The present invention relates to a heat exchanger.
Conventionally, there has been known a heat exchanger including multiple flat tubes and multiple heat transfer fins extending to intersect the flat tubes and causes refrigerant in the flat tubes to exchange heat with the air flow passing through heat exchange spaces formed by adjacent flat tubes and adjacent heat transfer fins. In such a heat exchanger, there is a heat exchanger including the heat transfer fin provided with a protrusion protruding to intersect a direction of an air flow (air flow direction) in order to improve a heat transfer coefficient.
For example, Patent Document 1 (U.S. Pat. No. 4,845,943) discloses a heat exchanger of an air conditioning indoor unit including heat transfer fins having a plurality of protrusions that are formed by cutting and raising a portion thereof. In Patent Document 1, the shape of the protrusions is cut and raised differently between the windward side protrusions located on the windward side and the leeward side protrusions located on the leeward side (specifically, the attack angle with respect to the air flow and the cut-and-raised angle), and it is thereby attempted to minimize the generation of a dead water region and reduce the ventilation resistance of the protrusions.
The inventor of the present application has discovered through extensive study that as in Patent Document 1, in the heat exchanger where a large gap is formed between each protrusion and a main surface of the flat tubes in the heat exchange space when viewed from the air flow direction, regarding the air flow passing through the heat exchange space, a drift phenomenon, in which the flow velocity of the air passing through such a gap becomes significantly higher as compared with the flow velocity of the air passing through the periphery of the protrusions, easily occurs as to the air flow passing through the heat exchange space. When such a drift phenomenon occurs, it is difficult to satisfactorily perform heat exchange between the refrigerant in the flat tubes and the air flow, leading to a degradation in the performance of the heat exchanger.
A heat exchanger according to one or more embodiments is capable of restraining performance degradation.
A heat exchanger according to one or more embodiments of the present invention includes multiple flat tubes and multiple heat transfer fins and configured and arranged to cause refrigerant in the flat tubes to exchange heat with an air flow passing through a heat exchange space. The flat tubes extend in a second direction intersecting a first direction. The first direction is a flow direction of the air flow. The multiple flat tubes are arranged at intervals in a third direction. The third direction is a direction intersecting the first direction and the second direction. Each of the heat transfer fins is formed in a plate shape. The heat transfer fins extend along the third direction. The heat transfer fins are arranged at intervals along the second direction. A heat exchange space is a space formed by adjacent flat tubes and adjacent heat transfer fins. Each of the heat transfer fins has a heat transfer fin front side surface and a heat transfer fin back side surface. The heat transfer fin front side surface is one main surface of the heat transfer fin. The heat transfer fin back side surface is the other main surface of the heat transfer fin. Each of the heat transfer fins has a plurality of protrusions. Each of the protrusions is a bulging portion or a cut-and-raised portion protruding along the second direction from the heat transfer fin front side surface or from the heat transfer fin back side surface. The plurality of protrusions is arranged in the first direction in each heat exchange space. The plurality of protrusions includes leeward side protrusions and windward side protrusions. The leeward side protrusions are protrusions located on the leeward side. The windward side protrusions are protrusions located further to the windward side than the leeward side protrusions. According to an air flow directional view, in each heat exchange space, a ratio of an area of an “other-side-protrusion” occupying a reference area is equal to or greater than 0.2. The air flow directional view is a way to view from the windward side to the leeward side of the first direction. The reference area is, in the air flow directional view, an area of a quadrilateral configured by a lateral side and a longitudinal side. One of the lateral side and the longitudinal side is, in the air flow directional view, defined by a portion located between an one-side-protrusion's edge, which is arranged in the heat transfer fin front side surface or the heat transfer fin back side surface where the one-side-protrusion protrudes from, and a main surface of the flat tube closest to the one-side-protrusion's edge. Other one of the lateral side and the longitudinal side is, in the air flow directional view, defined by a fin pitch of the heat transfer fins. The one-side-protrusion is one of the windward side protrusions and the leeward side protrusions, and the other-side-protrusion is the other of the windward side protrusions and the leeward side protrusions.
In the heat exchanger according to the first example of one or more embodiments of the present invention, according to the air flow directional view, the ratio of the area of the other-side-protrusion occupying the reference area in each heat exchange space is equal to or greater than 0.2. The reference area is, in the air flow directional view, an area of a quadrilateral configured by a lateral side and a longitudinal side. One of the lateral side and the longitudinal side is, in the air flow directional view, defined by a portion located between an one-side-protrusion's edge, which is arranged in the heat transfer fin front side surface or the heat transfer fin back side surface where the one-side-protrusion protrudes from, and a main surface of the flat tube closest to the one-side-protrusion's edge. Other one of the lateral side and the longitudinal side is, in the air flow directional view, defined by a fin pitch of the heat transfer fins. Thus, when viewed from the air flow direction, in each heat exchange space, the formation of a large gap is restrained between the other-side-protrusion and the main surface of the flat tube. As a result, with respect to the air flow passing through the heat exchange space, the drift phenomenon in which the flow velocity of the air flow passing through the gap becomes significantly higher as compared with the flow velocity of the air flow passing through the periphery of the protrusion is unlikely to occur. In this regard, heat exchange between the air flow and the refrigerant in the flat tube is appropriately performed. Therefore the performance degradation is restrained.
A heat exchanger according to a second example of one or more embodiments of the present invention is the heat exchanger according to the first example of one or more embodiments of the present invention, wherein when the heat exchange space is viewed from the third direction, the other-side-protrusion is disposed at a position where a distance is greater than zero. The distance is provided between one which is closer to the flat tube out of an other-side-protrusion's windward side edge and an other-side-protrusion's leeward side edge and one which is closer to the other-side-protrusion out of a windward side end portion of the flat tube and a leeward side end portion of the flat tube.
Therefore, it is possible to increase the size of the other-side-protrusion. In other words, when viewed from the third direction, in a case where the other-side-protrusion is configured so that the distance provided between one which is closer to the flat tube out of an other-side-protrusion's windward side edge and an other-side-protrusion's leeward side edge and one which is closer to the other-side-protrusion out of a windward side end portion of the flat tube and a leeward side end portion of the flat tube is zero or less (that is, they are overlapping), it is difficult to dispose (cut up or bulge) the other-side-protrusion so that one, which is closer to the flat tube out of an other-side-protrusion's windward side edge and an other-side-protrusion's leeward side edge, overlaps with the flat tube in the air flow directional view. In this regard, it is difficult to increase the size of the other-side-protrusion to the extent to which the formation of the large gap between the other-side-protrusion and the main surface of the heat transfer tube is restrained when each of the heat exchange spaces is viewed from the air flow direction.
By disposing the other-side-protrusion at a position where, when viewed from the third direction, the distance is greater than zero between one which is closer to the flat tube out of an other-side-protrusion's windward side edge and an other-side-protrusion's leeward side edge and one which is closer to the other-side-protrusion out of a windward side end portion of the flat tube and a leeward side end portion of the flat tube, it is facilitates that the other-side-protrusion is configured and arranged so that one which is closer to the flat tube out of an other-side-protrusion's windward side edge and an other-side-protrusion's leeward side edge overlaps with the flat tube in the air flow directional view. Therefore, it is easy to configure the other-side-protrusion larger to the extent that the large gap, when each heat exchange space is viewed from the air flow direction, is not formed largely between the other-side-protrusion and the main surface of the heat transfer tube. That is, the ratio of the area of the other-side-protrusion occupying the reference area can be easily set to equal to or greater than 0.2. Therefore, the performance degradation can be further restrained.
A heat exchanger according to a third example of one or more embodiments of the present invention is the heat exchanger according to the first example or the second example of one or more embodiments of the present invention, wherein, in the air flow directional view, a length of which the other-side-protrusion protruding is equal to or longer than a length of which the one-side-protrusion protruding. This facilitates the configuration of the other-side-protrusion to be further larger. In other words, the ratio of the area of the other-side-protrusion occupying the reference area can easily be set to equal to or greater than 0.2. Therefore, the performance degradation can be further restrained.
