Additional objects and advantages of the present invention will be more readily apparent from the following detailed description of preferred embodiments when taken together with the accompanying drawings. In the drawings:
A heat exchanger according to a first embodiment of the invention can be used for a radiator, for example, for cooling a water-cooled internal combustion engine. As shown in
The corrugate fins 11 have corrugate shapes, and are made of an aluminum alloy, for example. The corrugate fins 11 are arranged for accelerating a heat exchange between air and cooling water (coolant). The tubes 10 define therein water passages through which cooling water for the water-cooled internal combustion engine (not shown) flows. For example, the tubes 10 are made of aluminum alloy plates, which are bent into predetermined shapes and weld or brazed, for example.
In the heat exchanger in
Each of the tubes 10 includes a pair of opposite straight portions 10a and a pair of opposite arc portions 10b, as shown in
A first tank 2 and a second tank 3 are arranged at two ends of the tubes 10 in the tube longitudinal direction X. The tanks 2 and 3 extend to a direction approximately perpendicular to the tube longitudinal direction X, and have spaces therein. The both ends of the tubes 10 in the tube longitudinal direction X are inserted in tube holes 221 provided in the tanks 2 and 3 so that inner passages of the tubes 10 communicate with the spaces in the tanks 2 and 3.
The first tank 2 is arranged for distributing hot cooling water from an engine to the tubes 10. The first tank 2 has an inlet pipe 2a connected with a cooling-water outlet of the internal combustion engine through a first hose (not shown).
The second tank 3 is arranged for collecting cooling water cooled by heat exchanging with air. The cooling water flowing out of the second tank 3 is circulated to the engine. The second tank 3 has an outlet pipe 3a connected with a cooling-water inlet of the internal combustion engine through a second hose (not shown).
At two ends of the core part 1 in the tube stacking direction Y, two inserts 4 are (side plates) arranged for reinforcing the core part 1. The inserts 4 are made of an aluminum alloy, for example. The inserts 4 extend to a direction approximately parallel to the tube longitudinal direction X, and ends of the inserts 4 in the tube longitudinal direction X are connected with the tanks 2 and 3. The inserts 4 may have a thickness larger than that of the tubes 10.
As shown in
For example, the core plate 20 is made of an aluminum alloy, the tank body 21 is made of a resin such as glass-fiber-reinforced nylon 66, and the packing is made of a rubber. The packing is put between the core plate 20 and the tank body 21, and a plurality of projection pieces 251 of the core plate 20 is pressed against the tank body 21, thereby the projection pieces 251 are plastically deformed and the tank body 21 is fixed to the core plate 20.
As shown in
The groove 20a is formed with an inner wall 23, a bottom wall 24, and an outer wall 25. The inner wall 23 is bent approximately vertically from an outer peripheral portion of the tube insertion plate part 22 and protrudes in the tube longitudinal direction X from the bottom wall 24. The bottom wall 24 is bent approximately vertically from the inner wall 23 and extends to the tube stacking direction Y, or the tube major direction Z. The outer wall 25 is bent approximately vertically from the bottom wall 24 and protrudes in the tube longitudinal direction X from the bottom wall 24. The projection pieces 251 are formed at an end portion of the outer wall 25.
The tube insertion plate part 22 of the core plate 20 has a plurality of tube holes 221 in which the tubes 20 are inserted and brazed. In addition, the tube insertion plate part 22 has two insert holes 222 in which the inserts 4 are inserted and brazed. The insert holes 222 are provided at two end portions of the tube insertion plate part 22 in the tube stacking direction Y. The tube holes 221 and the insert holes 222 are formed into elongated shapes extending in the tube major direction Z by a punching process, for example. In addition, the tube insertion plate part 22 may be provided with a plurality of burring parts 221a arranged at inner peripheral edges of the tube holes 221. Each of the burring parts 221a has a tubular shape having a cross section similar to those of the tubes 10, and projecting to an inside of each of the tanks 2 and 3 (i.e., projecting outside of the tube 10 in the tube longitudinal direction X), for example.
