The present application and the resultant patent relate generally to fin and tube type heat exchangers and more particularly relate to a fin and tube type heat exchanger having louvered fins for increased capacity, higher heat transfer, and a reduced pressure drop.
Fin and tube type heat exchanges are well known. Generally described, the fins may be in the form of a number of spaced apart parallel plates. The tubes pass through the fins and are attached thereto. A first hot or cold fluid such as a refrigerant flows through the tubes and exchanges heat with a second fluid such as air that flows between the fins.
Known fin and tube type heat exchangers have used fins in the form of a planar plate. Such a planar plate fin may have a low pressure drop but may have high air-side thermal resistance. Louvered fins also have been used. The louvered fins may have lower airside thermal resistance but may have a higher pressure drop and may be subject to fouling over time due to the geometry. Other types of fin configurations also may be known.
There is thus a desire for an improved fin and tube type heat exchanger for use with a cooler or other type of refrigerated device. Preferably such an improved fin and tube type heat exchanger may have increased capacity with greater heat transfer with less of a pressure drop therethrough.
The present application and the resultant patent thus proved a heat exchanger for exchanging heat between a first fluid and a second fluid. The heat exchanger may include a number of fin plates and a number of tubes extending though the fin plates with the first fluid therein. The fin plates may include a number of louvers extending between the tubes such that the second fluid flows through the louvers for heat exchange with the first fluid.
The present application and the resultant patent further provide a method of exchanging heat between a first fluid and a second fluid in a fin and tube heat exchanger. The method may include the steps of flowing the first fluid through a number of tubes, flowing the second fluid though a number of fin plates, forcing the second fluid though a number of louvers in the fin plates, eliminating airflow boundaries on the louvers with the flow of the second fluid, and exchanging heat between the first fluid and the second fluid.
The present application and the resultant patent further provide a heat exchanger for exchanging heat between a first fluid and a second fluid. The heat exchanger may include a number of aluminum fin plate columns and a number of tubes extending though the aluminum fin plate columns with the first fluid therein. The number of aluminum fin plate columns may include a number of louvers extending between the tubes such that the second fluid flows through the louvers for heat exchange with the first fluid.
These and other features and improvements of the present application and the resultant patent will become apparent to one of ordinary skill in the art upon review of the following detailed description when taken in conjunction with the several drawings and the appended claims.
Referring now to the drawings, in which like numerals refer to like elements throughout the several views,
The heat exchanger 100 also may include a number of fin plates 120. Any number of the fin plates 120 may be used herein in any suitable size, shape, configuration, or capacity. The fin plates 120 may be made out of aluminum or any type of metal with good heat transfer characteristics. The fin plates 120 may be arranged in a series of fin plate columns 130. The fin plate columns 130 may have any suitable length or a first dimension. Any number of the fin plate columns 130 may be joined together such that the fin plates 120 as a whole may have any suitable width or a second dimension. For example, six (6) fin plate columns 130 are shown in
Each of the fin plate columns 130 may have a number of tube apertures 140 therein. The tube apertures 140 may have any suitable size, shape, or configuration but are generally sized to accommodate the diameter of the tubes 110 intended to be used therewith. Each tube aperture 140 may be surrounded by a collar 150. The collar 150 may have any suitable height with respect to the fin plate column 130. Specifically, the height of the collar 150 may determine the spacing between the respective tube plates 120. Each collar 150 may have a top mating flange 160 and a bottom mating flange 170. The mating flanges 160, 170 may be sized such that any number of the collars 150 may stacked and nested together as is shown in
Each fin plate column 130 also may include a number of louvers 180. The louvers 180 may extend between the tube apertures 140 along the length of the fin plate column 130. Although seven (7) louvers 180 are shown herein between the tube apertures 140, any number of the louvers 180 may extend along the width of each fin plate column 130. Each louver 180 may be in the form of an angled plate or slat 190. The angled slat 190 may have any suitable size, shape, or configuration. In this example, the angled slats 190 may have an angle of about ten degrees (10°) to about twenty-five degrees (25°) or so off of the horizontal with about fifteen degrees (15°) or so preferred. Other angles may be used herein. Differing angles also may be used together herein. Each louver 180 may be separated from one another via a louver airflow path 200. The louver airflow path 200 may have any suitable size, shape, or configuration. In this example, the angled slats 190 of the respective louvers 180 may overlap slightly. Other components and other configurations may be used herein.
