This application is based on and incorporates herein by reference Japanese Patent Application No. 2009-254941 filed on Nov. 6, 2009
1. Field of the Invention
The present invention relates to a heat exchanger having multiple heat exchanger units that are integrally formed.
2. Description of Related Art
Conventionally, JP-A-2002-115991 (corresponding to US2002/0040776) discloses a heat exchanger, which has multiple tubes allowing fluid to flow therethrough, and which has a header tank provided at longitudinal end portions of the tubes to be communicated with the tubes. Multiple heat exchanger units are integrally formed by partitioning an internal space of the header tank by partition walls (separators).
In the heat exchanger of JP-A-2002-115991, the header tank includes a core plate and a tank main body. The core plate has tube insertion bores, into which the tubes are inserted in a bonded manner. The tank main body, together with the core, plate, defines an in-tank space. Also, a gasket is provided at a position between the adjacent tube insertion bores of the core plate, and when the partition wall compresses the gasket, the gap between the partition wall and the core plate is sealed.
Also, JP-A-2003-336994 discloses a heat exchanger, in which a gap between the partition wall and the core plate is sealed by forming two plate members along a length of the end portion of the partition wall at the end portion of the partition wall adjacent the core plate, without providing a gasket.
Also, in the heat exchanger of JP-A-2002-115991, a position between tube insertion bores that are located adjacent the core plate serves as a seal surface, and the part is processed to have a burring for receiving a tube. Thus, the part between the tube insertion bores has a curved shape. Originally, in order to secure sealing performance for sealing between the partition wall and the core plate, it is required to apply a compression force perpendicular to the gasket uniformly. However, because the seal surface has the curved shape, it is difficult to apply the uniform compression force to the entirety of the seal surface, and thereby it is difficult to sufficiently secure the sealing performance.
Also, in the heat exchanger of JP-A-2003-336994, because the gasket is eliminated, it is disadvantageously impossible to sufficiently secure the sealing performance.
The present invention is made in view of the above disadvantages. Thus, it is an objective of the present invention to address at least one of the above disadvantages.
In order to achieve the objective of the present invention, there is provided a heat exchanger that includes a core unit and a pair of header tanks. The core unit has a plurality of tubes that allows fluid to circulate therethrough. The pair of header tanks is positioned at longitudinal end portions of the plurality of tubes. The pair of header tanks extends in a direction orthogonal to a longitudinal direction of the tubes to be communicated with the plurality of tubes. Each of the pair of header tanks has a core plate, to which the tubes are bonded, and a tank main body, which together with the core plate defines a tank space. The tank main body has at least a first main body segment and a second main body segment. The header tank is provided with partitioning means that divides the header tank into a first space, which is an internal space of the first main body segment, and a second space, which is an internal space of the second main body segment, such that at least the first space and the second space are arranged in a longitudinal direction of the header tank. The partitioning means has a first partitioning surface that faces the first space and has a second partitioning surface that faces the second space. A plurality of heat exchanger units is defined by dividing the core unit at the partitioning means in a direction, in which the first space and the second space are arranged. The core plate has a tube bonding surface, to which the tubes are bonded. The tube bonding surface has an annular outer peripheral seal surface formed therearound over an entire perimeter of the tube bonding surface. A seal member, which seals between the core plate and an end portion of the tank main body adjacent the core plate, is provided in the annular outer peripheral seal surface. The tube bonding surface has a partitioning seal surface at a position, which corresponds to the partitioning means. The seal member is provided at the partitioning seal surface to seal between the core plate and the partitioning means. The partitioning seal surface is positioned on a plane that is identical with a plane of the outer peripheral seal surface. The seal member has a part, which is held by the core plate and the tank main body therebetween, and which has a uniform thickness.
In order to achieve the objective of the present invention, there is also provided a heat exchanger that includes a core unit, a pair of header tanks, a partition wall, and a plurality of heat exchanger units. The core unit has a plurality of tubes that allows fluid to circulate therethrough. The pair of header tanks is provided at longitudinal end portions of the plurality of tubes. The pair of header tanks extends in a direction orthogonal to a longitudinal direction of the tubes to be communicated with the plurality of tubes. Each of the pair of header tanks has a core plate, to which the tubes are bonded, and a tank main body, which together with the core plate defines a tank space. The partition wall is provided within the header tank. The partition wall has a plate shape and divides the tank space into at least a first space and a second space. The first space and the second space are arranged in a longitudinal direction of the header tank. The plurality of heat exchanger units is defined by dividing the core unit at the partition wall in a direction, in which the first space and the second space are arranged. The core plate has a tube bonding surface, to which the tubes are bonded. The tube bonding surface has an annular outer peripheral seal surface formed therearound over an entire perimeter of the tube bonding surface. A seal member, which seals between the core plate and an end portion of the tank main body adjacent the core plate, is provided at the annular outer peripheral seal surface. The tube bonding surface has a partitioning seal surface at a position, which corresponds to the partition wall. The seal member is provided at the partitioning seal surface to seal between the core plate and the partition wall. The partitioning seal surface is positioned on a plane that is identical with a plane of the outer peripheral seal surface. The seal member has a part, which is held by the core plate and the tank main body therebetween, and which has a uniform thickness.
