This application is based on Japanese Patent Application No. 2013-244749 filed on Nov. 27, 2013 and Japanese Patent Application No. 2014-179461 filed on Sep. 3, 2014, the disclosure of which is incorporated herein by reference.
The present disclosure relates to a heat exchanger.
Conventionally, a header tank of a heat exchanger such as a radiator is configured by integrally coupling a core plate that is made of metal and connects with each of tubes and a tank body that is made of resin and defines a space in the header tank. A gasket (i.e., a sealing member) that is made of an elastic material such as rubber is disposed between the core plate and the tank body. The gasket seals between the core plate and the tank body by being compressed by the core plate and the tank body.
Specifically, the core plate has a tube connection surface to which the tubes are connected and a groove that is formed in an outer periphery of the tube connection surface. A tip portion of the tank body on a side adjacent to the core plate is inserted to the groove of the core plate. The tank body is fixed to the core plate by crimping in a condition where the gasket is disposed between the groove of the core plate and the tip portion of the tank body.
According to such a heat exchanger, the groove is provided in the core plate. Accordingly, a length of the core plate in a flow direction of external fluid (i.e., air) becomes longer for the groove. Thus, a length of the heat exchanger as a whole in an airflow direction may become longer. Hereafter, the airflow direction will be referred to as a dimension in a width direction.
On the other hand, a heat exchanger in which the groove of the core plate is omitted to decrease the dimension in the width direction is disclosed (for example, refer Patent Literature 1). Specifically, according to a heat exchanger described in Patent Literature 1, a gasket is directly arranged on the tube connection surface of the core plate that is connected in a condition where the tubes are inserted to the tube connection surface. An end portion of the tank body is located on the gasket. The tank body is fixed to the core plate by crimping in a condition where the gasket is disposed between the tube connection surface of the core plate and the tip portion of the tank body.
Patent Literature 1: WO 2011/061085 A1
However, according to studies conducted by the inventors of the present disclosure, the gasket is directly arranged on the tube connection surface of the core plate in the heat exchanger described in Patent Literature 1. As a result, when the tank body is fixed to the core plate by crimping, the gasket may be displaced.
The present disclosure addresses the above issue, and it is an objective of the present disclosure to provide a heat exchanger in which a displacement of a sealing member can be suppressed, and a dimension of the heat exchanger in a width direction can be small.
A heat exchanger of a first aspect of the present disclosure has tubes and a header tank. The tubes are arranged side by side, and fluid flows in the tubes. The header tank is located at an end of the tubes in a longitudinal direction, extends in a direction in which the tubes are arranged, and communicates with the tubes. The header tank has a core plate to which the tubes are connected and a tank body that is fixed to the core plate. The tank body is fixed to the core plate by crimping. The core plate has a tube connection surface, a sealing surface, and an inclined surface. A sealing member that is elastically deformable is disposed to the sealing surface. The inclined surface connects the tube connection surface and the sealing surface with each other. A distance between the tube connection surface and an end surface of the tubes in the longitudinal direction is different from a distance between the sealing surface and the end surface in the longitudinal direction by disposing the inclined surface to incline with respect to the longitudinal direction. The tubes connect to the tube connection surface and the inclined surface in a condition of being inserted to the tube connection surface and at least a part of the inclined surface.
Alternatively, according to a heat exchanger of a second aspect of the present disclosure, a distance between the tube connection surface and an end surface of the tubes in the longitudinal direction may be shorter than a distance between the sealing surface and the end surface in the longitudinal direction.
A displacement of the sealing member can be suppressed because the distance between the tube connection surface and the end surface of the tubes in the longitudinal direction is different from the distance between the sealing surface and the end surface in the longitudinal direction.
Furthermore, a dimension of the tube connection surface in the width direction can be small by connecting the tubes with the tube connection surface and the inclined surface in a condition of being inserted to the tube connection surface and the inclined surface. Therefore, a dimension of the header tank in the width direction can be small. Thus, a dimension of the heat exchanger in the width direction can be small while being suppressing the displacement of the sealing member.