Furthermore, the tube insertion plate part 22 has a plurality of ribs 223 arranged between adjacent tube holes 221, and between the tube holes 221 and the insert holes 222 in the tube stacking direction Y. The ribs 223 have convex shape extending in the tube major direction Z and projecting from the tube insertion plate part 22 to an outside of each of the tanks 2 and 3. The ribs 223 are formed by a press working, for example. When a portion between each of the adjacent tube holes 221 is set to be an intermediate portion, all of the intermediate portions is provided with a pair of the ribs 223 arranged in the tube major direction Z.
A length L1 of the ribs 223 in the tube major direction Z is set to be shorter than a length L2 of the tube holes 221 in the tube major direction Z. In addition, when the tube insertion plate part 22 is viewed from the tube stacking direction Y, end portions of the tube holes 221 in the tube major direction Z and the ribs 223 overlap. That is, the end portions of the tube holes 221 in the tube major direction Z are overlapped with the ribs 223, in the tube stacking direction Y.
Furthermore, end portions of the ribs 223 are away from the inner wall 23. Thus, the tube insertion plate part 22 has two flat surfaces 224 located at outsides of the tube holes 221, the insert holes 222, and the ribs 223 in the tube major direction Z. The flat surfaces 24 extend over the tube insertion plate part 22 in the tube stacking direction Y. The flat surfaces 224 are deformable parts which are easily deformed in the tube longitudinal direction X.
As described above, in the tube stacking direction Y, the end portions of the tube holes 221 in the tube major direction Z and the ribs 223 having a high rigidity overlap with each other with a clearance therebetween. Thus, when a temperature of one of the tubes 10 is different from those of adjacent tubes 10, the ribs 223 prevent a deformation of the end portions of the tube holes 221 in the tube major direction Z, thereby a stress concentration at the end portions of the tubes 10 in the tube major direction Z is restricted.
In addition, the flat surfaces 224 located at the outsides of the tube holes 221, insert holes 222, and the ribs 223 are easily deformed in the tube longitudinal direction X. Thus, when a difference in temperature between the tubes 10 is large, the core plate 20 is deformed in the tube longitudinal direction X due to deformations of the flat surfaces 224, and a thermal strain of the tubes 10 is absorbed by a deformation of the core plate 20.
Furthermore, the length L1 of the ribs 223 is set to be a sufficient length such that the ribs 223 reduce the deformation of the end portions of the tube holes 221 in the tube major direction Z. In addition, the length L1 of the ribs 223 is set, thereby a formability of the ribs 223 is improved.
When a ratio of the length L1 of the ribs 223 to the length L2 of the tube holes 221 is set to be about in a range of 0.08≦(L1/L2)≦0.2, the ribs 223 can sufficiently reduce the deformation of the end portions of the tube holes 221 while the formability of the ribs 223 is improved.
In addition, the pair of the ribs 223 is located between adjacent tube holes 221 and insert holes 222 in the tube stacking direction Y. In other words, the ribs 223 are arranged adjacent to the end portions of all of the tube holes 221, which are adjacent in the tube stacking direction Y, thereby each end portion of all of the tube holes 221 in the tube major direction Z are restricted from deforming.
In the core plate 20 of
Alternatively, one of the first intermediate portions provided with the pair of the ribs 223 and two of the second intermediate portions without any ribs 223 may be alternately arranged in the tube stacking direction Y. In other words, the pair of the ribs 223 may be arranged at one of every three adjacent intermediate portions in the tube stacking direction. In this case, a number of the ribs 223 is reduced, thereby the formability of the ribs 223 is improved compared with a case where the pair of the ribs 223 is arranged at each of the intermediate portions.
In the core plate 20 of
In the core plate 20 of
For example, the ribs 223 may be arranged outsides of the end portions of the tube holes 221 in the tube major direction Z, to be lined with the tube holes 221 in the tube major direction Z. Each pair of the ribs 223 may be aligned with each of the tube holes 221 to have a distance between them in the tube major direction Z, as shown in
Also in this case, a stress generated in the vicinity of the end portions of the tube holes 221 in the tube major direction Z are dispersed to the ribs 223, thereby the ribs 223 restrict the deformation of the end portions of the tube holes 221. As a result, a stress concentration at the both end portions of the tubes 10 is restricted.