In order to achieve the objective of the present invention, there is also provided with a heat exchanger that includes a first core unit, a second core unit, a core plate, a first main body segment, a second main body segment, a seal member, and partitioning means. The first core unit has a plurality of first tubes that allows first fluid to flow therethrough. The second core unit has a plurality of second tubes that allows second fluid to flow therethrough. The core plate is connected with longitudinal end portions of the first tubes and the second tubes. The first main body segment is bonded to the core plate. The first main body segment extends in a direction orthogonal to a longitudinal direction of the first tubes such that the first main body segment defines a first space that is communicated with the first tubes. The second main body segment is bonded to the core plate. The second main body segment extends in a direction orthogonal to a longitudinal direction of the second tubes such that the second main body segment defines a second space that is communicated with the second tubes. The seal member seals between the core plate and the first main body segment and seals between the core plate and the second main body segment. The first space and the second space are arranged in the direction orthogonal to the longitudinal direction of the first tubes and the second tubes. The partitioning means separates the first space from the second space. The seal member seals between the core plate and one of the first main body segment, the second main body segment, and the partitioning means. The core plate includes a tube bonding surface, an annular outer peripheral seal surface, and a partitioning seal surface. The tube bonding surface has insert bores, into which the first and second tubes are inserted. The annular outer peripheral seal surface is formed around the tube bonding surface and is provided with the seal member. The partitioning seal surface is formed at a position opposed to an end portion of the partitioning means, and is provided with the seal member. The partitioning seal surface is positioned on a plane that is identical with a plane of the outer peripheral seal surface. The seal member has a part, which is held by the core plate and the one of the first main body segment, the second main body segment, the partitioning means therebetween, and which has a uniform thickness.
The invention, together with additional objectives, features and advantages thereof, will be best understood from the following description, the appended claims and the accompanying drawings in which:
Embodiments of the present invention will be described below with reference to the drawings. It should be noted that in each of the embodiments below, components identical with each other or similar to each other will be denoted by the same numerals.
The first embodiment of the present invention will be described below with reference to
The tubes 2 allow fluid to flow therethrough, and the tube 2 is formed to have a flat shape such that a direction of a longitudinal diameter of the tube 2 coincides with an air flow direction. Also, the multiple tubes 2 are arranged in parallel with each other in a horizontal direction such that longitudinal directions of the tubes 2 coincide with a vertical direction. The fins 3 are formed to be corrugated, and are bonded to flat surfaces of both ends of the tubes 2. The fins 3 increase a heat transfer area to air, and thereby enhancing heat exchange between air and fluid that flows through the tubes 2.
The header tanks 5 are positioned at both end portions of the tubes 2 in a longitudinal direction (hereinafter, referred to as a tube longitudinal direction) and extend in a direction orthogonal to the tube longitudinal direction such that the header tanks 5 are communicated with the multiple tubes 2. In the present embodiment, the header tanks 5 are provided at both vertical ends of the tubes 2, and extend in a horizontal direction to be communicated with the multiple tubes 2. The header tank 5 has a core plate 51 and a tank main body 52. The core plate 51 has the tubes 2 to be inserted thereinto in a bonded manner, and the tank main body 52, together with the core plate 51, defines a tank space.
Also, side plates 6 are provided on both end portions of the core unit 4 in a lamination direction, in which the tubes 2 are laminated on one another. The side plates 6 reinforce the core unit 4. The side plate 6 extends in a direction parallel to the tube longitudinal direction, and has both end portions connected to the header tanks 5.
The core unit 4 is divided into two segments at partitioning means 520a, 520b of the header tank 5. In the present embodiment, the core unit 4 includes a first radiator unit 100 (first core unit) and a second radiator unit 200 (second core unit). The first radiator unit 100 exchanges heat between air and engine coolant, which circulates within an engine (not shown) for cooling the engine, in order to cool the engine coolant. The second radiator unit 200 cools electrical system coolant that circulates within an electrical control circuit, which controls an electric motor, such as an electric motor (not shown) and an inverter circuit (not shown), such that the electrical system coolant cools the electric motor and the electrical control circuit. In the above, the multiple tubes 2 include first tubes 21 and second tubes 22.