Embodiments of the present disclosure will be described hereafter referring to drawings. In the embodiments, a part that corresponds to or equivalents to a matter described in a preceding embodiment may be assigned with the same reference number.
A first embodiment of the present disclosure will be described hereafter referring to drawings. In the present embodiment, an example in which a heat exchanger of the present embodiment is used for a radiator for a vehicle that performs a heat exchange between an engine cooling water and air to cool the engine cooling water will be described.
As shown in
The tubes 2 are a pipe in which fluid flows. In the present embodiment, the fluid means the engine cooling water. The tubes 2 are formed to have a flat shape such that a longitudinal direction of the tubes 2 coincides with a flow direction of the fluid. The tubes 2 are arranged side by side in a direction (i.e., an arrangement direction) perpendicular to the longitudinal direction to be parallel with each other, such that the longitudinal direction coincides with a horizontal direction. In the following description, the direction in which the tubes 2 are arranged side by side will be referred to as the arrangement direction.
Each of the fins 3 is formed to have a corrugated shape and connected to a flat surface of the tubes 2 on both sides of the tube 2. The fins 3 promote a heat exchange between air and the engine cooling water flowing in the tubes 2 by increasing a heat transfer area that is in contact with the air.
The header tank 5 is located on each side of the tubes 2 in the longitudinal direction and extends in the longitudinal direction to communicate with the tubes 2. According to the present embodiment, one header tank 5 is arranged on each end portion of the tubes 2 in the longitudinal direction. The header tank 5 has a core plate 51 and a tank body 52. The core plate 51 is connected with the tubes 2 in a condition where the tubes 2 are inserted to the core plate 51. The tank body 52 configures a tank space together with the core plate 51.
A side plate 6 that reinforces the core part 4 is disposed in each end portion of the core part 4 in the arrangement direction. The side plate 6 extends in the longitudinal direction, and both end portions of the side plate 6 are connected to the pair of header tanks 5 respectively.
Hereafter, a direction perpendicular to both the longitudinal direction of the tubes 2 and the arrangement direction will be referred to as a width direction. The width direction is parallel with an airflow direction.
A configuration of the header tank 5 will be described in detail referring to
As shown in
The tank body 52 is fixed to the core plate 51 by crimping in a condition where the gasket 53 is disposed between the core plate 51 and the tank body 52. Specifically, the tank body 52 is crimped such that crimping click portions 516 of the core plate 51 described after are plastically deformed to push against the tank body 52. The gasket 53 of the present embodiment is made of rubber that is elastically deformable. More specifically, the gasket 53 of the present embodiment is made of ethylene-propylene-diene rubber (EPDM).
As shown in
According to the present embodiment, the inclined surface 513 inclines with respect to each of the tube connection surface 511 and the sealing surface 512. In other words, the inclined surface 513 inclines with respect to the longitudinal direction. Specifically, each of an angle between the sealing surface 512 and the inclined surface 513 and an angle between the tube connection surface 511 and the inclined surface 513 is an obtuse angle.
As shown in
The tube connection surface 511 and the inclined surface 513 are provided with tube insert holes (not shown) that are arranged one after another in the arrangement direction. The tubes 2 are inserted to the tube insert holes and brazed thereto respectively. The tubes 2 connect to the tube connection surface 511 and the inclined surface 513 in a condition of being inserted to the tube connection surface 511 and the inclined surface 513. The tube 2 may be inserted to the tube connection surface 511 and at least a part of the inclined surface 513.
The tube connection surface 511 and the inclined surface 513 are provided further with side-plate insert holes (not shown) to which the side plates 6 are inserted and brazed respectively. One side plate 6 is provided on each of one end side and the other end side of both the tube connection surface 511 and the inclined surface 513 in the arrangement direction. The side plates 6 connect to the tube connection surface 511 and the inclined surface 513 in a condition of being inserted to the tube connection surface 511 and the inclined surface 513 through the side-plate insert holes respectively.
