces extending between two lateral edges and two longitudinal edges of said heat exchanger plate. The heat exchanger plate comprises at least an opening extending from a first face to a second face of the heat exchanger plate. The opening is delimited by a collar that is arranged around the opening. The heat exchanger plate comprises at least a dimple protruding above at least one of the faces.
According to the invention, said dimple comprises at least a flat area and a sloped area, said sloped area being interposed between the collar and the flat area.
The heat exchanger plate is also advantageously characterized by any of the following characteristics, these characteristics being combined or considered alone:
The invention relates also to a heat exchanger comprising at least one such heat exchanger plate.
The heat exchanger plate is also advantageously characterized by any of the following characteristics, these characteristics being combined or considered alone:
The invention relates also to a refrigerant fluid circulation circuit that comprises at least such a heat exchanger.
The invention relates also to utilization of the heat exchanger as an evaporator in such a refrigerant fluid circulation circuit.
The invention relates also to a method for manufacturing such a heat exchanger plate comprises at least:
Other specificities, details and characteristics of the present invention will be highlighted thanks to the following description, given for general guidance, in relation with the following figures:
In the Figures, a heat exchanger 1 according to the invention is shown in a coordinate system Oxyz in which Ox axis is a longitudinal axis, Oy axis is a lateral axis and Oz axis is a transversal axis, the Oxz plane is a longitudinal plane, the Oxy plane is a lateral plane and the Oyz plane is a transversal plane. In the following description, a direction is qualified in accordance with the above mentioned axis and a surface is qualified in accordance with the above mentioned plane.
In
The tubes 6 extend mainly along a longitudinal direction A2 that is parallel to the longitudinal axis Ox. The tubes 6 are also laterally extended along a lateral direction A3 that is parallel to the Oy axis. The lateral direction A3 is also perpendicular to a longitudinal plane P1 of the heat exchanger 1 containing the header boxes 3 and the tubes 6. Therefore, the tubes 6 are disposed in respective planes that are parallel to a lateral plane P2, the lateral plane P2 being perpendicular to the longitudinal plane P1 of the heat exchanger 1. In other words, the tubes 6 altogether form the core 2 that is globally arranged as a parallelepiped.
The heat exchanger 1 is equipped with a refrigerant fluid inlet 7 through which the refrigerant fluid 4 is admitted inside the heat exchanger 1. The refrigerant fluid inlet 7 equips the header box 3. The heat exchanger 1 is also equipped with a refrigerant fluid outlet 8 through which the refrigerant fluid 4 is evacuated from the heat exchanger 1. The refrigerant fluid outlet 8 equips the same header box 3 than the refrigerant fluid inlet 7. Furthermore, the refrigerant fluid inlet 7 and the refrigerant fluid outlet 8 are located on the same longitudinal side of the heat exchanger 1. Therefore, in this embodiment of the invention, the refrigerant fluid 4 circulates along a path that is designed as a U form path. Other localization of the refrigerant fluid inlet 7 and the refrigerant fluid outlet 8 are possible, so that the heat exchanger 1 of the invention may provide a I form path or a W form path or other combinations of path for the refrigerant fluid 4.
The core 2 comprises these tubes 6 and corrugated fins 9 that are separating two contiguous tubes 6, the corrugated fins 9 enhancing the heat exchange between the refrigerant fluid 4 and the air flow 5.
In
The heat exchanger plate 10 comprises four openings 16 that are extending from the first face 12 to the second face 13 of the heat exchanger plate 10 along the transversal direction A1. The openings 16 are located at the angle of the quadrilateral formed together by the lateral edges 14 and the longitudinal edges 15. The openings 16 can be either circular or elliptical. When two heat exchanger plates 10 are assembled together, the openings 16 are aligned along the transversal direction A1 to enable a fluid circulation from one tube 6 to another tube 6 within the heat exchanger 1. Therefore, the forms of the openings 16 of all the heat exchanger plates 10 are similar to permit such a refrigerant fluid circulation. Among the four openings 16, two of the openings 16 are close to a first lateral edge 14 and two of the openings 16 are close to a second lateral edge 14.
The heat exchanger plate 10 comprises a core portion 23 that is interposed between two collecting portions 25 gathering the openings 16. The core portion 23 of the heat exchanger plate 10 participates to the core 2 of the heat exchanger 1 that is receiving the corrugated fins 9 and where the heat transfer between the refrigerant fluid 4 and the air flow 5 mainly occur. The collecting portion 25 of the heat exchanger plate 10 participates to the part of the heat exchanger 1 that is collecting the refrigerant fluid 4 from one tube 6 to another tube 6.
The core portion 23 comprises a plurality of grooves 26 that are longitudinally extended in a parallel direction to the longitudinal edges 15. Some canals 11 are delimited by two grooves 26 and some canals 11 are delimited by a groove 16 and a longitudinal edge 25. Grooves 26 of two assembled heat exchanger plates are brazed together to delimit the canals 11. The grooves emerge over the second face 13 of the heat exchanger plate 10.
Each groove 26 extends from a first longitudinal extremity 33 and a second longitudinal extremity 32, both longitudinal extremities 32, 33 being located along a groove axis A4 that is parallel to the longitudinal edges 15 of the heat exchanger plate 10.
The heat exchanger plate 10 comprises a plurality of dimples 18 that are protruding above the second face 13 of the heat exchanger plate 10. Each dimple 18 is a deformation of the heat exchanger plate 10 that extends from the first face 12 up to the second face 13. In other words, each dimple 18 forms a protrusion over the second face 13. That is to say that the dimples 18 and the collars 17 are formed in an opposite sense along the transversal direction A1. The grooves 26 and the dimples 18 emerge over the same face of the heat exchanger plate 10, i.e. the second face 13.