The first tubes 21 constitute the first radiator unit 100 and allow the engine coolant to circulate therethrough. The second tubes 22 constitute the second radiator unit 200, and allow the electrical system coolant to circulate therethrough. It should be noted that the first radiator unit 100 and the second radiator unit 200 correspond to the present invention multiple heat exchanger units of the second tubes 22.
In the header tank 5, a dummy tube 23 is provided at a boundary between the first radiator unit 100 and the second radiator unit 200. In other words, the dummy tube 23 is provided between the first tubes 21 and the second tubes 22. The dummy tube 23 does not allow the engine coolant or the electrical system coolant to circulate therethrough. Although there is one dummy tube 23 in the present embodiment, two or more dummy tubes 23 may alternatively be provided.
Next, details of the configuration of the header tank 5 will be described.
As shown in
Then, in the present embodiment, the core plate 51 is made of an aluminum alloy, and the tank main body 52 is made of a resin, such as glass-reinforced polyamide that is reinforced by glass fiber. In a state, where the gasket 53, which is made of a rubber, is held by the core plate 51 and the tank main body 52 therebetween, a protrusion part 516 of the core plate 51 is plastically deformed to be pressed against the tank main body 52, and then the tank main body 52 is crimped to the core plate 51 in a fixed manner.
The core plate 51 has a tube bonding surface 511, to which the tubes 2 are bonded. The tube bonding surface 511 has multiple tube insertion bores 511a, into which the tubes 2 are inserted and blazed, arranged in the tube lamination direction. Furthermore, the tube bonding surface 511 has side plate insertion bores (not shown), to which the side plates 6 are inserted and blazed, at both ends of the tube bonding surface 511 in the tube lamination direction. Also, the tube bonding surface 511 has a dummy tube insertion bore 511c, to which the dummy tube 23 is inserted and blazed.
An annular groove 512 is formed over an entire perimeter at the tube bonding surface 511, and receives therein the gasket 53 and an outer periphery projection portion 521, which is formed at an end portion of the tank main body 52 adjacent the core plate 51. The groove 512 is defined by three surfaces. In other words, the groove 512 is defined by a wall surface of an inner wall part 513, an outer peripheral seal surface 514, and a wall surface of an outer wall part 515. The inner wall part 513 is formed by bending an outer peripheral part of the tube bonding surface 511 in a direction perpendicular to the tube bonding surface 511, and the inner wall part 513 extends in the tube longitudinal direction. The outer peripheral seal surface 514 is formed by bending the inner wall part 513 in a direction perpendicular to the inner wall part 513, and the outer peripheral seal surface 514 extends in a direction perpendicular to the tube longitudinal direction. The outer wall part 515 is formed by bending the outer peripheral seal surface 514 in a direction perpendicular to the outer peripheral seal surface 514, and the outer wall part 515 extends in the tube longitudinal direction. Also, multiple protrusion parts 516 are formed at an end portion of the outer wall part 515.
In the present embodiment, the gasket 53 includes an annular part 531 and a partitioning seal part 532. The annular part 531 is formed into an annular shape that corresponds to the groove 512 of the core plate 51, and the partitioning seal part 532 is configured to seal between the core plate 51 and partitioning means, which will be described later. For example, the annular part 531 has a rounded rectangular ring shape. The partitioning seal part 532 extends from one position of the annular part 531 in a transverse direction of the rounded rectangular shape, and connects with the other position of the annular part 531 that opposed to the one position. As a result, the gasket 53 has a shape similar to θ (symbol: theta) formed by the annular part 531 and the partitioning seal part 532. The detailed configuration of the partitioning seal part 532 will be described later.
The tank main body 52 has an outer periphery projection portion 521 that is provided with a tank-side seal surface 522. The tank-side seal surface 522 is formed to have an annular shape that surrounds the in-tank space. Also, the tank-side seal surface 522 contacts the annular part 531 of the gasket 53 such that the tank-side seal surface 522 and the outer peripheral seal surface 514 of the core plate 51 hold the gasket 53 therebetween.
The tank-side seal surface 522 has a projection portion 523 that projects toward the annular part 531 of the gasket 53. The projection portion 523 is pressed against the gasket 53 such that the gasket 53 is compressed through elastic deformation. As a result, the position is stabilized, and also an appropriate compressibility ratio is secured.
The core plate 51 has a partitioning seal surface 517 that seals between the core plate 51 and partitioning means 520a, 520b, which will be described later. The partitioning seal part 532 of the gasket 53 is provided on the partitioning seal surface 517. Also, the partitioning seal surface 517 is positioned on a plane of the outer peripheral seal surface 514, or in other words, on a bottom surface of the groove 512. As a result, the partitioning seal surface 517 is formed continuously from the outer peripheral seal surface 514.