The core plate 51 has an outer wall 515 that is bent toward a side opposite to the core part 4 from the sealing surface 512 at generally right angle and extends in the arrangement direction or the airflow direction.
A rib 518 that has a surface parallel with the longitudinal direction is disposed between adjacent two of the tubes 2 in the inclined surface 513 of the core plate 51. The surface that is parallel with the longitudinal direction and has the rib 518 will be referred to as a parallel surface 517. According to the present embodiment, the parallel surface 517 is perpendicular to the airflow direction. An angle between the parallel surface 517 and the sealing surface 512 is generally a right angle. The rib 518 is formed to protrude outward from the header tank 5.
As shown in
The tank body 52 has a flange portion 522, a thickness at which is larger than a thickness at other positions of the tank body 52, at a location facing a position between adjacent two of the tubes 2, in other words, at a location where the bulge portions 521 are not provided. The flange portion 522 is arranged on the sealing surface 512 of the core plate 51 through the gasket 53.
The core plate 51 has the crimping click portions 516. The crimping click portions 516 protrude toward the tank body 52 from the outer wall 515. Each of the crimping click portions 516 is located at a location corresponding to a position between adjacent two of the tubes 2 in the core plate 51, in other words, at a location corresponding to a position of the flange portion 522 of the tank body 52. As shown in
As shown in
As described above, according to the present embodiment, the core plate 51 has the tube connection surface 511 and the sealing surface 512. The distance between the tube connection surface 511 and the tube end surface 20 in the longitudinal direction is different from the distance between the sealing surface 512 and the tube end surface 20 in the longitudinal direction. That is, in the core plate 51 of the present embodiment, a surface (i.e., the tube connection surface 511) to which the tubes 2 are inserted and connected and a surface (i.e., the sealing surface 512) on which the gasket 53 is arranged are not located on the same flat surface. When the core plate 51 is crimped against the tank body 52, the header tank 5 is in contact with the inclined surface 513 of the core plate 51 and retained. As a result, an interference with the tubes 2 can be suppressed.
Furthermore, a displacement of the gasket 53 can be suppressed since the gasket 53 is in contact with the inclined surface 513 when the core plate 51 is crimped against the tank body 52. Specifically, the displacement of the gasket 53 can be suppressed more accurately by providing the sealing surface 512 between the inclined surface 513 and the outer wall 515.
In addition, according to the present embodiment, the tubes 2 are connected to both the tube connection surface 511 and the inclined surface 513 in the condition of being inserted to both the tube connection surface 511 and the inclined surface 513. Therefore, a dimension of the tube connection surface 511 in the width direction becomes small, and a dimension of the header tank 5 in the width direction can be small. As a result, a dimension of the radiator 1 in the width direction can be small.
Here, according to the heat exchanger of Patent Literature 1, the flange portion 522 of the tank body 52 is located on the tube connection surface 511 of the core plate 51. Therefore, when the tank body 52 is arranged on the core plate 51 in a manufacturing process of the header tank 5, the flange portion 522 may be in contact with the tubes 2, and the tubes 2 may be damaged. Further, the tank body 52 may deform toward an inside of the header tank 5 when the core plate 51 is crimped against the tank body 52, and the tubes 2 may be damaged.
On the other hand, according to the present embodiment, the core plate 51 has the rib 518 having the parallel surface 517 parallel with the longitudinal direction at a location corresponding to the position between adjacent two of the tubes 2 in the inclined surface 513. Accordingly, when the tank body 52 is assembled to the core plate 51, the flange portion 522 of the tank body 52 is in contact with the parallel surface 517 of the rib 518 in the core plate 51. Thus, the flange portion 522 can be prevented from being in contact with the tubes 2.