A heat exchanger according to a fourth example of one or more embodiments of the present invention is the heat exchanger according to any one of the first example to the third example of one or more embodiments of the present invention, wherein the other-side-protrusion is disposed on the most windward side or the leeward side of the plurality of protrusions. This facilitates the configuration of the other-side-protrusion to be further larger. In other words, the ratio of the area of the other-side-protrusion occupying the reference area can easily be set to equal to or greater than 0.2. Therefore, the performance degradation can be further restrained.
A heat exchanger according to a fifth example of one or more embodiments of the present invention is the heat exchanger according to any one of the first example to the fourth example of one or more embodiments of the present invention, wherein the ratio of the area of the other-side-protrusion occupying the reference area is equal to or greater than 0.5. Thus, in each heat exchange space, when viewed from the air flow direction, the formation of the large gap between the other-side-protrusion and the main surface of the flat tube is further reduced. As a result, with respect to the air flow passing through the heat exchange space, the drift phenomenon in which the flow velocity of the air flow passing through the gap becomes significantly higher as compared with the flow velocity of the air flow passing through the periphery of the protrusion is more unlikely to occur. In this regard, in the heat exchange space, heat exchange between the air flow and the refrigerant in the flat tube is further facilitated to be appropriately performed. Therefore, the performance degradation is further restrained.
A heat exchanger according to a sixth example of one or more embodiments of the present invention is the heat exchanger according to any one of the first example to the fifth example of one or more embodiments of the present invention, wherein the plurality of protrusion configured to include a strength enhancement protrusion. The strength enhancement protrusion configured and arranged to extend from one end side in the first direction towards the other end side in the first direction of the heat transfer fin. The strength enhancement protrusion increases the strength of the heat transfer fin.
Thus, when a load is applied to the heat transfer fin (particularly when a load is applied along the first direction or the opposite direction thereto), the deformation and buckling of the heat transfer fin is restrained. As a result, the performance degradation of the heat exchanger due to deformation and buckling of the heat transfer fin is restrained. Therefore, the performance degradation is further restrained.
A heat exchanger according to a seventh example of one or more embodiments of the present invention is the heat exchanger according to the sixth example of one or more embodiments of the present invention, wherein the heat transfer fin is formed with a plurality of flat tube insertion holes. The flat tube insertion holes extend from one end side towards the other end side in the first direction of the heat transfer fin. The flat tube insertion hole is a hole into which the flat tube is inserted. When viewed from the third direction, an terminal end of the strength enhancement protrusion is positioned further to one end side in the first direction of the heat transfer fin than the flat tube insertion hole.
Thus, particularly, when a load is applied to the heat transfer fin from the side opposite to the side where the flat tube is inserted, deformation or buckling of the heat transfer fin is restrained. As a result, even when a load is applied from the side opposite to the side where the flat tube of the heat transfer fin is inserted, for example, during the manufacturing process of the heat exchanger such as bending process or at the time transportation or the like, deformation or buckling of the heat transfer fin is restrained. Therefore, the performance degradation of the heat exchanger is restrained.
A heat exchanger according to an eighth example of one or more embodiments of the present invention is the heat exchanger according to the sixth example of one or more embodiments of the present invention, wherein the heat transfer fin is formed with a plurality of flat tube insertion holes. The flat tube insertion holes extend from one end side towards the other end side in the first direction of the heat transfer fin. The flat tube insertion holes are each a hole into which the flat tube is inserted. when viewed from the third direction, a tip end of the strength enhancement protrusion is positioned further to the other end side in the first direction of the heat transfer fin than the flat tube insertion hole.
Thus, particularly, when a load is applied to the heat transfer fin from the side opposite to the side where the flat tube is inserted, deformation or buckling of the heat transfer fin is restrained. As a result, even when a load is applied from the side opposite to the side where the flat tube of the heat transfer fin is inserted, for example, during the manufacturing process of the heat exchanger such as bending process or at the time transportation or the like, deformation or buckling of the heat transfer fin is restrained. Therefore, the performance degradation of the heat exchanger is restrained.
A heat exchanger according to a ninth example of one or more embodiments of the present invention is the heat exchanger according to any one of the sixth example to the eighth example of one or more embodiments of the present invention, wherein the heat transfer fin configured to include a fin main body. The fin main body is a portion configured and arranged to extend continuously from one end side in the third direction to the other end side in the third direction of the heat transfer fin. The strength enhancement protrusion is partially or entirely disposed on the fin main body.
Thus, deformation or buckling of the heat transfer fin is restrained when a load is applied to the heat transfer fin, particularly the fin main body. As a result, even when a load is applied to the fin main body, for example, during the manufacturing process of the heat exchanger such as bending process or at the time of transportation or the like, deformation or buckling of the heat transfer fin is restrained. Therefore, the performance degradation of the heat exchanger is restrained.
A heat exchanger according to a tenth example of one or more embodiments of the present invention is the heat exchanger according to any one of the sixth example to the ninth example of one or more embodiments of the present invention, wherein. when viewed from the third direction, the strength enhancement protrusion is partially or entirely disposed between the one-side-protrusion and the other-side-protrusion. Thus, it is possible that the strength enhancement protrusion to be disposed in the space formed between the one-side-protrusion and the other-side-protrusion. As a result, the strength enhancement protrusion can coexist with other protrusion in the narrow heat exchange space.
A heat exchanger according to an eleventh example of one or more embodiments of the present invention is the heat exchanger according to any one of the sixth example to the tenth example of one or more embodiments of the present invention, wherein the strength enhancement protrusion is configured integrally with the other-side-protrusion. Due to constituting the strength enhancement protrusion integrally with the other-side-protrusion, it is possible that the strength enhancement protrusion and the other-side-protrusion to coexist in a narrow heat exchange space.
In the heat exchanger according to the first aspect of one or more embodiments of the present invention, when viewed from the air flow direction, in each heat exchange space, the formation of a large gap is restrained between the other-side-protrusion and the main surface of the flat tube. As a result, with respect to the air flow passing through the heat exchange space, the drift phenomenon in which the flow velocity of the air flow passing through the gap becomes significantly higher as compared with the flow velocity of the air flow passing through the periphery of the protrusion is unlikely to occur. In this regard, heat exchange between the air flow and the refrigerant in the flat tube is appropriately performed. Therefore the performance degradation is restrained.
In the heat exchanger according to the second to the fourth example of one or more embodiments of the present invention, the ratio of the area of the other-side-protrusion occupying the reference area can be easily set to equal to or greater than 0.2. Therefore, the performance degradation can be further restrained.
In the heat exchanger according to the fifth example of one or more embodiments of the present invention, heat exchange between the air flow and the refrigerant in the flat tube is further facilitated to be appropriately performed. Therefore, the performance degradation is further restrained.
In the heat exchanger according to the sixth example of one or more embodiments of the present invention, when a load is applied to the heat transfer fin (particularly when a load is applied along the first direction or the opposite direction thereto), the deformation and buckling of the heat transfer fin is restrained. As a result, the performance degradation of the heat exchanger due to deformation and buckling of the heat transfer fin is restrained. Therefore, the performance degradation is further restrained.
In the heat exchanger according to the seventh example or the eighth example of one or more embodiments of the present invention, particularly, when a load is applied to the heat transfer fin from the side opposite to the side where the flat tube is inserted, deformation or buckling of the heat transfer fin is restrained. As a result, even when a load is applied from the side opposite to the side where the flat tube of the heat transfer fin is inserted, for example, during the manufacturing process of the heat exchanger such as bending process or at the time transportation or the like, deformation or buckling of the heat transfer fin is restrained. Therefore, the performance degradation of the heat exchanger is restrained.
In the heat exchanger according to the ninth example of one or more embodiments of the present invention, deformation or buckling of the heat transfer fin is restrained when a load is applied to the heat transfer fin, particularly the fin main body. As a result, even when a load is applied to the fin main body, for example, during the manufacturing process of the heat exchanger such as bending process or at the time of transportation or the like, deformation or buckling of the heat transfer fin is restrained. Therefore, the performance degradation of the heat exchanger is restrained.
In the heat exchanger according to the tenth example or the eleventh example of one or more embodiments of the present invention, it is possible for the strength enhancement protrusion to coexist with the other protrusion in the narrow heat exchange space.
