Claims
- 1. A heat exchanger having at least one conduit of non-circular cross-section adapted to accommodate passage of heat transfer fluid therethrough and support means for supporting said conduit, said conduit having a major dimension and a minor dimension, inlet and outlet openings, a supply channel extending generally along said major dimension and communicating with said inlet opening to direct heat transfer fluid flowing through said inlet opening into said conduit, a drain channel extending generally along said major dimension and communicating with said outlet opening to direct heat transfer fluid out of said conduit through said outlet opening, and plural heat transfer channels, each of which extends generally along said minor dimension between said supply channel and said drain channel, said major dimension being substantially greater than said minor dimension, such that each heat transfer channel has a relatively short length compared to a length of said conduit along said major dimension, at least one of said heat transfer channels having a hydraulic diameter of less than about 0.105 inch.
- 2. The heat exchanger of claim 1 wherein said supply channel and said drain channel each have a substantially greater cross-sectional area than each of said heat transfer channels.
- 3. The heat exchanger of claim 1 wherein said conduit is a relatively flat tube.
- 4. The heat exchanger of claim 3 wherein said supply channel and said drain channel are located on respective opposed sides of said tube and extend substantially the entire major dimension of said tube.
- 5. The heat exchanger of claim 1 wherein said conduit has a length along said major dimension which is at least six times greater than a length of each heat transfer channel along said minor dimension.
- 6. The heat exchanger of claim 1 wherein at least one of said supply channel and said drain channel has a cross-sectional area which is at least five times greater than a cross-sectional area of each of said heat transfer channels.
- 7. The heat exchanger of claim 6 wherein a ratio of the cross-sectional area of said at least one of said supply channel and said drain channel to the cross-sectional area of each of said heat transfer channels is in a range of about 5:1 to 100:1.
- 8. The heat exchanger of claim 1 wherein said supply channel and said drain channel extend along respective opposed sides of said conduit, said inlet opening being located in one end of said conduit and proximate to one side of said conduit, said outlet opening being located in an opposite end of said conduit from said one end and proximate to an opposite side of said conduit from said one side.
- 9. The heat exchanger of claim 1 wherein said at least one of said heat transfer channels has a hydraulic diameter in a range of about 0.010 inch to about 0.014 inch.
- 10. The heat exchanger of claim 9 wherein said at least one heat transfer channel has a hydraulic diameter of about 0.010 inch.
- 11. The heat exchanger of claim 1 wherein said conduit is assembled by folding a relatively flat plate along a major axis thereof which is intermediate opposed side edges of said plate to form one side of said conduit, inserting said corrugated member into said conduit, joining opposed side edges of said plate to define an opposite side of said conduit from said one side and joining said corrugated member to said conduit.
- 12. A heat exchanger having at least one conduit of non-circular cross-section adapted to accommodate passage of heat transfer fluid therethrough and support means for supporting said conduit, said conduit having a major dimension and a minor dimension, opposed ends spaced apart by said major dimension and opposed sides spaced apart by said minor dimension, inlet and outlet openings, and a corrugated member located in said conduit, said corrugated member having plural corrugations arranged in a tightly packed configuration to define teardrop-shaped heat transfer channels extending along said minor dimension, said corrugated member having a length extending along said major dimension between said ends and a width extending only partially between said sides to define a supply channel intermediate said corrugated member and one side and to define a drain channel intermediate said corrugated member and an opposite side, said supply channel extending along said major dimension and communicating with said inlet opening to direct heat transfer fluid flowing through said inlet opening into said conduit, said drain channel extending along said major dimension and communicating with said outlet opening to direct heat transfer fluid out of said conduit through said outlet opening, said heat transfer channels being adapted to direct heat transfer fluid from said supply channel to said drain channel in a transverse direction with respect to said major dimension.