Each fin plate column 130 may have a number of attachment flanges 210. The attachment flanges 210 may be in the form of a semi-circular boss running along the sides of the each fin plate column 130. Other types of shapes, sizes, and configurations may be used herein. The attachment flanges 210 may be continuous or intermittent. A first side attachment flange 220 of a first fin plate column 130 may attach to a second side attachment flange 230 of a second fin plate column 130. Any number of the fin plate columns 130 may be attached via the attachment flanges 210. Other components and other configurations also may be used herein.
In use, a flow of air 240 flows between each of the fin plates 120 of the heat exchanger 100. The flow of air 240 thus exchanges heat with the first fluid flowing through the tubes 110. The geometry of the louver slats 190 forces the flow of air 240 through the louver airflow paths 200 between the louvers 180. In doing so, any type of airflow boundaries on the louver slates 190 and the fin plates 120 in general may be destroyed or reduced so as to eliminate or reduce overall resistance to heat transfer. The use of the louvers 180 herein thus may increase overall heat exchanger capacity with an increased heat transfer coefficient and less of an airside pressure drop. Moreover, the shape of the louvers 180 described herein do not allow for water stagnation inside of the louver airflow path 200 after a defrost cycle. Specifically, water stagnation may lead to a cycle of water and ice and resultant fin damage. The heat exchanger 100 described herein thus provide increased efficiency, more airflow given less of a pressure drop, and more capacity given the better airflow and heat transfer.
It should be apparent that the foregoing relates only to certain embodiments of the present application and the resultant patent. Numerous changes and modifications may be made herein by one of ordinary skill in the art without departing from the general spirit and scope of the invention as defined by the following claims and the equivalents thereof.
This application is a continuation of U.S. patent application Ser. No. 15/007,249, filed on Jan. 27, 2016. U.S. patent application Ser. No. 15/007,249 is a non-provisional application claiming priority to U.S. Provisional Application No. 62/119,904, filed on Feb. 24, 2015. U.S. patent application Ser. No. 15/007,249 and U.S. Provisional Application No. 62/119,904 are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4434846 | Lu | Mar 1984 | A |
4723599 | Hanson | Feb 1988 | A |
4923002 | Haussmann | May 1990 | A |
5289874 | Kadle et al. | Mar 1994 | A |
5311935 | Yamamoto et al. | May 1994 | A |
5360060 | Tanaka et al. | Nov 1994 | A |
5509469 | Obosu | Apr 1996 | A |
5722485 | Love | Mar 1998 | A |
5752567 | Obosu | May 1998 | A |
5934363 | Jung et al. | Aug 1999 | A |
5975199 | Park et al. | Nov 1999 | A |
6401809 | Zhang | Jun 2002 | B1 |
6513587 | All et al. | Feb 2003 | B2 |
6543527 | Bouzida | Apr 2003 | B1 |
6786274 | Bemisderfer | Sep 2004 | B2 |
6976529 | Kester | Dec 2005 | B2 |
7380403 | Smah et al. | Jun 2008 | B2 |
7552760 | Ben Lakhdhar et al. | Jun 2009 | B1 |
8267160 | Hancock | Sep 2012 | B2 |
8973647 | Seo | Mar 2015 | B2 |
9441890 | Kim | Sep 2016 | B2 |
9915481 | Nakamura | Mar 2018 | B2 |
10209012 | Berthelot | Feb 2019 | B2 |
10415894 | Abrahamian | Sep 2019 | B2 |
20020023744 | Kim et al. | Feb 2002 | A1 |
20030094267 | Young | May 2003 | A1 |
20030136554 | Hu | Jul 2003 | A1 |
20080190588 | Heidenreich | Aug 2008 | A1 |
20090308585 | Chen | Dec 2009 | A1 |
20130199760 | Kadle | Aug 2013 | A1 |
20140224462 | Kamada | Aug 2014 | A1 |
20160231066 | Gopireddy | Aug 2016 | A1 |
Number | Date | Country |
---|---|---|
2141434 | Jan 2010 | EP |
2708841 | Mar 2014 | EP |
Number | Date | Country | |
---|---|---|---|
20190145715 A1 | May 2019 | US |
Number | Date | Country | |
---|---|---|---|
62119904 | Feb 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15007249 | Jan 2016 | US |
Child | 16249114 | US |