Hereinafter, a heat exchanger 21 according to one or more embodiments of the present invention will be described with reference to the drawings. Note that the following embodiments are specific examples of the heat exchanger according to the present invention and are not limited to the technical scope of the present invention, but modifications can be appropriately made herein without departing from the scope of the invention. In the following embodiments, in
(1) Heat Exchanger 21
(1-1) Heat Exchange Unit 40
The heat exchanger 21 has multiple (four, in this case) heat exchange units 40 for exchanging heat between the air flow AF and the refrigerant. Each of the heat exchange units 40 is a region widening in a direction intersecting the traveling direction of the air flow AF (that is, the air flow direction dr1), and extending along the “x” direction or the “y” direction in a plan view as well as extending in the “z” direction in a side view (refer to
As shown in
In the following description, a direction in which the heat exchange unit 40 extends in a plan view (that is, when viewed from the “z” direction) is referred to as a “heat transfer tube extending direction dr2”, and a direction in which the heat exchange unit 40 extends in a side view (that is, when viewed from the “x” direction or the “y” direction) is referred to as a “heat transfer fin extending direction dr3” (refer to
(1-2) Heat Transfer Tubes 50
The heat transfer tubes 50 are each a so-called flat perforated tube in which a plurality of refrigerant channels 51 is formed. Each of the heat transfer tubes 50 have a thin plate shape and includes two main surfaces 52 (specifically, a heat transfer tube front side surface 521 and a heat transfer tube back side surface 522) (refer to
In the respective heat exchange unit 40, each of the heat transfer tubes 50 is arranged parallel with the other heat transfer tubes 50 at intervals along the heat transfer fin extending direction dr3 (refer to
Here, regarding the heat transfer tubes 50 arranged in two rows, the heat transfer tubes 50 located on the windward side of the air flow AF are referred to as a windward side heat transfer tubes 50a, and the heat transfer tubes 50 located on the leeward side of the air flow AF are referred to as a leeward side heat transfer tubes 50b.
(1-3) Heat Transfer Fin 60
Heat transfer fins 60 are flat plate shaped members for increasing the heat transfer area between the heat transfer tubes 50 and the air flow AF. The heat transfer fins 60 are made of aluminum or an aluminum alloy. The heat transfer fins 60 each include two main surfaces (specifically, a fin front side surface 611 and a fin back side surface 612) (refer to
In the heat exchange unit 40, each of the heat transfer fins 60 is arranged at intervals (hereinafter that interval is referred to as “fin pitch P1”) together with the other heat transfer fins 60 along the heat transfer tube extending direction dr2 (refer to
As shown in
(1-3-1) Fin Main Body 63
The fin main body 63 is a portion extending continuously from one end side to the other end side of the heat transfer fin 60 in the heat transfer fin extending direction dr3. The fin main body 63 extends continuously along the heat transfer fin extending direction dr3. A length dimension of the fin main body 63 in the heat transfer fin extending direction dr3 is selected to be a size corresponding to the number of the heat transfer tubes 50 included in the heat exchange unit 40, and corresponds to a length dimension of the heat exchange unit 40 in the heat transfer fin extending direction dr3.
In the fin main body 63, the heat transfer promoting portions 65 of number corresponding to the number of the heat transfer tubes 50 included in the heat exchange unit 40 are arranged at intervals along the heat transfer fin extending direction dr3.
(1-3-2) Heat Transfer Promoting Portion 65
The heat transfer promoting portion 65 is a surface portion extending between two adjacent slits 62 (that is, between two adjacent heat transfer tubes 50 along the heat transfer fin extending direction dr3). When viewed from the heat transfer tube extending direction dr2, the heat transfer promoting portion 65 extends in a continuous manner along the air flow direction dr1 and the heat transfer fin extending direction dr3 between the main surfaces 52 of two heat transfer tubes 50 adjacent to each other in the heat transfer fin extending direction dr3
(that is, the heat transfer promoting portion 65 extends between the heat transfer tube front side surface 521 of one heat transfer tube 50 and the heat transfer tube back side surface 522 of the other heat transfer tube 50). The heat transfer promoting portion 65 is in contact with the main surfaces 52 of the heat transfer tubes 50 at the boundary portion (edge portion) with the slit 62. As shown in
Each of the protrusions 70 protrudes from the fin front side surface 611 toward the fin back side surface 612 of the other heat transfer fin 60 facing the fin front side surface 611 (that is, toward the heat transfer tube extending direction dr2). Each protrusion 70 is formed by cutting and raising a portion of the heat transfer promoting portion 65 along the heat transfer tube extending direction dr2 (that is, a direction intersecting the air flow direction dr1).
Specifically, in the heat transfer promoting portion 65, a first protrusion 71, a second protrusion 72, a third protrusion 73, a fourth protrusion 74, and a fifth protrusion 75 are provided as the protrusions 70. In the heat transfer promoting portion 65, the protrusions 70 are formed in the order of the first protrusion 71, the second protrusion 72, the third protrusion 73, the fourth protrusion 74, and the fifth protrusion 75 from the windward side to the leeward side in the air flow direction dr1 (refer to
When viewed from the heat transfer tube extending direction dr2, the first protrusion 71, the second protrusion 72, the third protrusion 73, and the fourth protrusion 74 exhibit a rectangular shape having a dimension in the heat transfer fin extending direction dr3 as a long side 701 and a dimension of the air flow direction dr1 as a short side 702 (refer to
It is to be noted that in one or more embodiments, at least one of the one-end-side-protrusions 80 (the first protrusion 71 to the fourth protrusion 74) correspond to the “one-side-protrusion” described in the claims.
The fifth protrusion 75 (corresponding to the “leeward side protrusion” described in the claims) includes an upper side 751 (short side) and a lower side 752 (long side) extending, when viewed from the heat transfer tube extending direction dr2, along the heat transfer fin extending direction dr3. The fifth protrusion 75 exhibits, when viewed from the heat transfer tube extending direction dr2, a trapezoidal shape in which the upper side 751 is located on the windward side in the air flow direction dr1 and the lower side 752 is located on the leeward side thereof (refer to
When viewed from the heat transfer tube extending direction dr2, the size of the fifth protrusion 75 (or the size of a slit SL 2 formed by providing the fifth protrusion 75) is larger than the size of the respective one-end-side-protrusions 80 (or the size of the slit SL1). That is, the fifth protrusion 75 is cut and raised so that the length dimension in the heat transfer fin extending direction dr3 is larger, in the air flow directional view v1, than that of each one-end-side-protrusions 80.
In relation to this, a length dimension H2 (refer to
Also, as shown in
Note that in one or more embodiments, the fifth protrusion 75 corresponds to the “other-side-protrusion” described in the claims.
(1-4) Heat Exchange Spaces SP
A large number of heat exchange spaces SP are formed in each heat exchange unit 40 (refer to
In each of the heat exchange spaces SP, the heat transfer promoting portion 65 extends along the air flow direction dr1 and the heat transfer fin extending direction dr3. Also, in each of the heat exchange spaces SP, each of the protrusions 70 of the heat transfer promoting portions 65 protrudes from the fin front side surface 611 along the heat transfer tube extending direction dr2 (the direction intersecting the air flow direction dr1). Each protrusion 70 plays a role of increasing the heat transfer area when the air flow AF passes through the heat exchange spaces SP to thereby promote heat exchange between the air flow AF and the refrigerant in the heat transfer tubes 50.
In the heat exchange spaces SP, each protrusion 70 of each of the heat transfer fins 60 protrudes from the fin front side surface 611 toward the fin back side surface 612 of the other heat transfer fin 60 facing the relevant fin front side surface 611. That is, each protrusion 70 protrudes in the direction of the heat transfer tube extending direction dr2 intersecting the air flow direction dr1 (refer to
As described above, since the length dimension H1 at which each of the one-end-side-protrusions 80 (the first protrusion 71, the second protrusion 72, the third protrusion 73, and the fourth protrusion 74) protrudes is substantially the same with other, according to the air flow directional view v1, in the heat exchange spaces SP, the second protrusion 72, the third protrusion 73, and the fourth protrusion 74 overlap the first protrusion 71 located on the most windward side. In addition, since the protruding length dimension H2 of the fifth protrusion 75 is larger than the protruding length dimensions H1 of the one-end-side-protrusions 80, according to the air flow directional view v1, in the heat exchange spaces SP, the fifth protrusion 75 protrudes significantly toward the heat transfer tube extending direction dr2 than the one-end-side-protrusions 80.