- 13. A heat exchanger having at least one conduit of non-circular cross-section adapted to accommodate passage of heat transfer fluid therethrough and support means for supporting said conduit, said conduit having a major dimension and a minor dimension, opposed ends spaced apart by said major dimension and opposed sides spaced apart by said minor dimension, inlet and outlet openings, and a corrugated member located in said conduit, said corrugated member having plural corrugations defining plural heat transfer channels extending along said minor dimension, said corrugated member having a length extending along said major dimension between said ends and a width extending only partially between said sides to define a supply channel intermediate said corrugated member and one side and to define a drain channel intermediate said corrugated member and an opposite side, said supply channel extending along said major dimension and communicating with said inlet opening to direct heat transfer fluid flowing through said inlet opening into said conduit, said drain channel extending along said major dimension and communicating with said outlet opening to direct heat transfer fluid out of said conduit through said outlet opening, said heat transfer channels being adapted to direct heat transfer fluid from said supply channel to said drain channel in a transverse direction with respect to said major dimension, said support means being comprised of inlet and outlet headers, said conduit extending between said inlet and outlet headers along said major dimension, said inlet header being in fluid communication with said inlet opening, whereby heat transfer fluid enters said conduit, said outlet header being in fluid communication with said outlet opening, whereby heat transfer fluid exits said conduit, each of said inlet and outlet headers having a width sufficient to accommodate said minor dimension of said conduit, said inlet header having means for blocking said drain channel at one end of said conduit to inhibit heat transfer fluid from entering said drain channel, said outlet header having means for blocking said supply channel at an opposite end of said conduit to inhibit heat transfer fluid in said supply channel from entering said outlet header.
- 14. The heat exchanger of claim 12 wherein said corrugated member is inserted into said conduit and is joined thereto during assembly of said conduit.
- 15. The heat exchanger of claim 13 wherein said inlet and outlet headers each have curved front walls in facing relationship, said front wall of said inlet header having a slot through which said one end of said conduit extends into said inlet header, said front wall of said outlet header also having a slot through which said opposite end of said conduit extends into said outlet header, said inlet header having a first rear wall, a portion of which defines said means for blocking said drain channel, said one end of said conduit being joined to said portion of said first rear wall, whereby said drain channel is blocked, said outlet header having a second rear wall, a portion of which defines said means for blocking said supply channel, said opposite end of said conduit being joined to said portion of said second rear wall, whereby said supply channel is blocked.
- 16. In a heat exchanger, a conduit of non-circular cross-section adapted to accommodate passage of heat transfer fluid therethrough, said conduit having a major dimension and a minor dimension, inlet and outlet openings, a supply channel extending generally along said major dimension and communicating with said inlet opening to direct heat transfer fluid flowing through said inlet opening into said conduit, a drain channel extending generally along said major dimension and communicating with said outlet opening to direct heat transfer fluid out of said conduit through said outlet opening, and plural heat transfer channels, each of which extends generally along said minor dimension between said supply channel and said drain channel, said major dimension being substantially greater than said minor dimension, such that each heat transfer channel has a relatively short length compared to a length of said conduit along said major dimension, at least one of said heat transfer channels having a hydraulic diameter of less than about 0.105 inch.
- 17. The conduit of claim 16 wherein said supply channel and said drain channel each having a substantially greater cross-sectional area than each of said heat transfer channels.
- 18. The conduit of claim 16 wherein said conduit is a relatively flat tube.
- 19. The conduit of claim 18 wherein said supply channel and said drain channel are located on respective opposed sides of said tube and extend substantially the entire major dimension of said tube.
- 20. The conduit of claim 16 wherein said conduit has a length along said major dimension which is at least six times greater than a length of each heat transfer channel along said minor dimension.
- 21. The conduit of claim 16 wherein at least one of said supply channel and said drain channel has a cross-sectional area which is at least five times greater than a cross-sectional area of each of said heat transfer channels.
- 22. The conduit of claim 21 wherein a ratio of the cross-sectional area of said at least one of said supply channel and said drain channel to the cross-sectional area of each of said heat transfer channels is in a range of about 5:1 to 100:1.