Also, the tank space of the header tank 5 is divided by the partitioning means 520a, 520b (described later) into a first space 501 and a second space 502 that are arranged in a tank longitudinal direction. Specifically, the tank main body 52 of the present embodiment is divided into a first main body segment 52a and a second main body segment 52b. The first main body segment 52a, together with the core plate 51, defines the first space 501, and the second main body segment 52b, together with the core plate 51, defines the second space 502. Thus, the first main body segment 52a and the second main body segment 52b are also arranged in the tank longitudinal direction.
In the present embodiment, the first main body segment 52a has a wall surface that is opposed to the second main body segment 52b, and the wall surface is referred to as a first opposed wall 520a. The second main body segment 52b has a wall surface that is opposed to the first main body segment 52a, and the wall surface is referred to as a second opposed wall 520b. Also, the first opposed wall 520a has an end portion adjacent the core plate 51, and the end portion is referred to as a first opposed wall end portion 521a. The second opposed wall 520b has an end portion adjacent the core plate 51, and the end portion is referred to as a second opposed wall end portion 521b.
The first opposed wall 520a has a first partitioning surface 501a that faces the first space 501. The second opposed wall 520b has a second partitioning surface 502a that faces the second space 502. The first opposed wall 520a has a surface opposite from the first partitioning surface 501a, and the opposite surface faces toward the exterior of the header tank 5. Also, the second opposed wall 520b has a surface opposite from the second partitioning surface 502a, and the opposite surface faces toward the exterior of the header tank 5. In other words, the first opposed wall 520a constitutes a part of an external wall surface of the first main body segment 52a, and the second opposed wall 520b constitutes a part of an external wall surface of the second main body segment 52b.
Here, in the heat exchanger 1 of the present embodiment, the first opposed wall 520a and the second opposed wall 520b partition a single main body segment of the header tank 5. (or the tank main body 52) into the first main body segment 52a and the second main body segment 52b. As a result, the first opposed wall 520a and the second opposed wall 520b constitute partitioning means of the present invention. Also, the first opposed wall 520a corresponds to a first partitioning part of the present invention, and the second opposed wall 520b corresponds to a second partitioning part of the present invention.
The first opposed wall end portion 521a and the second opposed wall end portion 521b have shapes similar to a shape of the outer periphery projection portion 521 of the tank main body 52. In other words, the first opposed wall end portion 521a and the second opposed wall end portion 521b respectively have opposed wall seal surfaces 522a, 522b that are opposed to the partitioning seal surface 517 of the core plate 51. Also, the opposed wall seal surfaces 522a, 522b contact the partitioning seal part 532 of the gasket 53 such that the opposed wall seal surfaces 522a, 522b, together with the partitioning seal surface 517 of the core plate 51, hold the gasket 53. Also, the opposed wall seal surfaces 522a, 522b respectively have projection portions 523a, 523b formed to project toward the partitioning seal part 532 of the gasket 53.
In the present embodiment, the first opposed wall 520a and the second opposed wall 520b are spaced apart from each other, and the first opposed wall 520a and the second opposed wall 520b are connected with each other at end portions thereof adjacent the core plate 51. In other words, the end portions of the first opposed wall 520a and the second opposed wall 520b, which end portions are located adjacent the core plate 51, form a connection part 520c that connects the first opposed wall 520a with the second opposed wall 520b. The connection part 520c contacts the partitioning seal part 532 of the gasket 53 such that the connection part 520c, together with the partitioning seal surface 517 of the core plate 51, holds the gasket 53 therein.
The partitioning seal part 532 of the gasket 53 of the present embodiment has a first seal part 532a and a second seal part 532b. The first seal part 532a seals between the first opposed wall 520a and the core plate 51, and the second seal part 532b seals between the second opposed wall 520b and the core plate 51. The first seal part 532a and the second seal part 532b are integrally formed. In other words, the gasket 53 has the partitioning seal part 532, which seals between the first opposed wall 520a and the core plate 51, and which also seals between the second opposed wall 520b and the core plate 51.
Also, in a state, where the gasket 53 of the present embodiment has not been assembled to the core plate 51, a part of the gasket 53, which is to be held by the core plate 51 and the tank main body 52 therebetween, has a uniform thickness. In other words, when the gasket 53 itself is focused, the part of the gasket 53, which is to be held by the core plate 51 and the tank main body 52 therebetween, has the uniform thickness. “The part held by the core plate 51 and the tank main body 52 therebetween” corresponds to a part that receives a compression force when crimped. That means that “the part held by the core plate 51 and the tank main body 52 therebetween” does not include a part indicated by D in
Continuing with
The heat exchanger 1 of the present embodiment is configured as above. As a result, when the tank main body 52 is crimped to the core plate 51 in the fixed manner, the end portions of the partitioning means 520a, 520b adjacent the core plate 51 are forced to compress the partitioning seal part 532 of the gasket 53. Thereby, it is possible to seal between the partitioning means 520a, 520b and the partitioning seal surface 517 of the core plate 51.