According to the present embodiment, the tank body 52 and the core plate 51 are fixed to each other by crimping in a condition where the flange portion 522 of the tank body 52 is in contact with the parallel surface 517 of the rib 518 provided with the core plate 51. Therefore, when the core plate 51 is crimped against the tank body 52, the tank body 52 can be prevented from deforming toward the inside of the header tank 5.
Thus, according to the radiator 1 of the present embodiment, the tubes 2 can be certainly prevented from being damaged.
Further, the flange portion 522 of the tank body 52 is in contact with the parallel surface 517 by providing the rib 518 that has the parallel surface 517 parallel with the longitudinal direction at a location corresponding to the position between adjacent two of the tubes 2 in the inclined surface 513 of the core plate 51. Accordingly, the tank body 52 can be retained certainly when the flange portion 522 is arranged on the core plate 51 and when the core plate 51 is crimped against the tank body 52.
A second embodiment of the present disclosure will be described hereafter referring to drawings. According to the second embodiment, a configuration around tube insert holes of the core plate 51 is different as compared to the above-described first embodiment.
As shown in
As shown in
Hereafter, a portion of the burring part 520 that is connected to the tube connection surface 511, in other words, that faces the tube connection surface 511 will be referred to as a first burring portion (i.e., a first portion) 520a. A portion of the burring part 520 that is connected to the inclined surface 513, in other words, that faces the inclined surface 513 will be referred to as a second burring portion (i.e., a second portion) 520b. The first burring portion 520a and the second burring portion 520b are formed integrally.
As shown in
As described above, according to the present embodiment, the tube insert holes 519 has the periphery that is provided with the burring part 520 protruding toward the tube end surface 20 in the longitudinal direction. Therefore, strength in a connection part between the core plate 51 and the tubes 2 can be improved, and a thermal distortion resistance (i.e., resistance against thermal distortion) can be improved.
As shown in
According to the present embodiment, the length Lb, in the longitudinal direction, of the second burring portion 520b connected to the inclined surface 513 is larger than the length La, in the longitudinal direction, of the first burring portion 520a connected to the tube connection surface 511. Accordingly, a length of the second burring portion 520b in the longitudinal direction corresponding to the maximum thermal distortion occurring part C becomes longer, and the thermal distortion resistance in the maximum thermal distortion occurring part C can be improved.
A third embodiment of the present disclosure will be described hereafter referring to drawings. According to the third embodiment, configurations of the core plate 51 and the tank body 52 are different as compared to the above-described first embodiment.
As shown in
As shown in
Therefore, when the tubes 2 are viewed in the arrangement direction, the outer end 22 of the tube 2, the outer end 530a of the rib 530, and the inner end 512a of the sealing surface 512 are arranged in this order from an inner side to an outer side in the width direction.
Further, according to the present embodiment, the outer end 530a of the rib 530 is located on an outer side of the inner end 512a of the sealing surface 512 in the longitudinal direction (i.e., on an outer side of the core part 4). Therefore, in the core plate 51, a stepped portion 540 is provided between the inclined surface 513 and the sealing surface 512. The outer end 530a of the rib 530 is located on an inner side of the stepped portion 540 in the width direction.
As shown in
Each of the protruding portions 523 of the corrugated portion 525 is located between adjacent two of the tubes 2. A distance between one of the protruding portions 523 and another one of the protruding portions 523 that faces the one of the protruding portions 523 in the width direction is shorter than a length of the tube 2 in the width direction. That is, an inner width of the tank body 52 defined by the protruding portions 523 is shorter than the length of the tube 2 in the width direction. The inner width of the tank body 52 is a length of the inside of the tank body 52 in the width direction.
Each of the recessed portions 524 of the corrugated portion 525 is located on an outer side of the tubes 2 in the width direction. The outer end 22 of the tubes 2 in the width direction is housed inside of the recessed portion 524. That is, the outer end 22 of the tube 2 in the width direction is located inside of the recessed portion 524. The recessed portions 524 have an inner surface having a curved shape (i.e., an ark shape in cross section).