In addition, when viewed from the heat transfer tube extending direction dr2, the leeward side edges 75b (the edges at both ends of the lower side 752) of the fifth protrusion 75 are located further outward than windward side edges 75a (the edges at both ends of the upper side 751) of the fifth protrusion 75. Thus, according to the air flow directional view v1, in the heat exchange spaces SP, the two inclined faces 753 of the fifth protrusion 75 protrude so as to face the windward side direction of the air flow AF at the outer side of the one-end-side-protrusions 80.
Given this configuration in which each of the protrusions 70 (particularly, the fifth protrusion 75) is disposed in the heat exchange spaces SP, according to the air flow directional view v1, a ratio of an area (hereinafter referred to as “protruding area A1”) occupied by the fifth protrusion 75, particularly the inclined surface 753, in each of the heat exchange spaces SP is large. Specifically, the ratio of the protruding area A1 occupying an area of a virtual reference quadrilateral R1 (refer to
The reference quadrilateral R1 is, in the heat exchange space SP, a quadrilateral configured to have a first side L1 (one of the longitudinal side or the lateral side) and a second side L2 (the other of the longitudinal side or the lateral side). The first side L1 is defined by a length dimension of a portion (refer to the reference numeral “61a” in
When each of the heat exchange spaces SP is viewed from the heat transfer fin extending direction dr3, a distance D1 between the edge 75a of the windward side of the fifth protrusion 75 and an end portion 501 at the most leeward side of the heat transfer tube 50 (that is, a leeward side edge of the slit 62 of the heat transfer fin 60) is greater than zero. In this regard, according to the air flow directional view v1, the fifth protrusion 75 is disposed such that the leeward side edge 75b thereof is positioned further to the leeward side than the heat transfer tubes 50 in each of the heat exchange spaces SP (refer to
In the heat exchange spaces SP, disposing the fifth protrusion 75 in such a manner increases the protruding area A1 in the reference area A2, (specifically, so as to be equal to or greater than 0.2), thereby configuring the fifth protrusion 75 to be larger. In other words, when each of the heat exchange spaces SP is viewed from the heat transfer fin extending direction dr3, in a case where the distance D1 between the edge 75a of the windward side of the fifth protrusion 75 and the end portions 501 of the heat transfer tubes 50 (that is, the leeward side edge of the slit 62) is zero or less, it is difficult to configure the fifth protrusion 75 to be large in order to increase the protruding area A1 in the reference area A2. Therefore, the fifth protrusion 75 is configured in such a manner as described above to thereby facilitate the configuration of a large fifth protrusion 75. That is, the fifth protrusion 75 is configured so as to facilitate the enlargement of the protruding area A1 in the reference area A2.
(2) Heat Transfer Promotion Function of the Heat Exchanger 21
The heat transfer promotion function of the heat exchanger 21, together with the principle of occurrence of the drift phenomenon of the air flow AF in each of the heat exchange spaces SP, will be described with reference to
As shown in
That is, when the ratio of the protruding area A1 occupying in the reference area A2 in each of the heat exchange spaces SP is less than 0.2, a drift phenomenon, which causes the flow velocity of the air flow AF to be considerably faster as compared with the other portions, is likely to occur in each of the heat exchange spaces SP. As shown in
On the other hand, as shown in
That is, when the ratio of the protruding area A1 occupying in the reference area A2 in each of the heat exchange spaces SP is equal to or greater than 0.2, in each of the heat exchange spaces SP, the drift phenomenon, causes a portion where the flow velocity of the air flow AF is considerably faster as compared with that of other portions, is restrained. Therefore, as shown in
In other words, in
In addition, when the ratio of the protruding area A1 occupying in the reference area A2 in each of the heat exchange spaces SP is equal to or greater than 0.2, as shown in
As described above, in the case where the ratio of the protruding area A1 occupying in the reference area A2 in each of the heat exchange spaces SP is equal to or greater than 0.2, the performance degradation of the heat exchanger 21 is restrained.
In the heat exchanger 21, the ratio of the protruding area A1 occupying in the reference area A2 in each of the heat exchange spaces SP is configured to be equal to or greater than 0.5 (namely, equal to or greater than 0.2) based on the principle described above. As a result, in the heat exchanger 21, when the air flow AF passes through the heat exchange spaces SP, the drift phenomenon of the air flow AF is restrained to thereby promote the heat exchange between the air flow AF and the refrigerant in the heat transfer tubes 50. Thus, the performance degradation of the heat exchanger 21 is restrained.
(3) Characteristics
(3-1)
In the heat exchanger 21 according to one or more embodiments, the heat exchange between the air flow AF and the refrigerant in the heat transfer tubes 50 is facilitated to be appropriately performed, whereby the performance degradation is restrained.
The inventor of the present application has discovered through extensive study that, as in a conventional heat exchanger, regarding the air flow passing through the heat exchange spaces in the heat exchanger where a large gap is formed between the leeward side protrusion and the main surface of the flat tube (heat transfer tube) in each of the heat exchange space when viewed from the air flow direction, the air flow passing through the heat exchange space tends to cause a drift phenomenon in which the flow velocity of the air passing through such a gap becomes significantly higher than the flow velocity of the air passing through the periphery of the protrusions.
Based on this finding, in the heat exchanger 21, according to the air flow directional view v1, the ratio of the area of the fifth protrusion 75 (the other-side-protrusion) occupying in the reference area A2 in each of the heat exchange spaces SP is configured to be equal to or greater than 0.2 (in the air flow directional view v1, the reference area A2 is the area of the reference quadrilateral R1 having the first side L1 and the second side L2, the first side L1 is defined as the length dimensions of the portion, which is located between the edges 70a of the one-end-side-protrusions 80 in the fin front side surface 611 where the one-end-side-protrusions 80 (the one-side-protrusion) protrude and the main surfaces 52 of the heat transfer tubes 50 closest to the relevant edge 70a of the one-end-side-protrusions 80, and the second side L2 is defined as the length dimensions of the fin pitch P1).
This configuration restrains the formation of the large gap between the fifth protrusion 75 and the main surfaces 52 of the heat transfer tubes 50 (particularly, the formation of the large gap at a position corresponding to the reference quadrilateral R1) in each of the heat exchange spaces SP when viewed from the air flow direction dr1. As a result, with respect to the air flow AF passing through each of the heat exchange spaces SP, the drift phenomenon in which the flow velocity of the air flow AF passing through the gap becomes significantly higher as compared with the flow velocity of the air flow AF passing through the periphery of the protrusion 70 is unlikely to occur. In this regard, heat exchange between the air flow AF and the refrigerant in the heat transfer tubes 50 is facilitated to be appropriately performed, and therefore the performance degradation is restrained.
(3-2)
In the heat exchanger 21 according to one or more embodiments, when each of the heat exchange spaces SP is viewed from the heat transfer fin extending direction dr3, the fifth protrusion 75 (the other-side-protrusion) is disposed at a position where the distance D1 between the edge 75a of windward side of the fifth protrusion 75 (which is one out of the windward side edge 75a and the leeward side edge 75b, the edge closer to the heat transfer tubes 50) and the end portion 501 at the leeward side of the heat transfer tubes 50 (which is one out of the windward side end portion and the leeward side end portions of the heat transfer tubes 50, the one that is closer to the fifth protrusion 75) is greater than zero. This configuration makes it easier to increase the size of the fifth protrusion 75.
That is, in the case where the fifth protrusion 75 is configured so that the distance D1 is zero or less (that is, it overlaps) as viewed from the heat transfer fin extending direction dr3, it is difficult to dispose the fifth protrusion 75 such that that the leeward side edge 75b thereof overlaps with the heat transfer tubes 50 in the air flow directional view v1. In this regard, it is difficult to increase the size of the fifth protrusion 75 to the extent to which the formation of the large gap between the fifth protrusion 75 and the main surfaces 52 of the heat transfer tubes 50 is restrained when each of the heat exchange space SP is viewed from the air flow direction dr1.