- 23. The conduit of claim 16 wherein said supply channel and said drain channel extend along respective opposed sides of said conduit, said inlet opening being located in one end of said conduit and proximate to one side of said conduit, said outlet opening being located in an opposite end of said conduit from said one end and proximate to an opposite side of said conduit from said one side.
- 24. The conduit of claim 16 wherein said at least one of said heat transfer channels has a hydraulic diameter in a range of about 0.010 inch to about 0.014 inch.
- 25. The conduit of claim 24 wherein said at least one heat transfer channel has a hydraulic diameter of about 0.010 inch.
- 26. The conduit of claim 24 wherein said conduit is assembled by folding a relatively flat plate along a major axis thereof which is intermediate opposed side edges of said plate to form one side of said conduit, inserting said corrugated member into said conduit, joining opposed side edges of said plate to form an opposite side of said conduit from said one side and joining said corrugated member to said conduit.
- 27. In a heat exchanger, a conduit of non-circular cross-section adapted to accommodate passage of heat transfer fluid therethrough, said conduit having a major dimension and a minor dimension, opposed ends spaced apart by said major dimension and opposed sides spaced apart by said minor dimension, inlet and outlet openings, and a corrugated member located in said conduit, said corrugated member having plural corrugations defining plural heat transfer channels extending along said minor dimension, said corrugated member having a length extending along said major dimension between said ends and a width extending only partially between said sides to define a supply channel intermediate said corrugated member and one side and to define a drain channel intermediate said corrugated member and an opposite side, said supply channel extending along said major dimension and communicating with said inlet opening to direct heat transfer fluid flowing through said inlet opening into said conduit, said drain channel extending along said major dimension and communicating with said outlet opening to direct heat transfer fluid out of said conduit through said outlet opening, said heat transfer channels being adapted to direct heat transfer fluid from said supply channel to said drain channel in a transverse direction with respect to said major dimension, said corrugations being arranged in a tightly packed configuration to define teardrop-shaped heat transfer channels.
- 28. The heat exchanger of claim 27 wherein said corrugated member is inserted into said conduit and is joined thereto during assembly of said conduit.
- 29. A heat exchanger having at least one conduit of non-circular cross-section adapted to accommodate passage of heat transfer fluid therethrough and opposed inlet and outlet headers supporting said conduit, said conduit having a major dimension and a minor dimension, inlet and outlet openings, a supply channel extending along said major dimension and communicating with said inlet opening to direct heat transfer fluid from said inlet header into said conduit, a drain channel extending along said major dimension and communicating with said outlet opening to direct heat transfer fluid out of said conduit into said outlet header, and plural heat transfer channels extending along said minor dimension between said supply channel and said drain channel, said conduit extending between said inlet and outlet headers along said major dimension, each of said inlet and outlet headers having a width sufficient to accommodate said minor dimension of said conduit, said inlet header having means for blocking said drain channel at one end of said conduit to inhibit heat transfer fluid from entering said drain channel, said outlet header having means for blocking said supply channel at an opposite end of said conduit to inhibit heat transfer fluid in said supply channel from entering said outlet header.
- 30. The heat exchanger of claim 29 wherein said inlet and outlet headers each have curved front walls in facing relationship, said front wall of said inlet header having a slot through which said one end of said conduit extends into said inlet header, said front wall of said outlet header also having a slot through which said opposite end of said conduit extends into said outlet header, said inlet header having a first rear wall, a portion of which defines said means for blocking said drain channel, said one end of said conduit being joined to said portion of said first rear wall, whereby said drain channel is blocked, said outlet header having a second rear wall, a portion of which defines said means for blocking said supply channel, said opposite end of said conduit being joined to said portion of said second rear wall, whereby said supply channel is blocked.
