1. Field of the Invention
The present disclosure relates to heat exchangers, and more particularly to plate-stack heat exchangers.
2. Description of Related Art
Heat exchangers such as, for example, tube-shell heat exchangers, are typically used in aerospace turbine engines. These heat exchangers are used to transfer thermal energy between two fluids without direct contact between the two fluids. In particular, a primary fluid is typically directed through a fluid passageway of the heat exchanger, while a cooling or heating fluid is brought into external contact with the fluid passageway. In this manner, heat may be conducted through walls of the fluid passageway to thereby transfer energy between the two fluids. One typical application of a heat exchanger is related to an engine and involves the cooling of air drawn into the engine and/or exhausted from the engine.
However, typical tube shell design heat exchangers have structural issues when their cantilevered tube bundles are exposed to typical aerospace vibration environments. In addition, there can be significant bypass of flow around the tubes on the low pressure side of the heat exchanger, resulting in reduced thermal effectiveness as well as other adverse system impacts such as excessive low pressure flow. Subsequently, the heat exchangers either fail, or are heavy, expensive, and difficult to manufacture.
Such conventional methods and systems have generally been considered satisfactory for their intended purpose. However, there is still a need in the art for improved heat exchangers. The present disclosure provides a solution for this need.
A heat exchange device includes a first section and a second section. Each of the first and second sections includes flow passages configured for heat exchange between heat exchange fluid within the flow passages and fluid external of the flow passages. A center manifold is disposed between the first and second sections. Heat exchange fluid enters the manifold at one end, passes through the first and second sections and exits the manifold at the opposing end.
Each of the flow passages can have a bend at an outer edge of the heat exchange device configured to return high pressure fluid to the center manifold. Each of the bends can be equal in radius to allow for uniform distribution of fluid flow. Each of the flow passages can be dimensionally the same to create uniform flow throughout each of the first and second sections. Each of the flow passages can define an external air inlet and an external air outlet.
The center manifold can include a first plenum at one end configured to allow air to enter the center manifold and a second plenum on the opposing side configured to allow air to exit the center manifold. Fluid can flow through the first plenum into an air inlet of a respective flow passage within the first and second sections and enter the center manifold through and air outlet of the respective flow passage. The fluid can exit the center manifold through the second plenum.
Each of the first and second sections can include plate-fin core sections in a stacked arrangement. Each of the flow passages can include structures such as fins, pins or vanes within the flow passage extending from the passage configured to act as secondary heat transfer and structural elements. The secondary heat transfer and structural elements can form a solid matrix configured to limit wear of the device due to relative motion within the device. The device can further include a housing surrounding the heat exchange device to provide a tight seal and configured to prevent air from flowing around the flow passages. The first and second sections and the center manifold can be created through the use of additive manufacturing.
These and other features of the systems and methods of the subject disclosure will become more readily apparent to those skilled in the art from the following detailed description of the preferred embodiments taken in conjunction with the drawings.
So that those skilled in the art to which the subject disclosure appertains will readily understand how to make and use the devices and methods of the subject disclosure without undue experimentation, preferred embodiments thereof will be described in detail herein below with reference to certain figures, wherein:
Reference will now be made to the drawings wherein like reference numerals identify similar structural features or aspects of the subject disclosure. For purposes of explanation and illustration, and not limitation, a partial view of an exemplary embodiment of a heat exchange device in accordance with the disclosure is shown in
With reference to
With continued reference to
The flow passages 110 are in stacked arrangement such that the air flow direction loops back to the center manifold 106. In one embodiment, heat transfer elements, such as fins 132, 134 (see
As shown in
The device 100 as a whole is stiffer than a typical tube-shell heat exchanger, which typically drives critical mode frequencies above regions of concern, due to the fins 130 and 132 and parting sheets forming a solid matrix. In further embodiments, a housing can be included which tightly surrounds the device to provide a tight seal and prevent air from flowing around or outside of the air passages. In this embodiment, bends/loops of the flow passages can be modified to tightly align with the housing. In addition, the secondary heat transfer and structural elements can extend from the outermost flow passages to the housing containing the low pressure fluid to create the tight seal around the heat exchange device. The bends and loops are created during manufacturing therefore the tightness of the loops or exact shapes can be modified as needed. The first and section sections 102, 104 and the center manifold 106 as shown and described can be formed using the techniques of additive manufacturing.
The methods and systems of the present disclosure, as described above and shown in the drawings, provide for a heat exchange device with superior properties including a center manifold to provide improved structural integrity. While the apparatus and methods of the subject disclosure have been shown and described with reference to preferred embodiments, those skilled in the art will readily appreciate that changes and/or modifications may be made thereto without departing from the scope of the subject disclosure.