This application claims foreign priority benefits under U.S.C. § 119 to Danish Patent Application No. PA201800725 filed on Oct. 15, 2018, the content of which is hereby incorporated by reference in its entirety.
A typical construction of a plate heat exchanger comprises a plurality of heat transfer plate stacked on top of each other. The heat transfer plates are formed with patterns such that flow paths are formed between each set of neighboring heat transfer plates. Openings and are formed in the heat transfer plates to form inlets and outlets for fluids to these flow paths. Gaskets are positioned between the heat transfer plates in gasket grooves formed in the heat transfer plates. The gasket is arranged at an edge portion of the heat transfer plate to seal the flow paths and at an area around the openings to seal pairs of the openings, such that only two of them have flow access to the flow path formed at one side of the heat transfer plate, while the other two is sealed therefrom.
Especially in the opening areas the pressures are high, but the gasket is disposed at only one side of the heat transfer plate, while the other side is unsupported, thus forming a weak section, where these weak sections in the areas of the high pressures may be deformed. Further, the gasket tends to be pushed out of position by the pressures in these in these areas.
The present disclosure provides a heat transfer plate for a plate heat exchanger and a plate heat exchanger that at least partly alleviate the deformation of the heat transfer plate at the gasket groove in use.
The present disclosure further provides a heat transfer plate for a plate heat exchanger and a plate heat exchanger that at least partly alleviate the dispositioning of the gasket positioned in these areas.
The present disclosure introduces a heat transfer plate for a plate heat exchanger, the heat transfer plate comprising:
a plate body forming a patterned section and having a first side and a second side opposite to the first side;
a gasket groove depressed from the plate body in a direction from the first side towards the second side, and having a bottom wall, the bottom wall having a bottom wall body;
and where the gasket groove includes at least a first section with a first recess formed on the bottom wall body, depressed from the bottom wall body in the direction from the first side towards the second side, and a second section with a second recess formed on the bottom wall body, depressed from the bottom wall body in the direction from the second side towards the first side, wherein said second section is adapted to accommodate a gasket.
In an embodiment said plate comprises opening pairs, wherein said first section is positioned to separate said first pair from said patterned section, and said second section is positioned to separate said second pair from said patterned section, and where, when a gasket is positioned in said second section, then said second pair is sealed from said first side patterned section, whereas when no gasket is positioned in said first section, said first pair forms respectively inlet and outlet to the first side.
In an embodiment the gasket groove further includes a third section with a flat bottom wall body connecting a first section of respectively an inlet to an outlet of said first opening pair and a second section of respectively and an inlet to an outlet of said second opening pair.
In an embodiment the heat transfer plate is provided with structures in the plate body forming flow paths when connected to an upper neighbouring heat transfer plate, and openings forming inlets and outlets to the flow paths, and where a gasket is positioned in said second section first side and contacted by the neighbouring plate first section second side, whereby said gasket forms a sealing between the first side flow paths of said heat transfer plate and the second opening pair.
In one embodiment, said heat transfer plate is connected to a lower neighbouring heat transfer plate, where the first side of said first section is empty, meaning no gasket is positioned in said first section, but where its lower surface, the second side surface, contacts a gasket positioned in a second section of said lower neighbouring heat transfer plate.
In one embodiment, the gasket is shaped at the upper and/or lower surface with an upper recess and/or lower recess to receive the heat transfer plate second recess and/or the upper neighbouring heat transfer plate first recess. This has the effect of the recesses ‘hooking’ into the gasket keeping it in place.
In one embodiment, the gasket is not shaped at the upper and lower surface according to the shapes of second recess and the upper neighbouring heat transfer plate first recess but is deformed by the first and second recesses respectively when squeezed between the two heat transfer plates. This has the effect of the first and second recess squeezing themselves into the gasket material, which by e.g. the friction and the elasticity of the gasket helps to keep the gasket in position. Further, if there should be some minor deformation of the heat transfer plate in the area, the elasticity of the gasket material would ensure contact if the deformation is of the plates is less than the deformation of the gasket.
In one embodiment, the first recess and second recess are differently shaped.
