This application is the U.S. national phase of International Application No. PCT/GB2018/052194 filed 1 Aug. 2018, which designated the U.S. and claims priority to GB Patent Application No. 1712575.8 filed 4 Aug. 2017, the entire contents of each of which are hereby incorporated by reference.
The present technique relates to the field of heat exchangers.
A heat exchanger may include a number of fluid flow channels through which fluid can flow so that heat may be exchanged by the fluid in respective channels of the heat exchanger. Heat exchangers can be useful for a range of applications, for example as a recuperator for recovering heat from exhaust gas from an internal combustion engine or gas turbine, or in other applications such as power generation or ventilation systems.
At least examples provide a heat exchanger comprising: a plurality of fluid flow channels; at least one of the fluid flow channels comprising at least one heat exchanging surface comprising at least one undulating surface section extending along at least part of a length of the channel, wherein the at least one heat exchanging surface comprises a secondary surface of the heat exchanger; wherein for each undulating surface section: along a first edge of the undulating surface section aligned with a predetermined direction, a profile of the heat exchanging surface varies according to a first transverse wave with a direction of travel corresponding to the predetermined direction; along a second edge of the undulating surface section aligned with the predetermined direction, a profile of the heat exchanging surface varies according to a second transverse wave with a direction of travel corresponding to the predetermined direction; and at an intermediate portion of the undulating surface section lying between the first edge and the second edge, a profile of the heat exchanging surface varies according to a third transverse wave with a direction of travel corresponding to the predetermined direction; wherein said third transverse wave has at least one of different phase, different amplitude and different frequency to at least one of said first transverse wave and said second transverse wave, to provide one or more chevron-shaped ridges or valleys in the undulating surface section.
At least some examples provide a method of manufacturing a heat exchanger comprising: forming a plurality of fluid flow channels; at least one of the fluid flow channels comprising at least one heat exchanging surface comprising at least one undulating surface section extending along at least part of a length of the channel, wherein the at least one heat exchanging surface comprises a secondary surface of the heat exchanger; wherein for each undulating surface section: along a first edge of the undulating surface section aligned with a predetermined direction, a profile of the heat exchanging surface varies according to a first transverse wave with a direction of travel corresponding to the predetermined direction; along a second edge of the undulating surface section aligned with the predetermined direction, a profile of the heat exchanging surface varies according to a second transverse wave with a direction of travel corresponding to the predetermined direction; and at an intermediate portion of the undulating surface section lying between the first edge and the second edge, a profile of the heat exchanging surface varies according to a third transverse wave with a direction of travel corresponding to the predetermined direction; wherein said third transverse wave has at least one of different phase, different amplitude and different frequency to at least one of said first transverse wave and said second transverse wave, to provide one or more chevron-shaped ridges or valleys in the undulating surface section.
At least examples provide a system comprising a combustor to generate heat by combusting a fuel, and a recuperator to recover heat from the exhaust gas output by the combustor, where the recuperator comprises of the heat exchanger as discussed above.
At least some examples provide a computer-readable data structure representing a design of a heat exchanger as discussed above. The data structure may be stored on the storage medium. The storage medium may be a non-transitory storage medium.
Further aspects, features and advantages of the present technique will be apparent from the following description of examples, which is to be read in conjunction with the accompanying drawings, in which:
A heat exchanger has a number of fluid flow channels. Fluid can flow through the channels and exchange heat with fluid flowing through neighbouring channels. In some examples, the heat exchanger may comprise alternating channels for flow of the first and the second fluid so that the first and second fluids may exchange heat. However, there may be tendency for fluid flowing through a given channel to stick to the walls of the channel so that there may not be a significant amount of mixing between the fluid adjacent to the walls of the channel and fluid at the centre of the channel further from the walls. This can reduce the effectiveness of the heat exchanger as there is less opportunity for the fluid in the centre of the channel to exchange heat through the boundaries of the channel with the fluid in neighbouring channels.