In this respect, in the heat exchanger 21, by arranging the fifth protrusion 75, when viewed from the heat transfer fin extending direction dr3, at a position where the distance D1 is greater than zero between the edge 75a of windward side of the fifth protrusion 75 and the end portions 501 at leeward side of the heat transfer tubes 50, it is facilitated that the provision of the fifth protrusion 75 so that the leeward side edge 75b thereof overlaps with the heat transfer tubes 50 in the air flow directional view v1. Therefore, it is easy to make the fifth protrusion 75 larger to the extent that the large gap is unlikely to be formed largely between the fifth protrusion 75 and the main surfaces 52 of the heat transfer tubes 50 when each of the heat exchange spaces SP is viewed from the air flow direction dr1. That is, the ratio of the area of the fifth protrusion 75 occupying in the reference area A2 can be easily set to equal to or greater than 0.2.
(3-3)
In the heat exchanger 21 according to one or more embodiments, in the air flow directional view v1, the length dimension H2 at which the fifth protrusion 75 (the other-side-protrusion) protrudes from the fin front side surface 611 is greater than or equal to the length dimension H1 at which the one-end-side-protrusions 80 (the one-side-protrusion) protrude from the fin front side surface 611. Thereby, configuring the fifth protrusion 75 to be larger is facilitated. That is, the ratio of the area of the fifth protrusion 75 occupying in the reference area A2 can be easily set to equal to or greater than 0.2.
(3-4)
In the heat exchanger 21 according to one or more embodiments, the fifth protrusion 75 (the other-side-protrusion) is disposed at the most leeward side of the plurality of protrusions 70. Thereby, configuring the fifth protrusion 75 to be larger is facilitated. That is, the ratio of the area of the fifth protrusion 75 occupying in the reference area A2 can be easily set to equal to or greater than 0.2.
(3-5)
In the heat exchanger 21 according to one or more embodiments, the ratio of the area of the fifth protrusion 75 (the other-side-protrusion) occupying in the reference area A2 is equal to or greater than 0.5. Accordingly, when viewed from the air flow direction dr1, in each of the heat exchange spaces SP, the formation of the large gap between the fifth protrusion 75 and the main surfaces 52 of the heat transfer tubes 50 is particularly restrained. As a result, with respect to the air flow AF passing through each of the heat exchange spaces SP, particularly, the drift phenomenon in which the flow velocity of the air flow AF passing through such a gap becomes significantly higher as compared with the flow velocity of the air flow AF passing through the periphery of the protrusion 70 is unlikely to occur.
(4) Modifications
The above embodiments can be appropriately modified as described in the following modified examples. It should be noted that each modification may be combined with the other modifications and applied to the extent that no incompatibilities arise.
(4-1) Modification A
In one or more embodiments, in each of the heat exchange spaces SP, the protrusions formed from the windward side to the leeward side in the air flow direction dr1 in the order of the first protrusion 71, the second protrusion 72, the third protrusion 73, the fourth protrusion 74, and the fifth protrusion 75 are provided as the protrusion 70. That is, the fifth protrusion 75 (the other-side-protrusion) is disposed at the most leeward side in each of the heat exchange spaces SP. However, the arrangement position of the fifth protrusion 75 is not necessarily limited to this aspect and may be appropriately changed.
For example, in each of the heat exchange spaces SP, the fifth protrusion 75 may be disposed further to the windward side in the air flow direction dr1 than any one of the protrusions constituting as the one-end-side-protrusion 80 (the other-side-protrusion) out of the first protrusion 71, the second protrusion 72, the third protrusion 73, and the fourth protrusion 74.
Furthermore, among the protrusion 70, the fifth protrusion 75 may be disposed at the most windward side in the air flow direction dr1 in each of the heat exchange spaces SP, for example. In such a case, the fifth protrusion 75 corresponds to the “windward side protrusion” described in the claims, and each of the one-end-side-protrusions 80 corresponds to the “leeward side protrusion” described in the claims.
Even in the case where the fifth protrusion 75 is not the protrusion 70 disposed at the most leeward side in each of the heat exchange spaces SP, a configuration may be adopted in which the ratio of the protruding area A1 (the area of the fifth protrusion 75) occupying the reference area A2 in each of the heat exchange spaces SP is equal to or greater than 0.2 (in the air flow directional view v1, the reference area A2 is the area of the reference quadrilateral R1 having the first side L1 and the second side L2, the first side L1 is defined as the length dimensions of the portion, which is located between the edges 70a of the one-end-side-protrusions 80 in the fin front side surface 611 where the one-end-side-protrusions 80 protrude (the one-side-protrusion) and the main surfaces 52 of the heat transfer tubes 50 closest to the relevant edge 70a of the one-end-side-protrusions 80, and the second side L2 is defined as the length dimensions of the fin pitch P1). For example, as shown in
Therefore, even in the case where the fifth protrusion 75 is configured and arranged in such a manner, the same operational effect as the above embodiments may be realized.
(4-2) Modification B
In one or more embodiments, in each of the heat exchange spaces SP, the fifth protrusion 75 (the other-side-protrusion) is disposed, when each of the heat exchange spaces SP is viewed from the heat transfer fin extending direction dr3, at a position where the distance D1 between the edge 75a of the windward side thereof and the end portions 501 at the most leeward side of the heat transfer tubes 50 (out of the windward side end portion and leeward side end portions of the heat transfer tubes 50, the ones that are closer to the fifth protrusion 75) is greater than zero. From the viewpoint of adopting a configuration in which the fifth protrusion 75, when each respective heat exchange space SP is viewed from the air flow direction dr1, is formed large to the extent that the large gap is restrained to be formed largely between the fifth protrusion 75 and the main surfaces 52 of the heat transfer tubes 50, it is in one or more embodiments that the fifth protrusion 75 is disposed in such a manner. However, in order to realize the operational effect described in the above (6-1), the fifth protrusion 75 is not necessarily required to be disposed in such a manner.
For example, in each of the heat exchange spaces SP, the fifth protrusion 75 may be disposed at a position where the distance D1 is zero or less when viewed from the heat transfer fin extending direction dr3 (that is, the fifth protrusion 75 may be disposed so that the edge 75a of the windward side thereof is positioned further windward than the end portions 501 of the heat transfer tubes 50). Note that in one or more embodiments, the fifth protrusion 75 is configured large (that is, the ratio of the area of the fifth protrusion 75 occupying the reference area A2 is equal to or greater than 0.2) and is disposed such that the edge 75b of the leeward side thereof is located further leeward than the end portions 501 of the heat transfer tubes 50.
Also, in one or more embodiments when the fifth protrusion 75 is disposed further to the windward side than the one-end-side-protrusion 80, from the same viewpoint, when each of the heat exchange spaces SP is viewed from the heat transfer fin extending direction dr3, the fifth protrusion 75 in each of the heat exchange spaces SP is disposed at a position where the distance D1 between the edge 75a of the leeward side thereof and the end portions 501 at the most windward side of the heat transfer tubes 50 (out of the windward side end portion and leeward side end portions of the heat transfer tubes 50, the one that is closer to the fifth protrusion 75) is greater than zero. However, in order to realize the operational effect described in the above (6-1), the fifth protrusion 75 is not necessarily required to be disposed in such a manner.
That is, in each of the heat exchange spaces SP, the fifth protrusion 75 may be disposed at a position where the distance D1 is zero or less when viewed from the heat transfer fin extending direction dr3 (that is, the fifth protrusion 75 may be disposed such that the edge 75a of the leeward side thereof is positioned further to the leeward side than the end portions 501 at the windward side of the heat transfer tubes 50). In one or more embodiments, the fifth protrusion 75 is configured large (that is, the ratio of the area of the fifth protrusion 75 occupying the reference area A2 is equal to or greater than 0.2) and disposed such that the edge 75b thereof at the windward side is located further windward than the end portions 501 of the heat transfer tubes 50.