In one embodiment, the first recess and second recess have different widths.
In one embodiment, the first section has a first width and second section has second width different from said first width.
In one embodiment, the first width is smaller than the second width, such that when an upper heat transfer plate is stacked on top of said heat transfer plate, the outer portions of the upper heat transfer plate is positioned on the part of the plate body at the side of the second section of said heat transfer plate. This ensures a strengthening of the area where a gasket only is positioned in every second heat transfer plate.
The present further in an embodiment relate to a heat transfer plate for a plate heat exchanger, the heat transfer plate comprising:
a plate body forming a patterned section and having a first side and a second side opposite to the first side;
a gasket groove formed on the plate body, depressed from the plate body in a direction from the first side towards the second side, and having a bottom wall, the bottom wall having a bottom wall body;
and where the gasket groove includes at least a first section with a first width, and a second section with a second width, wherein the first width is smaller than the second width, such that when an upper heat transfer plate is stacked on top of said heat transfer plate, the outer portions of the upper heat transfer plate is positioned on the part of the plate body at the side of the second section of said heat transfer plate.
It should be understood, that the detailed description and specific examples, while indicating embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from the detailed description.
Especially in the opening areas the pressures are high, but the gasket 60 is disposed at only one side of the heat transfer plate 10′, while the other side is unsupported, thus forming a weak section.
As shown in
In an embodiment, referring to
The gasket groove 20 includes at least a first section 21 with a first recess 31 formed on the bottom wall body 121, depressed from the bottom wall body 121 in the direction from the first side 111 towards the second side 112, and a second section 22 with a second recess 32 formed on the bottom wall body 121, depressed from the bottom wall body 121 in the direction from the second side 111 towards the first side 112. The respectively first section 21 and second section 22 is positioned such that said first section 31 separate the first pair 41 of openings, and the second section 22 separate the second pair 42 of openings, from the heat exchanging sections of the flow paths formed by the combined patterned sections 12 of connected neighbouring plates.
In an embodiment, the first section 21 is provided with a first recess 31 formed on the bottom wall body 121, depressed from the bottom wall body 121 in the direction from the first side 111 towards the second side 112. The second section 22 is provided with a second recess 32 formed on the bottom wall body 121, depressed from the bottom wall body 121 in the direction from the second side 111 towards the first side 112. The first 31 and second 32 recess thus project to opposite directions relative to the plate body 11 and to each other. Seen from one side of the plate body 11 first recess 31 and second 32 recess naturally will be recesses, whereas from the other they will appear as projections.
The first and second recesses 31, 32 in themselves ensures some rigidity to the heat transfer plate 10 material in the opening areas (often referred to as the diagonal areas) which is better able to withstand the pressures in these areas, making them less prone to bending or deformation, but also assists in keeping the gasket in place, as will also be discussed later.
In an embodiment the gasket groove 20 further includes a third section 23 formed in the edge portion at the circumference of the heat transfer plate 10, possible also having sections partly or fully encircling the openings 41, 42.
When the heat exchanger 1 is formed is stacked by stacking heat exchanger plates 10 according to any embodiment, a gasket 60 is positioned in the gasket groove 20 except in the first section 21.
The third section 23 will form the sealing to the external of the heat exchanger 1, and will be positioned such that it is positioned in combination with third sections 23 of the upper and lower connected heat transferring plates 10, such that the gasket 60 is squeezed between the third section 23 first side 111 bottom wall and the upper neighbouring heat transferring plate 10 third section 23 second side 112.
The first section 21 will be empty of a gasket 60, such that there will be access from the first opening pair 41 to the patterned section 12, this pair then will form inlet and outlet to the flow path formed at the first side 111 of the heat transfer plate 10.
The second section 22 will comprise a gasket 60 sealing off fluid from the second pair 42 to the first side 111 flow path.
As also indicated in relation to
The third section 23 may have any shape of the bottom wall body 121, such as being flat, and may further connect a first section 21 of respectively an inlet to an outlet of said first opening pair 41 and a second section 22 of respectively and an inlet to an outlet of said second opening pair 42.