In this embodiment, the length L1 of the ribs 223 in the tube major direction Z is short, thereby the formability of the ribs 223 is improved. Furthermore, the ribs 223 are easily arranged even when a distance between adjacent tube holes 221 is small.
A core plate 20 for a heat exchanger according to a fifth embodiment of the invention will be described with reference to
Furthermore, the tube insertion plate part 22 has a plurality of ribs 223 arranged between adjacent tube holes 221, and between the tube holes 221 and the insert holes 222. The ribs 223 have convex shapes extending in the tube major direction Z and protruding from the tube insertion plate part 22 to an outside of each of the tanks 2 and 3. The ribs 223 are formed by a press working, for example.
The extending length L1 of the ribs 223 is set to be longer than the length L2 of the tube holes 221 and a length of the insert holes 222 in the tube major direction Z. In addition, end portions of the ribs 223 in the tube major direction Z is positioned outsides of the end portions of the tube holes 221 and the insert holes 222 in the tube major direction Z.
Furthermore, the end portions of the ribs 223 are away from the inner wall 23. Thus, the tube insertion plate part 22 has two flat surfaces 224 located at outsides of the tube holes 221, the insert holes 222, and the ribs 223 in the tube major direction Z. The flat surfaces 224 extend over the tube insertion plate part 22 in the tube stacking direction Y. The flat surfaces 224 are deformable parts which are easily deformed in the tube longitudinal direction X. Thus, when a difference in temperature between the tubes 10 is large, the core plate 20 is deformed in the tube longitudinal direction X due to deformations of the flat surfaces 224, and a thermal strain of the tubes 10 is absorbed by a deformation of the core plate 20, thereby a stress is reduced at the tubes 10 in the tube major direction Z.
As described above, the burring parts 221a are arranged at inner peripheral edges of the tube holes 221, thereby the rigidity of the surrounding areas of the tube holes 221 in the tube insertion plate part 22 is increased. Thus, when a temperature of one of the tubes 10 is different from those of adjacent tubes 10, the burring parts 221a restrict a deformation of the end portions of the tube holes 221, thereby a stress concentration at the end portions of the tubes 10 in the tube major direction Z is restricted.
Furthermore, the burring parts 221a are arranged at only the tube holes 221, but are not required to be arranged at the insert holes 222, thereby the formability of the core plate 20 is improved. In addition, the thickness of the inserts 4 is thicker than that of the tubes 10, thereby the inserts 4 are hardly damaged by a stress concentration. Therefore, a stress concentration at the end portions of the tubes 10 in the tube major direction Z is restricted. As a result, the end portions of the tube holes 221 in the tube major direction Z are restricted from deforming while the formability of the are plate 20 is improved.
The burring parts 221a in
When the burring parts 221a are formed by a press working, a crack may be generated in the burring parts 221a. However, when the cut portions 221 bare provided by cutting a part of the burring part 221a in advance, a crack of the burring parts 221a is hardly caused, and the formability of the core plate 20 is improved.
In addition, a crack of the burring parts 221a in the press working is particularly generated in the portions corresponding to the arc portions 10b of the tubes 10. Therefore, when the cut portions 221b are provided at the portions of the burring parts 221a corresponding to the arc portions 10b in advance, a crack of the burring parts 221a is restricted, and the formability of the core plate 20 is more improved. Furthermore, even when the portions of the burring parts 221a corresponding to the arc portions 10b are cut, the burring parts 221a can restrict a stress concentration at the end portions of the tubes 10 in the tube major direction Z. Therefore, a stress concentration at the end portions of the tubes 10 in the tube major direction Z is restricted while the formability of the core plate 20 is improved.
When a temperature of one of the tubes 10 is different from that of an adjacent tube 10 and a thermal strain is generated in the tubes 10, connecting points (bending points) D between the flat surface 224 and the cut portions 221b are deformed for absorbing the thermal strain. Therefore, a stress concentration at the end portions of the tubes 10 in the tube major direction Z can be restricted.
When the cut portions 221b are projected to the surfaces of the core plate 20 approximately perpendicularly to the tube longitudinal direction X, a ratio of a length L3 of the projected cut portions 221b to the length L2 of the tube holes 221 is set to be about in a range of 0.05≦(L3/L2)≦0.3. Thereby, a stress concentration at the end portions of the tubes 10 in the tube major direction is restricted while the formability of the core plate 20 is improved.