In the above, because the partitioning seal surface 517 of the core plate 51 is positioned on a plane that is identical with a plane of the outer peripheral seal surface 514, it is possible to cause the partitioning means 520a, 520b to apply uniform compression force on an entire surface of the partitioning seal part 532 of the gasket 53. Due to the above, it is possible to reliably seal between the partitioning means 520a, 520b and the partitioning seal surface 517 of the core plate 51. As a result, it is possible to improve the sealing performance of the partitioning member of the header tank 5.
Also,
In the heat exchanger of the first comparison example, the header tank 5 has an outer peripheral part that is provided with protrusion parts 516. The protrusion part 516 serves as crimping means for crimping the tank main body 52 to the core plate 51 in a fixed manner. A partitioning part 70 is not provided with means, such as the crimping means, for limiting the header tank 5 from being moved away from the core plate 51 when the header tank 5 is applied with internal pressure. Furthermore, in the heat exchanger of the first comparison example, the header tank 5 is divided in the widthwise direction. In other words, the partitioning part 70 extends in the longitudinal direction of the header tank 5. As a result, a center section of the partitioning part 70 in the longitudinal direction of the header tank 5 is moved in a direction, as indicated by an arrow A of
In contrast, in the heat exchanger of the present embodiment, the header tank 5 is divided in the longitudinal direction. In other words, the header tank 5 is divided into the first space 501 and the second space 502 such that the first space 501 and the second space 502 are arranged in the longitudinal direction of the header tank 5. As a result, the partitioning means 520a, 520b extends in the widthwise direction of the header tank 5. Therefore, it is possible to make the dimension of the partitioning member of the header tank 5 shorter than that of the first comparison example. As a result, even when the header tank 5 is applied with internal pressure, it is possible to limit the partitioning means 520a, 520b from being moved in the direction for reducing the compression force of the gasket 53. As a result, it is possible to improve the sealing performance of the partitioning member of the header tank 5.
Also,
In the heat exchanger of the second comparison example, protrusion parts 516 are plastically deformed for fixation through crimping in a state, where the outer periphery projection portion 521 of the tank main body 52 is received within a groove 512 of the core plate 51. Thereby, when the header tank 5 is loaded with the internal pressure, the outer periphery projection portion 521 is deformed in an inward direction of the header tank 5 as indicated by an arrow B of
In contrast, in the heat exchanger of the present embodiment, as shown in
Furthermore, it is possible to improve rigidity of the partitioning member of the header tank 5 (the connection part 520c) in the present embodiment compared with the second comparison example. As a result, even when internal pressure of the header tank 5 becomes higher, it is possible to limit the partitioning means 520a, 520b from being deformed, and thereby it is possible to limit the generation of a gap between the core plate 51 and the partitioning means 520a, 520b. As a result, it is possible to reliably achieve the sealing performance of the partitioning member of the header tank 5.
Next, the second embodiment of the present invention will be described with reference to
Also, conventionally, at a bonding part between the core plate 51 and the dummy tube 23, residue of blazing may damage the partitioning seal surface 517 of the core plate 51, and thereby degrading sealing performance of sealing between the core plate 51 and the partition wall 7.
In contrast to the above, in the heat exchanger 1 of the present embodiment, because the dummy tubes 23 are not inserted into the core plate 51, it is possible to prevent the deposit of the residue of blazing on the partitioning seal surface 517 via the tubes 2. As a result, it, is possible to improve the sealing performance between the core plate 51 and the partition wall 7.
Furthermore, in the heat exchanger 1 of the present embodiment, because the dummy tubes 23 are not inserted into the core plate 51, it is possible to reduce a force for restricting thermal expansion/thermal contraction of the tubes 2 located at the vicinity of the partitioning seal surface 517. As a result, it is possible to reduce thermal stress generated at a connecting base part between the core plate 51 and the tubes 21, 22 located adjacent the partitioning means 520a, 520b.