Each of the first 21, second 22 and third sections 23 may be a single section only or could each be a plural of sections of the gasket grove 20. They could be meandering sections or branched, open or closes sections.
In an embodiment the gasket 60 is shaped at the upper and lower surface with an upper recess 61 and/or lower recess 62 as seen in
In an embodiment as illustrated in
In one embodiment combining the features of
In any of the embodiments the first 31 and second 32 recess thus assists in keeping the gasket 60 in position.
In an embodiment the first recess 31 and second recess 32 is differently shaped, which could be that they have different widths, or could be simply the form of the recess 31, 32 is different, e.g. one having flat tops being square like, another being triangular like with pointing ends etc.
It should be understood for any of the embodiments, that the first 21 and second 22 sections usually will not have ‘continuous’ walls, though it may appear as such from the illustrations, but will have a number of open sections in the walls forming the fluidic communication between an inlet and outlet 41, 42 and the patterned sections 12. When referring to respectively the first width and second width, this thus implies a general width of the sections 21, 22, such as where it does comprise walls opposite to each other. It should also be understood that in any of the embodiments the first and second widths may change along the length extensions of the first and second sections 21, 22, just as the widths of the first 31 and second 32 recesses may change.
While the present disclosure has been illustrated and described with respect to a particular embodiment thereof, it should be appreciated by those of ordinary skill in the art that various modifications to this disclosure may be made without departing from the spirit and scope of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
PA201800725 | Oct 2018 | DK | national |
Number | Name | Date | Kind |
---|---|---|---|
1836318 | Gay | Dec 1931 | A |
2790627 | Wakeman | Apr 1957 | A |
3788394 | Derragon | Jan 1974 | A |
3792730 | Andersson | Feb 1974 | A |
4067203 | Behr | Jan 1978 | A |
4219079 | Sumitomo | Aug 1980 | A |
4301662 | Whitnah | Nov 1981 | A |
4420373 | Egosi | Dec 1983 | A |
4432415 | Wright | Feb 1984 | A |
4522037 | Ares et al. | Jun 1985 | A |
4573327 | Cochran | Mar 1986 | A |
4646821 | Almqvist | Mar 1987 | A |
5024061 | Pfeil, Jr. et al. | Jun 1991 | A |
5226320 | Dages et al. | Jul 1993 | A |
5553457 | Reznikov | Sep 1996 | A |
5887650 | Yang | Mar 1999 | A |
6305187 | Tsuboe et al. | Oct 2001 | B1 |
6698221 | You | Mar 2004 | B1 |
6786056 | Bash et al. | Sep 2004 | B2 |
6823691 | Ohta | Nov 2004 | B2 |
7178359 | Oshitani et al. | Feb 2007 | B2 |
7334427 | Ozaki et al. | Feb 2008 | B2 |
7389648 | Concha et al. | Jun 2008 | B2 |
7490660 | Song | Feb 2009 | B2 |
7844366 | Singh | Nov 2010 | B2 |
8887524 | Mihara | Nov 2014 | B2 |
8991201 | Ikegami et al. | Mar 2015 | B2 |
9217590 | Cogswell et al. | Dec 2015 | B2 |
9234710 | Persson | Jan 2016 | B2 |
9752801 | Verma et al. | Sep 2017 | B2 |
