This application claims priority to German Patent Application No. 10 2015 209 130.9, filed May 19, 2015, the contents of which are hereby incorporated by reference in its entirety.
The present invention relates to a heat exchanger having a heat exchanger block with flat tubes which are each held at a longitudinal end side in a rim hole of an associated tube plate. The invention also relates to a motor vehicle equipped with a heat exchanger of said type.
DE 10 2013 208 424 A1 has disclosed a generic heat exchanger, in particular for a motor vehicle, having a heat exchanger block with flat tubes which are each held at a longitudinal end side in a rim hole of an associated an tube plate. Here, each rim hole has two mutually opposite and substantially straight long sides and two mutually opposite narrow sides, wherein each flat tube is brazed to the long sides and to the narrow sides of the rim hole. Here, a border of a rim hole corner region is formed between the long side and the narrow side. The border of the rim hole corner region has a straight profile relative to a base plane spanned by the long side, or is, above the base plane spanned by the long side, of arched form so as to run toward the base plane. In this way, it is intended to be able to produce a tube-plate connection which can better accommodate forces arising as a result of temperature changes and mechanical loading.
DE 10 2007 059 673 A1 has disclosed a heat exchanger for the exchange of heat between a first fluid and a second fluid, which heat exchanger has a block for conducting the first and second fluids separately from one another and in heat-exchanging fashion. The heat exchanger block in this case comprises flat tubes which are held by way of their longitudinal end sides in rim holes of tube plates. Here, the rim holes have at least one delimiting contour which is arched away from a plane substantially perpendicular to the tube axial direction and which runs with a spacing to said plane, wherein a spacing value at least at a transition between the tube narrow side and the tube wide side is smaller than a spacing value at the tube wide side, in such a way that stresses in the region of the transition can be reduced. In this way, it is sought in particular to be able to increase the durability of the heat exchanger.
In general, owing to the reduction in the tube wall thicknesses, the fluctuating temperature loading in the case of motor vehicle coolant coolers is of ever-increasing significance.
The present invention is therefore concerned with the problem of specifying, for a heat exchanger of the generic type, an improved or at least alternative embodiment which, in particular also in the case of thin-walled flat tubes with at least one partition, is distinguished by increased durability in the partition region.
Said problem is solved according to the invention by way of the subject matter of the independent claim(s). The dependent claims relate to advantageous embodiments.
The present invention is based on the general concept whereby, in the region of a brazing surface between a flat tube and a rim hole in a tube plate, at least one long side, preferably both long sides, of the rim hole is/are designed, for example by way of corresponding lugs or the formation of depressions, such that a brazing surface that will later form between the at least one long side of the rim hole and the flat tube has a brazing boundary or a braze edge with an undulating profile, wherein a high point of the undulating profile of the brazing boundary coincides with a partition, in particular with a fold, of the respective flat tube, whereby considerably increased resistance to temperature fluctuations can be achieved, which has been confirmed for example by way of FEM calculations. For this purpose, the heat exchanger according to the invention has, in a known manner, a heat exchanger block with flat tubes which are each held at a longitudinal end side in a rim hole of the associated tube plate. Here, each rim hole has two mutually opposite and substantially straight long sides and two mutually opposite narrow sides. Furthermore, each flat tube is brazed to the long sides and to the narrow sides of the rim hole. According to the invention, it is now the case that at least one brazed connection between at least one of the long sides of at least one rim hole and a flat tube arranged therein has an undulating brazing boundary, which may be formed for example by way of undulating depressions which, in the case of flat tubes brazed in the rim holes, generate a likewise undulating profile of the brazing boundary in said region, that is to say along the associated long side. The undulating brazing boundary, which self-evidently has high points and low points, is now aligned relative to the at least one partition of the flat tube such that the brazing boundary has, in the region of the at least one partition, in particular of the at least one fold, a high point and thus, in particular, a reduced width in relation to the free edge of the rim hole. In this way, it is possible for a considerable reduction of stresses in the partition region to be achieved, which corresponds to a considerable lengthening of service life under temperature loading. Altogether, by way of the embodiment according to the invention of at least one of the long sides of a rim hole with the undulating brazing boundary resulting from this, and by way of the alignment of the high points of the undulating brazing boundary with the partition of the flat tube, considerably increased temperature resistance of the heat exchanger can be achieved.