As described above, according to the present embodiment, the outer end 530a of the rib 530 is located on the outer side of the outer end 22 of the tube 2 in the width direction. Accordingly, strength at the connection part C between the inclined surface 513 of the core plate 51 and the outer end 22 of the tubes 2 in the width direction (i.e., the airflow direction) can be improved. Therefore, in the connection part between the core plate 51 and the tubes 2, a thermal distortion resistance in the maximum thermal distortion occurring part C can be improved certainly.
According to the present embodiment, the inner end 512a of the sealing surface 512 is located on the outer side of the outer end 530a of the rib 530 in the width direction. Accordingly, as shown in
Furthermore, according to the present embodiment, the stepped portion 540 is formed between the inclined surface 513 and the sealing surface 512 in the core plate 51, and the outer end 530a of the rib 530 is located on the inner side of the stepped portion 540 in the width direction. Accordingly, since the core plate 51 has different strengths by the stepped portion 540, the core plate 51 can be more easily bent at the stepped portion 540 when the thermal distortion occurs.
When the inner end 512a of the sealing surface 512 is located on the inner side of the outer end 530a of the rib 530 in the width direction, strength of the inner end 512a of the sealing surface 512 is improved by the rib 530. Therefore, when the thermal distortion occurs, the core plate 51 is hardly bent at the inner end 512a of the sealing surface 512.
Further, according to the present embodiment, the inner surface of the recessed portion 524 has a curved shape. Accordingly, stress can be prevented from concentrating in the recessed portions 524, and pressure resistance of the header tank 5 can be improved. In addition, by providing the recessed portions 524 in the inner surface of the tank body 52, the bulge portions 521 corresponding to the recessed portions 524 are not necessary to be provided in the outer surface of the tank body 52. Therefore, the outer surface of the tank body 52 can be formed in a flat shape, and designing flexibility for the crimping click portions 516 of the core plate 51 can be improved.
It should be understood that the present disclosure is not limited to the above-described embodiments and intended to cover various modification within a scope of the present disclosure as described hereafter. Technical features disclosed in the above-described embodiments may be combined as required in a feasible range.
(1) In the above-described embodiments, an example that an angle between the sealing surface 512 and the inclined surface 513 is a obtuse angle is described. However, the angle between the sealing surface 512 and the inclined surface 513 may be a right angle. That is, the inclined surface 513 may be perpendicular to the sealing surface 512.
(2) In the above-described embodiments, an example that the tube connection surface 511 is entirely parallel with the sealing surface 512 is described. However, a part of the tube connection surface 511, for example, a center portion of the tube connection surface 511 in the width direction of the header tank 5 may be parallel with the sealing surface 512.
(3) In the above-described embodiments, an example that the heat exchanger of the present disclosure is used for the radiator 1 is described. However, the heat exchanger of the present disclosure may be able to be used for another heat exchanger such as an evaporator or a refrigerant radiator (i.e., a refrigerant condenser).
(4) In the above-described embodiments, the gasket 53 is configured separately from the core plate 51 and the tank body 52 is described. However, a configuration of the gasket 53 is not limited to the example. For example, the gasket 53 is coupled with one of the core plate 51 and the tank body 52 by gluing or is formed integrally with one of the core plate 51 and the tank body 52.
(5) In the above-described embodiments, an example that the crimping click portions 516 of the core plate 51 are bent and crimped against the flange portion 522 of the tank body 52 is described. However, a fixing configuration of the core plate 51 by crimping is not limited to the example. For example, a slit may be formed in a part of the outer wall 515 of the core plate 51. In this case, the slit is deformed plastically in the airflow direction to engage with a protruding portion and a recessed portion formed in the flange portion 522 of the tank body 52, such that the core plate 51 is fixed by being crimped against the tank body 52.
Number | Date | Country | Kind |
---|---|---|---|
2013-244749 | Nov 2013 | JP | national |
2014-179461 | Sep 2014 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2014/005793 | 11/19/2014 | WO | 00 |