(4-3) Modification C
In one or more embodiments, according to the air flow directional view v1, the ratio of the area of the fifth protrusion 75 (the other-side-protrusion) occupying the reference area A2 in each of the heat exchange spaces SP is configured to equal to or greater than 0.5 (the reference area A2 is, in the air flow directional view v1, the area of the reference quadrilateral R1 having the first side L1 and the second side L2, the first side L1 is defined as the length dimensions of the portion, which is located between the edges 70a of the one-end-side-protrusions 80 (the one-side-protrusion) of the fin front side surface 611 and the main surfaces 52 of the heat transfer tubes 50 closest to the relevant edge 70a of the one-end-side-protrusions 80, the second side L2 is defined as the length dimensions of the fin pitch P1). According to the viewpoint of restraining the drift phenomenon in each of the heat exchange spaces SP and promoting the heat exchange, in one or more embodiments the ratio is equal to or greater than 0.5 as shown in
However, the heat exchanger 21 is not necessarily configured such that the ratio is equal to or greater than 0.5; the value of such ratio may be appropriately changed. That is, when it is problematic to set the ratio to equal to or greater than 0.5 due to design restrictions or the like, such ratio may be appropriately selected within the range of 0.2≤0.5.
That is, as shown in
(4-4) Modification D
In one or more embodiments, the length dimension S1 of the long side 701 and that of the short side 702 of each of the one-end-side-protrusions 80 (the first protrusion 71, the second protrusion 72, the third protrusion 73, and the fourth protrusion 74) are configured to be substantially the same. However, the length dimension S1 of the long side 701 and/or the length dimension of the short side 702 of any or all the first protrusion 71, the second protrusion 72, the third protrusion 73, and the fourth protrusion 74 are not necessarily configured to be substantially the same due to the relationship with the other one-end-side-protrusions 80. In one or more embodiments, in each of the heat exchange spaces SP, the first side L1 of the reference quadrilateral R1 is set to the length dimension of a portion (the portion corresponding to “61a” in
(4-5) Modification E
In one or more embodiments, each of the protrusions 70 is configured to take a trapezoidal shape according to the air flow directional view v1. However, the configuration of each protrusion 70 can be appropriately changed. For example, each of the protrusions 70 may be configured to exhibit a quadrilateral shape or a pentagonal shape in the air flow directional view v1.
In addition, for example, as shown in
(4-6) Modification F
In one or more embodiments, each of the protrusions 70 is formed by cutting out the heat transfer fin 60 (heat transfer promoting portion 65). However, each of the protrusions 70 is not necessarily formed by being cut out and raised, but may be configured to protrude along the heat transfer tube extending direction dr2 by another method.
For example, any or all of the protrusions 70 may be configured by causing the fin back side surface 612 to bulge toward the fin front side surface 611 so as to protrude along the heat transfer tube extending direction dr2 (that is, the periphery edge of the protrusion 70 continuously extends and protrudes from the fin front side surface 611).
Further, for example, any or all of the protrusions 70 may be configured to protrude along the heat transfer tube extending direction dr2 by cutting and bending the fin front side surface 611 to form a louver shape.
Further, for example, any or all of the protrusions 70 may be provided by adhering a separate member (a baffle plate or the like) other than the heat transfer fins 60 to the fin front side surface 611.
(4-7) Modification G
In one or more embodiments, as the one-end-side-protrusions 80, four of the protrusions 70 (the first protrusion 71, the second protrusion 72, the third protrusion 73, and the fourth protrusion 74) are provided on the windward side of the fifth protrusion 75. The number and configuration aspects of the one-end-side-protrusions 80 are not particularly limited, and may be appropriately changed according to design specifications.
For example, any one of the first protrusion 71, the second protrusion 72, the third protrusion 73, and the fourth protrusion 74 of the one-end-side-protrusions 80 may be appropriately omitted. In addition, any one of the first protrusion 71, the second protrusion 72, the third protrusion 73, and the fourth protrusion 74 may be combined and configured integrally. Further, for example, in the heat transfer promoting portion 65, another one-end-side-protrusion 80 may be provided at the windward side of the most leeward side protrusion 70 (the fifth protrusion 75) in addition to the first protrusion 71, the second protrusion 72, the third protrusion 73, and the fourth protrusion 74.
(4-8) Modification H
In one or more embodiments, in each of the heat exchange spaces SP, each of the protrusions 70 (protrusions 71 to 75) protrudes from the fin front side surface 611 toward the fin back side surface 612 of another heat transfer fin 60 opposed to the relevant fin front side surface 611 (that is, extends toward the heat transfer tube extending direction dr2). In other words, in one or more embodiments, in each of the heat exchange spaces SP, the protrusions 70 are each configured to protrude in the same direction from the fin front side surface 611.
However, in each of the heat exchange spaces SP, each of the protrusions 70 is not necessarily configured in such a manner. That is, in each of the heat exchange spaces SP, the protrusions 70 (protrusions 71 to 75) may be each configured to protrude in a different direction from the other-side-protrusions 70. In other words, a configuration may be adopted in which in each of the heat exchange spaces SP, any or all of the one-end-side-protrusions 80 (the one-side-protrusion) and the fifth protrusion 75 (the other-side-protrusion) protrude in opposite directions to each other.
For example, each of the protrusions 70 may be configured as shown in
Even in the case where each of the protrusions 70 is configured in this manner, in each of the heat exchange spaces SP, the ratio of the protruding area A1 (the area of the fifth protrusion 75) occupying the reference area A2 can be configured to be equal to or greater than 0.2 (in the air flow directional view v1, the reference area A2 is the area of the reference quadrilateral R1 having the first side L1 and the second side L2, the first side L1 is defined as the length dimensions of the portion, which is located between the edges 70a of the one-end-side-protrusions 80 in the fin front side surface 611 where the one-end-side-protrusions 80 protrude and the main surfaces 52 of the heat transfer tubes 50 closest to the relevant edges 70a of the one-end-side-protrusions 80, and the second side L2 is defined as the length dimensions of the fin pitch P1). Therefore, even in the case where the fifth protrusion 75 is disposed in such a manner, the same operational effect as the above embodiments can be realized.
Note that in contrast to one or more embodiments shown in
(4-9) Modification I
The heat transfer fin 60 in one or more embodiments may be configured as a heat transfer fin 60a as shown in
In the heat transfer fin 60a, the one-end-side-protrusions 80 (protrusions 71 to 74) are provided in the heat transfer promoting portion 65 similarly to the heat transfer fin 60. On the other hand, in the heat transfer fin 60a, instead of the fifth protrusion 75, a sixth protrusion 76, a plurality of seventh protrusions 77 (in this case, two), and a plurality of eighth protrusions 78 (in this case, two) are provided for each heat transfer promoting portion 65.
The sixth protrusion 76 is cut and raised from the fin front side surface 611 along the heat transfer tube extending direction dr2 on the leeward side of the one-end-side-protrusions 80 in the same manner as the fifth protrusion 75. The sixth protrusion 76 exhibits a substantially rectangular shape when viewed from the heat transfer tube extending direction dr2 (refer to
Unlike the fifth protrusion 75, the size of the sixth protrusion 76 is smaller than each of the one-end-side-protrusions 80 when viewed from the heat transfer tube extending direction dr2. Specifically, in the air flow directional view v1, the sixth protrusion 76 has a smaller length dimension along the heat transfer fin extending direction dr3 than each of the one-end-side-protrusions 80. Therefore, the width of the sixth protrusion 76 is smaller than the width of each of the one-end-side-protrusions 80 when viewed from the air flow direction dr1 (refer to
The seventh protrusions 77 (corresponding to the “leeward side protrusion” and the “other-side-protrusion” described in the claims) bulge from the fin front side surface 611 along the heat transfer tube extending direction dr2 on the leeward side further than the one-end-side-protrusions 80 and the sixth protrusion 76. The seventh protrusions 77 each exhibit a substantially trapezoidal shape when viewed from the heat transfer tube extending direction dr2 (refer to
When viewed from the heat transfer tube extending direction dr2, the size of each of the seventh protrusions 77 is smaller than the size of each of the one-end-side-protrusions 80. That is, in the air flow directional view v1, each of the seventh protrusions 77 has a smaller length dimension in the heat transfer fin extending direction dr3 than those of the one-end-side-protrusions 80. Therefore, the width of the seventh protrusions 77 is smaller than the width of each of the one-end-side-protrusions 80 when viewed from the air flow direction dr1.