Each dimple 18 is located between the collar 17 and the core portion 23 of the heat exchanger plate 10, the dimple 18 and the core portion 23 being separated by a borderline 24. The borderline 24 is a limit of the heat exchanger plate 10 that is located between the collecting portion 25 of the heat exchanger plate 10 and the core portion 23 of said heat exchanger plate 10. The collecting portion 25 of the heat exchanger plate 10 comprises at least the collars 17. The flat area 19 of the dimple 18 is arranged in a first plane P1 that is parallel to a second plane P2 in which the core portion 23 of the heat exchanger plate 10 is arranged. The borderline 24 has a sinusoidal shape when observed from a view point located in a plane parallel to the second plane P2.
Each dimple 18 comprises a flat area 19 and a sloped area 20. The sloped area 20 is interposed between the collar 17 and the flat area 19. The flat area 19 is arranged in a plane that is parallel to the lateral plane P2. The sloped area 20 joins together the flat area 19 and the collar 17.
The sloped area 20 is a curved area, the curvature center 29 of the curved area is located at a first distance D2 that is bigger than a depth P of the dimple 118. The depth P of the dimple 18 is measured between the first plane P1 and the second plane P2.
The dimples 18 are symmetrically arranged versus the central plane P3 that is parallel to the longitudinal edges 15 of the heat exchanger plate 10 and passing by the opening center 21 of the opening 16.
The summits 28 of the dimples 18 are arranged on a dimple circle 30, a center of the dimple circle 30 being the opening center 21.
A third distance D3 between the opening center 21 of the opening 16 and a limit 31 between the sloped area 20 and the flat area 19 is constant from one dimple 18 to another dimple 18. The third distance D3 between the opening center 21 of the opening 16 and the limit 31 between the sloped area 20 and the flat area 19 is taken between the opening center 21 of the opening 16 and a middle point 34 of the said limit 31, that is to say at equal distance of each side lines 27 of the sloped area 20.
As featured in
The summit 28 of each dimple 18 is located in the canal 11 that is delimited by at least a groove 26.
In another embodiment of the invention, a dimple 18 is a prolongation of a groove 26. More precisely, the flat area 19 of the dimple 18 is a prolongation of a groove 26.
The dimple 18 comprises a chamfer 35, a width W of the chamfer 35 of the sloped area 20 being bigger than a width W of the chamfer 35 of the flat area 19.
The sloped area 20 and the flat area 19 are arranged around a line of symmetry 36 that is a curved line. In another embodiment of the invention, the sloped area 20 and the flat area 19 are arranged around a line of symmetry 36 that is a straight line.
The heat exchanger partially featured in
This comforts the resistance of the heat exchanger 1 during a pressure test in which the refrigerant fluid is at a pressure of 100 bars inside in the heat exchanger. Such a configuration of the heat exchanger 1 avoids any cracks within the heat exchanger plate 10 and any leaks of refrigerant fluid 4 from the heat exchanger 1.
In view of the foregoing, proposed herein is a reinforced design of heat exchanger plate that is more resistant at working pressure and burst pressure in view of the sloped area that is interposed between the collar and the flat area of the dimple. The heat exchanger tube that uses such plate is easily manufactured, at a low cost. It allows good thermal exchange performance. This heat exchanger tube is dedicated to heat exchanger and can be found in a Heating, Ventilation and Air-Conditioning device of a motor vehicle. This kind of heat exchanger can be easily integrated into vehicle air conditioning systems in order to optimize the heat exchange between the air flow dedicated to the passenger compartment cool down and the refrigerant fluid circulating inside heat exchanger tubes of the invention.
However, the invention is not limited to resources and patterns described and illustrated here. It also includes all equivalent resources or patterns and every technical associations including such resources. More particularly, the shape of the heat exchanger plate does not affect the invention, insofar as the heat exchanger plate for use in a motor vehicle, in fine, has the same functionality as describes in this document.
Number | Date | Country | Kind |
---|---|---|---|
18184820 | Jul 2018 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2019/068590 | 7/10/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/016082 | 1/23/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4600053 | Patel | Jul 1986 | A |
5101891 | Kadle | Apr 1992 | A |
5111877 | Buchanan | May 1992 | A |
5111878 | Kadle | May 1992 | A |
5152337 | Kawakatsu | Oct 1992 | A |
5172759 | Shimoya et al. | Dec 1992 | A |
5409056 | Farry, Jr. | Apr 1995 | A |
5620047 | Nishishita | Apr 1997 | A |
5881805 | Inoue | Mar 1999 | A |
6173764 | Inoue | Jan 2001 | B1 |
6216773 | Falta | Apr 2001 | B1 |
6863120 | Hwang | Mar 2005 | B2 |
7413003 | Oh | Aug 2008 | B2 |
7934541 | Park | May 2011 | B2 |
D735842 | Cole | Aug 2015 | S |
9103597 | Christensen | Aug 2015 | B2 |
10371454 | Masgrau | Aug 2019 | B2 |
20010018969 | Shin | Sep 2001 | A1 |
20030070797 | Narahara | Apr 2003 | A1 |
20060231241 | Papapanu | Oct 2006 | A1 |
20130087317 | Papoulis | Apr 2013 | A1 |
Number | Date | Country |
---|---|---|
19746772 | Apr 1998 | DE |
0935115 | Aug 1999 | EP |
1715278 | Oct 2006 | EP |
2009123517 | Oct 2009 | WO |
Entry |
---|
International Search Report and Written Opinion in corresponding International Application No. PCT/EP2019/068590, dated Oct. 17, 2019 (9 pages). |
Number | Date | Country | |
---|---|---|---|
20210278136 A1 | Sep 2021 | US |