In an advantageous refinement of the solution according to the invention, the undulating brazing boundary runs spaced apart from a free edge of the rim hole. Altogether, a brazed surface is thus obtained which, in the upward direction, terminates in rectangular fashion with respect to the free edge of the rim hole and, in the downward direction, terminates by way of the undulating profile of the brazing boundary or the braze edge, whereby it is possible for a brazed connection to be realized which not only covers a large area and is thus reliable, but which is also highly resistant to temperature loading owing to the special undulating profile according to the invention of the brazing boundary with the arrangement of a high point in the region of the at least one partition, in particular of the at least one fold, of the flat tube. Here, it is preferably provided that the undulating brazing boundary has a number of high points corresponding to the number of partitions.
In an advantageous refinement of the solution according to the invention, the brazing boundary has, in the region of the high point and/or of the low point, two flanks which are each angled relative to a horizontal by an angle α of 7°≦α≦30°. Depending on the selected angle, it is possible here, in combination with the wavelength, to realize a shallower or steeper profile of the brazing boundary.
In an advantageous refinement of the solution according to the invention, the brazing boundary has a height difference h of 1.5 mm≦h≦2.5 mm between the high point and the low point. Through the determination and/or specification of the amplitude of the undulating profile of the brazing boundary, which corresponds to half of the height, it is likewise possible for the durability to be influenced.
In a further advantageous embodiment of the solution according to the invention, the undulating brazing boundary has a wavelength l of 4.0 mm≦1≦26.0 mm. Said range already makes it evident that, in particular for heat exchangers of different size, the wavelength l of the undulating brazing boundary can be easily adapted to the respective size of the flat tube or of the rim hole.
In a further advantageous embodiment of the solution according to the invention, the undulating brazing boundary transitions via a high point into the narrow side of the rim hole. The narrow side may in this case be arranged at right angles to the two long sides, or else may be of semicircular form, wherein accommodation of greater stresses is possible by way of the transitioning of the undulating brazing boundary via a high point into the narrow side. Since said corner regions in particular are subject to high stresses in the event of temperature loading, it is possible in this way, too, for the service life of the heat exchanger according to the invention to be lengthened.
Further important features and advantages of the invention will emerge from the subclaims, from the drawings and from the associated description of the figures on the basis of the drawings.
It is self-evident that the features mentioned above and the features yet to be discussed below may be used not only in the respectively specified combination but also in other combinations or individually without departing from the scope of the present invention.
Preferred exemplary embodiments of the invention are illustrated in the drawings and will be discussed in more detail in the following description, wherein the same reference signs are used to denote identical or similar or functionally identical components.
In the drawings, in each case schematically:
Corresponding to
The brazing boundary 12 is in this case not illustrated directly in
The undulating brazing boundary 12 and the undulating depressions 11 are, in the exemplary embodiment, arranged at an insertion side 17 of the long side 7 of the rim hole 5 of the tube plate 6. The respective insertion sides 17 of the rim hole 5 are averted from a header tank 18 of the heat exchanger 1 (cf.
The undulating profile of the brazing boundary 12 and in particular the congruent arrangement of the high points 13 of the brazing boundary 12 with the partitions 10 or the fold 9 lead to a considerable reduction of the stresses in said region under temperature loading, whereby considerably increased resistance of the heat exchanger 1 to temperature fluctuations can be achieved. Here, FEM calculations have, with the described geometry, shown that a profile of the brazing boundary 12 designed according to the invention and aligned with respect to the fold 9 or the partition 10 yields a considerable stress reduction and thus a considerable lengthening of the service life under temperature loading. A further major advantage of the undulating brazing boundary 12 formed for example by the depressions 11 or indentations lies in the easy insertion of the flat tubes 4 into the rim holes 5, without the risk of misalignment occurring in the process. Here, the undulating depressions 11 may at the same time form an insertion bevel, in particular also in the region of the low points 14, which facilitates the insertion of the flat tube 4 into the associated rim hole 5.
Considering
Considering the brazing boundary 12 which runs along the undulating edge of the undulating depressions 11, as per
Considering the heat exchanger 1 as per
With the heat exchanger 1 according to the invention and in particular with the tube plate 6 designed according to the invention, it is possible to realize a considerably reduced stress loading in heat exchangers 1 with flat tubes 4.
Number | Date | Country | Kind |
---|---|---|---|
102015209130.9 | May 2015 | DE | national |