The seventh protrusions 77 are located at the most leeward side out of all of the protrusions 70. The seventh protrusions 77 are disposed in the fin main body 63. In the air flow directional view V1, the seventh protrusions 77 are located between the one-end-side-protrusions 80 and the main surface 52 of each of the heat transfer tubes 50. In the heat transfer fin 60a, when viewed from the heat transfer tube extending direction dr2, a pair of seventh protrusions 77, with the sixth protrusion 76 therebetween, is disposed so as to extend along the heat transfer fin extending direction dr3 toward a direction further outward than the edges 70a of the one-end-side-protrusions 80 in each of the heat exchange spaces SP.
A length dimension H3 (refer to
The disposition of the seventh protrusions 77 of one or more embodiments reduces the gap between the one-end-side-protrusions 80 and the main surfaces 52 of the respective heat transfer tubes 50 in the air flow directional view v1. Specifically, the ratio of the protruding area A1′ (the area of the seventh protrusions 77) occupying in the reference area A2 in each of the heat exchange spaces SP in the air flow directional view v1 is equal to or greater than 0.2 (more specifically, 0.5).
The eighth protrusions 78 (corresponding to the “strength enhancement protrusion” described in the claims) increase the strength of the heat transfer fin 60a. Each of the eighth protrusions 78 bulges, at a position of the leeward side than the one-end-side-protrusion 80, from the fin front side surface 611 along the heat transfer tube extending direction dr2. The eighth protrusions 78 are disposed between the one-end-side-protrusions 80 and the seventh protrusions 77 as viewed from the heat transfer tube extending direction dr2. Most of the eighth protrusions 78 is located further to the windward side than the seventh protrusions 77.
Each of the eighth protrusions 78 exhibits a substantially trapezoidal shape when viewed from the heat transfer tube extending direction dr2 (refer to
Each of the eighth protrusions 78 extends, on the leeward side of the one-end-side-protrusions 80, from one end side of the heat transfer fin 60a towards the other end side thereof in the air flow direction dr1. The eighth protrusions 78 are disposed in the fin main body 63. That is, the eighth protrusions 78 extend along the air flow direction dr1 in the fin main body 63.
When viewed from the heat transfer fin extending direction dr3, the eighth protrusions 78 have their terminal ends 782 located further to the windward side (one end side of the heat transfer fin 60a) than the slits 62 (that is, the end portions 501 of the heat transfer tubes 50) in the air flow direction dr1. When viewed from the heat transfer fin extending direction dr3, each of the eighth protrusions 78 has their tip end 781 located further to the leeward side (the other end side of the heat transfer fin 60a) than the slit 62 (that is, the end portion 501 of the heat transfer tube 50) in the air flow direction dr1. Also, most of the eighth protrusions 78 are located between the one-end-side-protrusions 80 (the one-side-protrusion) and the seventh protrusions 77 (the other-side-protrusion) when viewed from the heat transfer fin extending direction dr3. The eighth protrusions 78 are located on the outer side of the sixth protrusion 76 when viewed from the heat transfer tube extending direction dr2. In the heat transfer fins 60a, when viewed from the heat transfer tube extending direction dr2, the pair of eighth protrusions 78 is disposed so as to extend along the air flow direction dr1 toward the leeward direction with the sixth protrusion 76 interposed therebetween in each of the heat exchange spaces SP.
The disposition of the eighth protrusions 78 of one or more embodiments restrains the deformation and buckling of the heat transfer fin 60a when a load is applied to the heat transfer fin 60a (particularly when a load is applied along the air flow direction dr1 or the opposite direction thereto). More specifically, when the eighth protrusions 78 are not provided, buckling tends to occur at a portion between the edges constituting the slit 62 and the end portions 501 of the heat transfer tubes 50 due to a force applied by a bending processing or the like. In order to improve the buckling strength of such portions, it is conceivable that the heat transfer fin 60a is made of a material having a large Young's modulus, or the wall thickness thereof is set to a large second moment of area; however, adopting these approaches leads to increase in cost and decrease in productivity. Therefore, in the heat transfer fin 60a, the eighth protrusions 78 are provided in order to improve the buckling strength while not increasing the cost and not decreasing the productivity. As a result, the performance degradation of the heat exchanger 21 due to deformation or buckling of the heat transfer fin 60a is restrained.
Particularly, in the heat transfer fin 60a, the eighth protrusions 78 are disposed on the fin main body 63, and thereby deformation and buckling of the heat transfer fin 60a can be restrained when a load is applied to the fin main body 63 from the side opposite to the side where the heat transfer tubes 50 are inserted (in this case, the leeward side). As a result, even when a load is applied to the fin main body 63 from the side, opposite to the side where the flat tubes is inserted, of the heat transfer fin 60a, for example, during the manufacturing process of the heat exchanger, such as bending, or at the time of transportation or the like, deformation and buckling of the heat transfer fin 60a is restrained to thereby reduce the performance degradation of heat exchanger 21.
Further, as shown in
Further, since the eighth protrusions 78 are disposed in the space formed between the one-end-side-protrusions 80 and the seventh protrusions 77 (the other-side-protrusions) in the heat transfer fin 60a, in the narrow respective heat exchange space SP, the eighth protrusions 78 for enhancing the strength can coexist with the one-end-side-protrusions 80 and the seventh protrusions 77 for reducing air drift.
Further, in the heat transfer fin 60a, each of the eighth protrusions 78 is formed integrally with the seventh protrusion 77 (the other-side-protrusions). When viewed from the heat transfer tube extending direction dr2, the tip end 781 (an end portion on the leeward side) of each of the eighth protrusions 78 is connected to the seventh protrusion 77. This configuration in which the eighth protrusions 78 are respectively formed integrally with the seventh protrusions 77 (the other-side-protrusions) allows the eighth protrusions 78 for enhancing the strength and the seventh protrusions 77 (the other-side-protrusion) for reducing the air drift to coexist in the narrow respective heat exchange space SP.
Also, in the case where the heat exchanger 21 is provided with the heat transfer fin 60a, it is possible to achieve the same operational effect as that of the above embodiments. Here, the heat transfer promoting function in a case where the heat exchanger 21 is provided with the heat transfer fin 60a will be described with reference to
As shown in
That is, when the ratio of the protruding area A1′ occupying the reference area A2 in each of the heat exchange spaces SP is less than 0.2, in each of the heat exchange spaces SP, the drift phenomenon, in which the flow velocity of the air flow AF passing through one portion is considerably faster as compared with the flow velocity of the air flow AF passing through the other portions, easily occur. When such a drift phenomenon occurs, in the heat exchange spaces SP (particularly each of the heat exchange spaces SP on the leeward side), the amount of heat transferred in the portion between each of the protrusions 70 and the main surfaces 52 of the heat transfer tubes 50 is remarkably large as compared with that of the other portions. In other words, a portion having a large amount of heat transferred is formed to be partially biased in each of the heat exchange spaces SP. As a result, in each of the heat exchange spaces SP, the heat exchange between the air flow AF and the refrigerant in the heat transfer tubes 50 is not satisfactorily performed, and the performance of the heat exchanger 21 may decline.
On the other hand, as shown in
That is, when the ratio of the protruding area A1′ occupying the reference area A2 in each of the heat exchange spaces SP is equal to or greater than 0.2, in each of the heat exchange spaces SP, the drift phenomenon, in which the portion where the flow velocity of the air flow AF is considerably high as compared with that of other portions is occur, is restrained. Therefore, as compared with the amounts of the other portions, the amount of heat transferred in the portion between each of the protrusions 70 and the main surfaces 52 of the heat transfer tubes 50 is prevented from getting significantly large.
In other words, in the entire respective heat exchange space SP, the biased formation of a region having a large amount of heat transferred and a region having a small amount of heat transferred, respectively, is restrained. As a result, a situation where the heat exchange is not performed satisfactorily between the air flow AF and the refrigerant in the heat transfer tubes 50 is restrained.