Next, the third embodiment of the present invention will be described with reference to
As shown in
In the present embodiment, one of the three segments of the in-tank space divided by the two partition walls 7 is communicated with the first tubes 21, and is referred to as the first space 501. Another one of the three segments is communicated with the second tubes 22, and is referred to as the second space 502. Also, the other one of the three segments is provided between the first space 501 and the second space 502, and is a third space 503 that is not communicated with either one of the first and second tubes 21, 22. Because the third space 503 is not communicated with the first and second tubes 21, 22, the third space 503 serves as a thermal insulating space. Also, one of the two partition walls 7 has the first partitioning surface 501a that is opposed to the first space 501, and the other partition wall 7 has the second partitioning surface 502a that is opposed to the second space 502.
In the present embodiment, as shown in
Because the heat exchanger 1 of the present embodiment is configured as above, the end portions of the partition walls 7 adjacent the core plate 51 compress the partitioning seal parts 532 of the gasket 53 when the tank main body 52 is crimped to the core plate 51 in a fixed manner. As a result, it is possible to seal between the partition walls 7 and the partitioning seal surface 517 of the core plate 51.
In the above time, the partitioning seal surface 517 of the core plate 51 is positioned on a plane identical with a plane, on which the outer peripheral seal surface 514 is positioned. As a result, it is possible to apply uniform compression force, by the partition walls 7, to the entire surface of the partitioning seal parts 532 of the gasket 53. Due to the above, it is possible to reliably seals between the partition walls 7 and the partitioning seal surface 517 of the core plate 51. As a result, it is possible to improve the sealing performance of the partitioning member of the header tank 5.
Also, fluid circulating through the first tubes 21 has temperature that is different from temperature of fluid circulating through the second tubes 22. Thereby, a difference of thermal expansion amounts of the tubes 21, 22 may be caused by a temperature difference between the tubes 21, 22 that are located adjacent the partition walls 7. Then, the above difference of the thermal expansion amounts may generate thermal stress, which occurs with thermal strain, to the connecting base part (bonding part) between the core plate 51 and the tubes 21, 22 adjacent the partition walls 7.
In contrast to the above, in the heat exchanger 1 of the present embodiment, because the partitioning seal surface 517 of the core plate 51 is positioned on the plane that is identical with the plane of the outer peripheral seal surface 514, the partitioning seal surface 517 is formed into a plane that is perpendicular to the tube longitudinal direction. As a result, it is possible to reduce the rigidity of the partitioning seal surface 517, and thereby reducing the force for restricting the thermal expansion/thermal contraction of the tubes 2 in the vicinity of the partitioning seal surface 517. As a result, because the vicinity of the partitioning seal surface 517 of the core plate 51 is deformable to absorb the thermal expansion difference between the tubes 21, 22 adjacent the partition walls 7, it is possible to reduce the thermal stress generated at the connecting base part between the core plate 51 and the tubes 21, 22 adjacent the partition walls 7.
Furthermore, in the heat exchanger 1 of the present embodiment, there are two partition walls 7, the in-tank space of the header tank 5 is divided into the first space 501, which is communicated with the first tubes 21, the second space 502, which is communicated with the second tubes 22, and the third space 503, which is provided between the first space 501 and the second space 502, and which is not communicated with either of the first and second tubes 21, 22. As a result, even in case of failure in sealing between the partition walls 7 and the core plate 51, coolant leaking from the first space 501 (or from the second space 502) would stay in the third space 503, and thereby the coolant is prevented from flowing to the exterior of the header tank 5. As a result, it is possible to prevent coolant from leaking from the header tank 5 to the exterior.
Next, the fourth embodiment of the present invention will be described with reference to
As shown in
In the heat exchanger 1 of the present embodiment, because the ribs 52c are provided between the first main body segment 52a and the second main body segment 52b, it is possible to limit blowing air from flowing through the gap between the first main body segment 52a and the second main body segment 52b, and thereby limiting the deterioration of heat exchange performance. Furthermore, because the rib 52c is provided between the first main body segment 52a and the second main body segment 52b, it is possible to prevent a warp of the tank main body 52, or in other words the warp of the first main body segment 52a and the second main body segment 52b, during the forming thereof. Also, simultaneously, it is possible to improve the workability of assembling the header tank 5 because the rigidity of the tank main body 52 is made high.
Next, the fifth embodiment of the present invention will be described with reference to
As shown in
The crimp plate 91 is received within a plate insertion bore (not shown) formed at the partitioning seal surface 517 of the core plate 51. It should be noted that the plate insertion bore may employ the dummy tube insertion bore 511c if the dummy tube insertion bore 511c (see
The crimp plate 91 has a plane that is generally orthogonal to the tube lamination direction. In other words, the plane of the crimp plate 91 is generally orthogonal to the longitudinal direction of the header tank 5. The crimp plate 91 has a distal end portion remote from the partitioning seal surface 517, and the distal end portion has a generally T shape having two projection portions 91a, 91b when observed in the tube lamination direction. The projection portions 91a, 91b project toward the upstream side and the downstream side of the air flow direction. The two projection portions 91a, 91b are bent to be angled relative to the air flow direction when observed in the tube longitudinal direction. One projection portion 91a of the two projection portions 91a, 91b has a surface adjacent the core plate 51, which surface contacts the first opposed wall end portion 521a of the first main body segment 52a. The other projection portion 91b has a surface adjacent the core plate 51, which contacts the second opposed wall end portion 521 b of the second main body segment 52b.