When a value of the ratio (L3/L2) is smaller than 0.05, the connecting points D between the flat surfaces 224 and the cut portions 221b are difficult to be formed. In addition, when a thermal strain is generated in the tubes 10, the connecting points D are difficult to be deformed, and may not absorb the thermal strain. In contrast, when the value of the ratio (L3/L2) is larger than 0.3, distances between the ends of the tubes 10 in the tube major direction Z and the connecting points D become long, thereby the connecting points D may not absorb a thermal strain in the tubes 10.
The cut portions 221b in
In the core plate 20 shown in
Generally, a thermal strain due to a difference in a temperature of the tubes 10 may be generated in a part of the tubes 10 arranged at both end sides in the tube stacking direction Y. Therefore, when the burring parts 221a and the ribs 223 are arranged partially only in the vicinity of the two ends of the core plate 20 in the tube stacking direction Y, a stress concentration at the end portions of the tubes 10 is restricted effectively.
In addition, the burring parts 221a and the ribs 223 may be not required to be arranged in a middle portion of the core plate 20 in the tube stacking direction Y, thereby the formability of the core plate 20 is improved.
When a number of the tubes 10 is not less than thirty, “the vicinity of the both ends of the core plate 20” is set to be a range in which three to five tube holes 221 are arranged from the two ends of the core plate 20 in the tube stacking direction Y. The number of the tube holes 221, to which the burring part 221a are provided, may be suitably set in accordance with the state of the core plate 20, such as its length, the total number of the tube holes 221, sizes of the tube holes 221.
A core plate 20 for a heat exchanger according to a tenth embodiment of the invention will be described with reference to
In the core plate 20 shown in
The protruding length L4 may be suitably set in accordance with the state of the core plate 20, such as its length, and sizes of the tube holes 221.
Although the present invention has been fully described in connection with the preferred embodiments thereof with reference to the accompanying drawings, it is to be noted that various changes and modifications will become apparent to those skilled in the art.
For example, the burring parts 221a may be arranged in the core plates 20 according to the second to fourth embodiments, and the tenth embodiment. Alternatively, the ribs 223 may be not arranged in the core plates 20 according to the fifth to ninth embodiments. Alternatively, the burring parts 221a may be arranged at inner peripheral edges of the insert holes 222.
In the core plate 20 according to the seventh embodiment, the cut portions 221b are inclined in such a manner that the inner ends of the cut portions 221b being close to the center portions of the tube holes 221 are arranged at the inside of each of the tanks 2 and 3 compared with the outer ends of the cut portions 221b. Alternatively, the cut portions 221b may be inclined in such a manner that the inner ends of the cut portions 221b are arranged at the outside of each of the tanks 2 and 3 compared with the outer ends of the cut portions 221b. In this case, the burring parts 221a project to the outside of each of the tanks 2 and 3, and the ribs 223 have convex shapes projecting from the tube insertion plate part 22 to the inside of each of the tanks 2 and 3.
In the core plate 20 according to the eighth embodiment, each of the burring parts 221a has one cut portion 221b. Alternatively each of the burring parts 221a may have a plurality of cut portions 221b.
In the core plate 20 according to the ninth embodiment, the cut portions 221b are not provided at the burring parts 221a. Alternatively, the burring parts 221a may have the cut portions 221b. In addition, the burring parts 221a may be arranged at the inner peripheral edges of the insert holes 222. When the cut portions 221b are arranged at the portions of the tube holes 221 corresponding to the arc portions 10b of the tubes 10, the cut portions 221b may be inclined toward the flat surfaces 224.
The ribs 223 and the burring parts 221a may be effective not only to a thermal strain but also to a strain of the tubes 10 due to a change of an inner pressure or a vibration of a vehicle, and may restrict a stress concentration at the both end portions of the tubes 10 in the tube major direction Z.
Furthermore, the core plate 20 may be used for a heart exchanger for the other use except for the radiator.
Such changes and modifications are to be understood as being within the scope of the present invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2006-179046 | Jun 2006 | JP | national |
2006-298690 | Nov 2006 | JP | national |