20010025499 | Takeuchi et al. | Oct 2001 | A1 |
20020124592 | Takeuchi et al. | Sep 2002 | A1 |
20030145613 | Sakai et al. | Aug 2003 | A1 |
20030209032 | Ohta | Nov 2003 | A1 |
20040003608 | Takeuchi et al. | Jan 2004 | A1 |
20040003615 | Yamaguchi | Jan 2004 | A1 |
20040007014 | Takeuchi et al. | Jan 2004 | A1 |
20040011065 | Takeuchi et al. | Jan 2004 | A1 |
20040040340 | Takeuchi et al. | Mar 2004 | A1 |
20040055326 | Ikegami et al. | Mar 2004 | A1 |
20040060316 | Ito et al. | Apr 2004 | A1 |
20040069011 | Nishida et al. | Apr 2004 | A1 |
20040079102 | Umebayashi et al. | Apr 2004 | A1 |
20040103685 | Yamaguchi et al. | Jun 2004 | A1 |
20040123624 | Ohta et al. | Jul 2004 | A1 |
20040211199 | Ozaki et al. | Oct 2004 | A1 |
20040255602 | Sato et al. | Dec 2004 | A1 |
20040255612 | Nishijima et al. | Dec 2004 | A1 |
20040255613 | Choi et al. | Dec 2004 | A1 |
20040261448 | Nishijima et al. | Dec 2004 | A1 |
20060236708 | Mizuno et al. | Oct 2006 | A1 |
20060254308 | Yokoyama et al. | Nov 2006 | A1 |
20060277932 | Otake et al. | Dec 2006 | A1 |
20080196873 | Svensson | Aug 2008 | A1 |
20090071177 | Unezaki et al. | Mar 2009 | A1 |
20090241569 | Okada et al. | Oct 2009 | A1 |
20090266093 | Aoki | Oct 2009 | A1 |
20100192607 | Unezaki et al. | Aug 2010 | A1 |
20100206539 | Kim et al. | Aug 2010 | A1 |
20100319393 | Ikegami et al. | Dec 2010 | A1 |
20110005268 | Oshitani et al. | Jan 2011 | A1 |
20110023515 | Kopko et al. | Feb 2011 | A1 |
20110041523 | Taras et al. | Feb 2011 | A1 |
20110197606 | Zimmermann et al. | Aug 2011 | A1 |
20110219803 | Park et al. | Sep 2011 | A1 |
20110239667 | Won et al. | Oct 2011 | A1 |
20110256005 | Takeoka et al. | Oct 2011 | A1 |
20110283723 | Yakumaru | Nov 2011 | A1 |
20110314854 | Sata et al. | Dec 2011 | A1 |
20120006041 | Ikeda et al. | Jan 2012 | A1 |
20120060523 | Hung | Mar 2012 | A1 |
20120151948 | Ogata et al. | Jun 2012 | A1 |
20120167601 | Cogswell et al. | Jul 2012 | A1 |
20120180510 | Okazaki et al. | Jul 2012 | A1 |
20120247146 | Yamada et al. | Oct 2012 | A1 |
20120324911 | Shedd | Dec 2012 | A1 |
20130042640 | Higashiiue et al. | Feb 2013 | A1 |
20130111935 | Zou et al. | May 2013 | A1 |
20130111944 | Wang et al. | May 2013 | A1 |
20130125569 | Verma et al. | May 2013 | A1 |
20130174590 | Sjoholm et al. | Jul 2013 | A1 |
20130251505 | Wang et al. | Sep 2013 | A1 |
20140208785 | Wallace et al. | Jul 2014 | A1 |
20140326018 | Ignatiev | Nov 2014 | A1 |
20140345318 | Nagano et al. | Nov 2014 | A1 |
20150300706 | Awa et al. | Oct 2015 | A1 |
20150330691 | McSweeney | Nov 2015 | A1 |
20160109160 | Junge et al. | Apr 2016 | A1 |
20160169565 | Yokoyama et al. | Jun 2016 | A1 |
20160169566 | Nakashima et al. | Jun 2016 | A1 |
20160186783 | Nishijima et al. | Jun 2016 | A1 |
20160280041 | Suzuki et al. | Sep 2016 | A1 |
20170159977 | Hellmann | Jun 2017 | A1 |
20170321941 | Fredslund et al. | Nov 2017 | A1 |
20170343245 | Fredslund et al. | Nov 2017 | A1 |
20180023850 | Chaudhry et al. | Jan 2018 | A1 |
20180066872 | Hellmann | Mar 2018 | A1 |
20180119997 | Siegert et al. | May 2018 | A1 |
20180142927 | Hellmann et al. | May 2018 | A1 |