In addition, when the ratio of the protruding area A1′ occupying the reference area A2 in each of the heat exchange spaces SP is equal to or greater than 0.2, the amount of heat transferred at the seventh protrusions 77 (that is, the amount of heat transferred between the most leeward side protrusion 70 and the air flow) increases in relation to the decrease in the formation of the large gap between the seventh protrusions 77 and the main surfaces 52 of the heat transfer tubes 50 (in particular, the decrease in the formation of the large gap at a position corresponding to the reference quadrilateral R1) in a state where each of the heat exchange spaces SP is viewed from the air flow direction dr1. As a result, the heat exchange between the air flow AF and the refrigerant in the heat transfer tubes 50 is promoted.
Similar to the above embodiments, when the ratio of the protruding area A1′ occupying the reference area A2 in each of the heat exchange spaces SP is equal to or greater than 0.2, the performance degradation of the heat exchanger 21 is restrained.
Note that the shape, size, formation mode, and arrangement position of the eighth protrusions 78 for strength enhancement can be appropriately changed according to design specifications and environment.
Specifically, the eighth protrusions 78 may be configured so as to be out of the fin main body 63. For example, a part or entire of the eighth protrusions 78 may be disposed in the heat transfer promoting portion 65. In addition, a configuration may be adopted in which a part or entire of the eighth protrusions 78 is disposed such that the tip ends 781 thereof are located further to the windward side of the heat transfer fin 60a than the slits 62 (the end portions 501 of the heat transfer tubes 50) when viewed from the heat transfer fin extending direction dr3.
In addition, the eighth protrusions 78 are not necessarily disposed further to the windward side than the seventh protrusions 77 (the other-side-protrusions), but a part or entire of the eighth protrusions 78 may be respectively disposed further to the leeward side than the seventh protrusions 77.
According to the viewpoint that the eighth protrusions 78 coexist with the seventh protrusions 77 and the one-end-side-protrusions 80 in the narrow respective heat exchange space SP, in one or more embodiments the eighth protrusions 78, as being disposed in the heat transfer fin 60a, are disposed in the space formed between the one-end-side-protrusions 80 and the seventh protrusions 77 (the other-side-protrusions). However, as long as each of the protrusions 70 can be disposed in each of the heat exchange spaces SP, the eighth protrusions 78 do not necessarily have to be disposed in the space formed between the one-end-side-protrusions 80 and the seventh protrusions 77 (the other-side-protrusions) but may be disposed at another position.
According to the viewpoint that the eighth protrusions 78 and the seventh protrusions 77 (the other-side-protrusions) coexist in the narrow respective heat exchange space SP, in one or more embodiments the eighth protrusions 78 and the seventh protrusions 77, as being disposed in the heat transfer fin 60a, are integrally formed. However, as long as the eighth protrusions 78 and the seventh protrusions 77 can be disposed in each of the heat exchange spaces SP, the eighth protrusions 78 and the seventh protrusions 77 do not need to be formed integrally but may be configured separately. That is, the eighth protrusions 78 and the seventh protrusions 77 may be separated from each other.
Also, when the air flow AF flows in reverse to the direction shown in
Furthermore, the sixth protrusion 76 may be appropriately omitted.
Further, according to the viewpoint of further promoting the enhancement of the buckling strength of the heat transfer fin 60a, in one or more embodiments the eighth protrusions 78 be provided in a way a large length d1 is ensured. However, as shown in
(4-10) Modification J
In one or more embodiments, the case where the heat exchanger 21 includes multiple (four) heat exchange units 40 has been described. However, the number of the heat exchange units 40 included in the heat exchanger 21 is not particularly limited thereto, and may be appropriately changed according to design specifications, and may be singular or a plurality of less than four or may be five or more.
(4-11) Modification K
In one or more embodiments, the heat exchanger 21 is configured so that the air flow direction dr1 corresponds to the “x” direction (left-right direction) or the “y” direction (front-back direction direction), the heat transfer tube extending direction dr2 corresponds to the “y” direction or “x” direction, and the heat transfer fin extending direction dr3 corresponds to the “z” direction (up-down direction). However, the correspondence relationship in each direction may be appropriately changed according to design specifications.
For example, the heat exchanger 21 may be configured so that the air flow direction dr1 or the heat transfer tube extending direction dr2 corresponds to the “z” direction (up-down direction). In addition, the heat exchanger 21 may be configured so that the heat transfer fin extending direction dr3 corresponds to the “x” direction or the “y” direction.
(4-12) Modification L
In one or more embodiments, the heat exchange unit 40 includes the windward side heat transfer tube 50a and the leeward side heat transfer tube 50b. That is, the heat exchange unit 40 has been arranged to include a plurality of stages configured by two rows of heat transfer tubes 50. However, the arrangement of the heat transfer tubes 50 included in the heat exchange unit 40 can be appropriately changed.
For example, in the heat exchange unit 40, the heat transfer tube 50 may be arranged so as to have only one of the windward side heat transfer tube 50a and the leeward side heat transfer tube 50b. That is, in the heat exchange unit 40, a single row of the heat transfer tubes 50 may be arranged in a plurality stages.
Further, for example, in the heat exchange unit 40, apart from the windward side heat transfer tube 50a and the leeward side heat transfer tube 50b, the heat transfer tubes 50 may be disposed so as to have a further heat transfer tube 50. That is, the heat exchanger 21 may be configured such that three or more rows of heat transfer tubes 50 are arranged in a plurality of stages in the heat exchange unit 40.
(4-13) Modification M
In one or more embodiments, each of the heat transfer tubes 50 is a flat multi-hole tube in which a plurality of refrigerant channels 51 is formed therein. However, the configuration of the heat transfer tube 50 can be appropriately changed. For example, a flat tube having a single refrigerant channel formed therein may be adopted as the heat transfer tube 50.
(4-14) Modification N
One or more embodiments of the present invention may be applied to an outdoor heat exchanger disposed in an outdoor unit or an indoor heat exchanger disposed in an indoor unit of an air conditioner. In this case, the air flow generated by the outdoor fan disposed in the outdoor unit or the indoor fan disposed in the indoor unit corresponds to the air flow AF in the above embodiments. Further, one or more embodiments of the present invention may be applied as a heat exchanger of a refrigeration apparatus other than an air conditioner (for example, a water heater including a refrigerant circuit and a blower, an ice making machine, a cold water machine, a dehumidifier, or the like).
One or more embodiments of the present invention are applicable to heat exchangers.
Although the disclosure has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that various other embodiments may be devised without departing from the scope of the present invention. Accordingly, the scope of the present invention should be limited only by the attached claims.
Number | Date | Country | Kind |
---|---|---|---|
2016-080373 | Apr 2016 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2017/014729 | 4/10/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/179553 | 10/19/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4907646 | Aoyagi | Mar 1990 | A |
5109919 | Sakuma | May 1992 | A |
6786274 | Bemisderfer | Sep 2004 | B2 |
20130299141 | Jindou | Nov 2013 | A1 |
20130299152 | Ohtani | Nov 2013 | A1 |
Number | Date | Country |
---|---|---|
103299149 | Sep 2013 | CN |
102012002234 | Aug 2013 | DE |
2003-90691 | Mar 2003 | JP |
4845943 | Dec 2011 | JP |
2012-233680 | Nov 2012 | JP |
2015-31484 | Feb 2015 | JP |
2015-132468 | Jul 2015 | JP |
2016084976 | May 2016 | JP |
Entry |
---|
Extended European Search Report issued in corresponding European Patent Application 17782366.3 dated Mar. 7, 2019 (6 pages). |
Notification of Transmittal of Translation of the International Preliminary Report on Patentability for International Application No. PCT/JP2017/014729 dated Oct. 25, 2018 (1 page). |
International Preliminary Report on Patentability issued in corresponding International Application No. PCT/JP2017/014729 dated Oct. 16, 2018 (5 pages). |
International Search Report issued in corresponding International Application No. PCT/JP2017/014729 dated Jul. 4, 2017, with translation (5 pages). |
Written Opinion of the International Searching Authority issued in corresponding International Application No. PCT/JP2017/014729 dated Jul. 4, 2017 (3 pages). |
Office Action Issued in corresponding Japanese Patent Application No. 2017-077594 dated Jun. 22, 2017, with translation (6 pages). |
Chinese Office Action issued in corresponding application No. CN201780023157.8 dated Apr. 1, 2019 (11 pages). |
Number | Date | Country | |
---|---|---|---|
20190120557 A1 | Apr 2019 | US |