- 31. A heat exchanger having at least one conduit of non-circular cross-section adapted to accommodate passage of heat transfer fluid therethrough and support means for supporting said conduit, said conduit having a major dimension and a minor dimension, inlet and outlet openings, and a corrugated member located in said conduit, said corrugated member having plural corrugations extending generally transversely with respect to said major dimension to define plural heat transfer channels, said conduit having opposed ends spaced apart by said major dimension and opposed sides spaced apart by said minor dimension, said corrugations extending only partially between said sides to define a supply channel intermediate said corrugated member and one side of said conduit and to define a drain channel intermediate said corrugated member and an opposite side of said conduit, said supply channel extending generally along said major dimension and communicating with said inlet opening to direct heat transfer fluid flowing through said inlet opening into said conduit, said drain channel extending generally along said major dimension and communicating with said outlet opening to direct heat transfer fluid out of said conduit through said outlet opening, each of said heat transfer channels extending generally along said minor dimension between said supply channel and said drain channel, said major dimension being substantially greater than said minor dimension, such that each heat transfer channel has a relatively short length compared to a length of said conduit along said major dimension.
- 32. The heat exchanger of claim 31 wherein at least one of said heat transfer channels has a hydraulic diameter of less than about 0.015 inch.
- 33. A heat exchanger having plural conduits of non-circular cross-section adapted to accommodate passage of heat transfer fluid therethrough and support means for supporting said conduits, each of said conduits having a major dimension and a minor dimension, inlet and outlet openings, a supply channel extending generally along said major dimension and communicating with said inlet opening to direct heat transfer fluid flowing through said inlet opening into said conduit, a drain channel extending generally along said major dimension and communicating with said outlet opening to direct heat transfer fluid out of said conduit through said outlet opening, and plural heat transfer channels, each of said heat transfer channels extending generally along said minor dimension between said supply channel and said drain channel, said major dimension being substantially greater than said minor dimension, such that each heat transfer channel has a relatively short length compared to a length of said conduit along said major dimension, said heat exchanger further including plural serpentine fins extending between and joined to adjacent ones of said conduits.
- 34. The heat exchanger of claim 33 wherein at least one of said heat transfer channels of each conduit has a hydraulic diameter of less than about 0.015 inch.
- 35. The heat exchanger of claim 34 wherein said at least one of said heat transfer channels of each conduit has a hydraulic diameter in a range of about 0.010 inch to about 0.014 inch.
- 36. In a heat exchanger, a conduit of non-circular cross-section adapted to accommodate passage of heat transfer fluid therethrough, said conduit having a major dimension and a minor dimension, inlet and outlet openings, and a corrugated member located in said conduit, said corrugated member having plural corrugations extending generally transversely with respect to said major dimension to defame plural heat transfer channels, said conduit having opposed ends spaced apart by said major dimension and opposed sides spaced apart by said minor dimension, said corrugations extending only partially between said sides to define a supply channel intermediate said corrugated member and one side of said conduit and to define a drain channel intermediate said corrugated member and an opposite side of said conduit, said supply channel extending generally along said major dimension and communicating with said inlet opening to direct heat transfer fluid flowing through said inlet opening into said conduit, said drain channel extending generally along said major dimension and communicating with said outlet opening to direct heat transfer fluid out of said conduit through said outlet opening, each of said heat transfer channels extending generally along said minor dimension between said supply channel and said drain channel, said major dimension being substantially greater than said minor dimension, such that each heat transfer channel has a relatively short length compared to a length of said conduit along said major dimension.
- 37. The conduit of claim 34 wherein at least one of said heat transfer channels has a hydraulic diameter of less than about 0.015 inch.
CROSS-REFERENCE TO RELATED APPLICATION
This application is a continuation-in-part of co-pending application Ser. No. 08/634,777, filed Apr. 19, 1996, now U.S. Pat. 5,771,964.
US Referenced Citations (16)
Foreign Referenced Citations (2)
Number |
Date |
Country |
57-174696 |
Oct 1982 |
JPX |
1 570 033 |
Jun 1980 |
GBX |
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
634777 |
Apr 1996 |
|