Next, a method of manufacturing the header tank 5 of the heat exchanger 1 of the present embodiment will be described. Firstly, the crimp plate 91 is inserted into the plate insertion bore (not shown) of the core plate 51, and the crimp plate 91 is fixed to the core plate 51. In the above, the two projection portions 91a, 91b of the crimp plate 91 have not been bent, but are positioned on the common plane.
Next, after the first main body segment 52a and the second main body segment 52b are assembled to the core plate 51, the two projection portions 91a, 91b of the crimp plate 91 are twisted in the opposite directions from each other. Due to the above, the first opposed wall end portion 521a of the first main body segment 52a and the second opposed wall end portion 521b of the second main body segment 52b are crimped to the core plate 51 in the fixed manner.
In the heat exchanger 1 of the present embodiment, because there is provided the crimp plate 91 that fixedly crimps the first opposed wall end portion 521a of the first main body segment 52a and the second opposed wall end portion 521b of the second main body segment 52b, the first opposed wall end portion 521a and the second opposed wall end portion 521b are capable of providing greater compression force to the partitioning seal part 532 of the gasket 53. Due to the above, it is possible to reliably seals between the partitioning seal surface 517 of the core plate 51 and the first and second opposed wall end portions 521a, 521b. In other words, it is possible to reliably seal between partitioning means for partitioning the header tank 5 and the partitioning seal surface 517 of the core plate 51. As a result, it is possible to reliably improve the sealing performance of the partitioning member of the header tank 5.
Next, the sixth embodiment of the present invention will be described with reference to
As shown in
The partitioning seal part 532 is constituted by a part of the first gasket part 53a, a part of the second gasket part 53b, and the connection gasket part 53c. The part of the first gasket part 53a and the part of the second gasket part 53b are arranged on the partitioning seal surface 517 of the core plate 51.
In the present embodiment, the first gasket part 53a and the second gasket part 53b has corner portions each having an arc shape (so-called a rounded shape) of a predetermined radius. Also, the connection gasket part 53c is configured to connect the first gasket part 53a with the second gasket part 53b over an almost entire length in the air flow direction.
The connection gasket part 53c has one surface 531c and the other surface 532c. The one surface 531c is located to face the partitioning seal surface 517 of the core plate 51, and the other surface 532c is located on a side of the connection gasket part 53c opposite from the one surface 531c. A part of the one surface 531c of the connection gasket part 53c is recessed toward the other surface 532c to form a first recess 533c. Also, a part of the other surface 532c of the connection gasket part 53c is recessed toward the one surface 531c to form a second recess 534c. As above, the recesses 533c , 534c are formed to extend over the entire length of the connection gasket part 53c in the air flow direction.
Also, usually, after the manufacture of a heat exchanger having integrated multiple heat exchanger units, quality inspection is carried out to inspect the generation of a so-called internal leakage and a so-called external leakage. In the internal leakage, fluid circulates between the multiple heat exchanger units, and in the external leakage, fluid leaks to the exterior of the heat exchanger: In the quality inspection, gas used for inspection (hereinafter referred to as inspection gas) is actually circulated in the heat exchanger in order to detect the internal leakage and the external leakage.
During the above quality inspection process of the heat exchanger 1 of the present embodiment, when the sealing between the partition wall 7 and the core plate 51 has failure, as shown by an arrow in
In the present embodiment,
In contrast to the above, the heat exchanger 1 of the present embodiment is configured such that the inspection-used gas always leaks to the exterior of the heat exchanger 1 even when the internal leakage occurs during the quality inspection. As a result, the external leakage and the internal leakage are detectable in the single inspection by, for example, connecting the engine coolant exit 83 with the electrical system coolant inlet 82 through a pipe, and simultaneously by introducing the inspection-used gas through the engine coolant inlet 81. As a result, it is possible to realize the quality inspection by a simple method, and thereby it is possible to improve the productivity.
Next, the seventh embodiment of the present invention will be described with reference to
As shown in
The projection portion 518 has a shape such that the projection portion 518 contacts both corner portions of the first gasket part 53a and the second gasket part 53b. In the present embodiment, the projection portion 518 has a generally triangular shape, and each corner portion of the triangular shape has an arc shape (so-called rounded shape) of a predetermined radius. Also, the projection portion 518 has a projection height, along which the projection portion 518 projects, and which is set to be a lower value around a lower limit value of a crimping height dimension.