20180274821 | Lee et al. | Sep 2018 | A1 |
20180283750 | Prins et al. | Oct 2018 | A1 |
20180320944 | Prins et al. | Nov 2018 | A1 |
Number | Date | Country |
---|---|---|
2405181 | Nov 2000 | CN |
1309279 | Aug 2001 | CN |
1374491 | Oct 2002 | CN |
1776324 | May 2006 | CN |
1892150 | Jan 2007 | CN |
101329115 | Dec 2008 | CN |
101512255 | Aug 2009 | CN |
101922823 | Dec 2010 | CN |
102128508 | Jul 2011 | CN |
201992750 | Sep 2011 | CN |
202254492 | May 2012 | CN |
202304070 | Jul 2012 | CN |
103003641 | Mar 2013 | CN |
103282730 | Sep 2013 | CN |
103292623 | Sep 2013 | CN |
104359246 | Feb 2015 | CN |
104697234 | Jun 2015 | CN |
207050547 | Feb 2018 | CN |
4303669 | Jan 1994 | DE |
10029999 | Jan 2002 | DE |
10321191 | Nov 2003 | DE |
0005825 | May 1979 | EP |
0217605 | Apr 1987 | EP |
1236959 | Sep 2002 | EP |
1731853 | Dec 2006 | EP |
2068094 | Jun 2009 | EP |
2077427 | Jul 2009 | EP |
2175212 | Apr 2010 | EP |
2224187 | Sep 2010 | EP |
2504640 | Oct 2012 | EP |
3032208 | Jun 2016 | EP |
2718642 | Sep 2016 | EP |
3098543 | Nov 2016 | EP |
2844036 | Mar 2004 | FR |
2164439 | Mar 1986 | GB |
2164439 | Mar 1986 | GB |
H04316962 | Nov 1992 | JP |
H04320762 | Nov 1992 | JP |
2001221517 | Aug 2001 | JP |
2005249315 | Sep 2005 | JP |
2009097786 | May 2009 | JP |
2010151424 | Jul 2010 | JP |
2014077579 | May 2014 | JP |
100196779 | Jun 1999 | KR |
20080006585 | Dec 2008 | KR |
2368850 | Sep 2009 | RU |
2415307 | Mar 2011 | RU |
2555087 | Jul 2015 | RU |
996805 | Feb 1983 | SU |
2012012488 | Jan 2012 | WO |
2012012493 | Jan 2012 | WO |
2012012501 | Jan 2012 | WO |
2012168544 | Dec 2012 | WO |
2014106030 | Jul 2014 | WO |
2016034298 | Mar 2016 | WO |
Entry |
---|
US 5,385,033 A, 01/1995, Sandofsky et al. (withdrawn) |
Partial European Search Report for Serial No. 19201243.3 dated Feb. 24, 2020. |
International Search Report for Application No. PCT/EP2016/074758 dated Jan. 17, 2017. |
European Examination Report for Serial No. 16 781 477.1 dated Feb. 21, 2019. |
Danish Search Report for Serial No. PA 2015 00644 dated May 17, 2016. |
International Search Report for Application No. PCT/EP2016/074774 dated Jan. 9, 2017. |
International Search Report for Application No. PCT/EP2016/074765 dated Jan. 9, 2017. |
International Search Report for PCT Serial No. PCT/EP2018/057515 dated Jun. 20, 2018. |
International Search Report for PCT Serial No. PCT/EP2015/064019 dated Dec. 14, 2015. |
International Search Report for PCT Serial No. PCT/EP2015/073211 dated Jan. 20, 2016. |
International Search Report for Application No. PCT/EP2016/065575 dated Oct. 13, 2016. |
International Search Report for PCT Serial No. PCT/EP2015/073171 dated Jan. 20, 2016. |
Chinese Office Action and English Translation for Serial No. 201580060854.1 dated Jan. 4, 2019. |
Indian Office Action dated Jan. 27, 2020 for Appln. No. 201817003292. |
Japanese Office Action and English Translation for Serial No. 2018-506946 dated May 12, 2020. |
Taguchi, Air Conditioning System, Apr. 8, 1987, EP0217605A2, Whole Document (Year: 1987). |
Number | Date | Country | |
---|---|---|---|
20200116440 A1 | Apr 2020 | US |