In the heat exchanger 1 of the present embodiment, because the projection portions 518 are formed on the partitioning seal surface 517 of the core plate 51, it is possible to limit the erroneous displacement of the gasket 53 when the end portion of the partition wall 7 adjacent the core plate 51 compress the partitioning seal part 532 of the gasket 53. Also, it is possible to limit the positional displacement of the gasket 53 when the internal pressure of the header tank 5 increases. Due to the above, it is possible to reliably seal between the partition wall 7 and the partitioning seal surface 517 of the core plate 51. As a result, it is possible to reliably improve the sealing performance of partitioning member of the header tank 5.
Also, because the projection portion 518 functions to guide the gasket 53 during the placement of the gasket 53 to the core plate 51, it is possible to improve assemblability of the gasket 53. Furthermore, because the projection portion 518 is designed to be around the lower limit of the crimping height dimension, it is possible to prevent the breakage of the crimped part of the header tank 5 even when the excessive crimp occurs.
Next, the eighth embodiment of the present invention will be described with reference to
As shown in
The shroud 102 has a shroud projection portion 103 formed at a part on a vehicle rear side of the heat exchanger 1, and the shroud projection portion 103 projects toward a vehicle front side. The shroud projection portion 103 is provided to face a part of the core unit 4 of the heat exchanger 1, which part is located in the vicinity of the header tank 5. In the present embodiment, the shroud projection portion 103 is formed integrally with the shroud 102.
Due to the above, in a case, where the fins 3 that is blazed to the dummy tube 23 corrode or fall off, even if the dummy tube 23 that is not received within the core plate 5125 ’ may be blown off toward the vehicle rear side due to pressure (ram pressure) caused by air during the vehicle running, the shroud projection portion 103 serves to support the dummy tube 23. As a result, it is possible to prevent the secondary deficiency, such as the erroneous lock of a motor of the air blower 101 caused by the interference between the air blower 101 and the dummy tube 23.
The present invention is not limited to the above embodiments, and the present invention may be modified in various manners as below provided that the modification does not deviate from the gist of the present invention.
(1) The above sixth embodiment describes an example of the configuration, in which the first gasket part 53a and the corner portion of the second gasket part 53b of the gasket 53 are made to have the rounded shape, and in which the connection gasket part 53c connects the first gasket part 53a with the second gasket part 53b over the almost entire length of the first and second gasket parts 53a, 53b in the air flow direction. However, the present invention is not limited to the above.
For example, as shown in
(2) Each of the above embodiments describes an example, in which the tubes 2 are formed in a line, or in other words, the tube insertion bores 511 a are formed in a line at the tube bonding surface 511 of the core plate 51. However, the present invention is not limited to the above. For example, as shown in
(3) The above third embodiment describes an example, in which the two partition walls 7 are provided. However, the present invention is not limited to the above, and there may be provided a single partition wall 7. In the above case, a surface on one side of the partition wall 7 constitutes the first partitioning surface, and a surface on the other side of the partition wall constitutes the second partitioning surface.
(4) In each of the above embodiments, the heat exchanger 1 of the present invention is applied to the heat exchanger that has the first radiator unit 100 and the second radiator unit 200. The first radiator unit 100 cools the engine coolant, and the second radiator unit 200 cools the electrical system coolant. However, the present invention is not limited to the above. However, it is needless to say that, in general, the present invention may be widely applicable to a heat exchanger that has multiple heat exchanger units.
(5) Each of the above embodiments describes an example, in which the dummy tube 23 is provided between the first tubes 21 and the second tubes 22. However, the present invention is not limited to the above, and the dummy tube 23 may not be provided.
(6) The above first embodiment describes an example, in which the single gasket 53 includes a part that seals between the first main body segment 52a and the core plate 51 and also includes a part that seals between the second main body segment 52b and the core plate 51. In other words, the single gasket 53 integrally includes a gasket that seals between the first main body segment 52a and the core plate 51 and a gasket that seals between the second main body segment 52b and the core plate 51. However, the present invention is not limited to the above. For example, alternatively, the gasket that seals between the first main body segment 52a and the core plate 51 may be configured separately from the gasket that seals between the second main body segment 52b and the core plate 51.
(7) Each of the above embodiments may be combined as required if possible.
Additional advantages and modifications will readily occur to those skilled in the art. The invention in its broader terms is therefore not limited to the specific details, representative apparatus, and illustrative examples shown and described.
Number | Date | Country | Kind |
---|---|---|---|
2009-254941 | Nov 2009 | JP | national |