In the heat exchanger described below, at least one of the fluid flow channels includes at least one heat exchanging surface which has at least one undulating surface section extending along at least part of a length of the channel. For each undulating surface section, along a first edge of the undulating surface section aligned with a predetermined direction, a profile of the heat exchanging surface varies according to a first transverse wave with a direction of travel corresponding to a predetermined direction; along a second edge of the undulating surface section aligned with the predetermined direction, a profile of the heat exchanging surface varies according to a second transverse wave with a direction of travel corresponding to the predetermined direction; and at an intermediate portion of the undulating surface section lying between the first edge and the second edge, a profile of the heat exchanging surface varies according to a third transverse wave with a direction of travel corresponding to the predetermined direction. The third transverse wave has at least one of different phase, different amplitude and different frequency to at least one of the first transverse wave and the second transverse wave, to provide one or more chevron-shaped ridges or valleys in the undulating surface section.
Hence, the undulating surface section has a wavy surface profile and the wave at an intermediate portion of the undulating surface section has at least one of different phase, different amplitude and different frequency to at least one of the first and second transverse waves at the edges of the undulating surface section. This means that one or more chevron-shaped ridges or valleys are provided in the undulating surface section. These chevron-shaped ridges and valleys help to guide the fluid flow away from the heat exchanging surface and promote mixing of the fluid within the fluid flow channel, so that it is less likely that a certain volume of fluid stays at the centre of the channel all the way along the length of the channel. The heat transfer is enhanced because the flow passes over the concave surfaces of the valleys to form counter-rotating vortices on the respective sides of the apex of the chevron-shapes, which generates local zones of flow separation and re-attachment. Unlike a surface where the profile of the surface follows the same wave profile all the way across the surface in the direction perpendicular to the predetermined direction, by making the third transverse wave have a different form to the first and third transverse waves and forming the chevron-shaped ridges and valleys, lower pressure drop can be achieved and the efficiency of heat exchange improved. While making a surface with such a wavy profile can be challenging using conventional means such as casting or moulding, by using additive manufacture it is possible to manufacture intricately patterned surfaces. Hence, a heat exchanger with at least one channel having the undulating surface section as discussed above provides better heat exchange properties, and is practical to manufacture.
In some examples the first and second transverse waves may have different phase, different amplitude and/or different frequency. This provides a high degree of freedom in controlling the surface profile of the undulating surface section.
However, in other examples the first transverse wave may have the same phase, amplitude and frequency as the second transverse wave. Hence, the surface profile at the edges of the undulating surface section may vary in the same manner along the predetermined direction, but there is a different transverse wave pattern of variation of the surface profile at the intermediate portion.
In one example the third transverse wave may be out of phase with at least one of the first transverse wave and the second transverse wave. Hence, the apex of the chevron-shaped ridges or valleys occurs at a different position along the predetermined direction at the intermediate portion of the undulating surface section than at the edges. This results in chevron-shaped ridges which point in the predetermined direction or in the opposite direction to the predetermined direction, which has been found to be an effective surface profile for promoting cyclic re-circulation patterns to promote mixing of fluid.
In another example the third transverse wave may have a different frequency to at least one of the first and second transverse waves. Hence, the surface may have a greater or smaller number of ridges or valleys at the centre of the undulating surface section compared to the edges.
In another example the third transverse wave may have a different amplitude to at least one of the first and second transverse waves. Hence, the difference between the depth of the valleys and height of the ridges at the intermediate portion of the undulating surface section can be greater or smaller than the difference between the ridge height and valley depth at the edges of the undulating surface section. Again, this results in chevron-shaped ridges and valleys extending across the undulating surface section which helps to promote the mixing of fluid.
In some examples each of the first, second and third transverse waves may have the same waveform. However it is also possible for the third transverse wave to have a different waveform to at least one of the first and second transverse waves. A number of different waveforms could be used, but particularly useful waveforms may include a sinusoidal wave or a triangle wave. Sinusoidal or triangle waves are useful they avoid sharp changes in level which makes it easier to manufacture the undulating surface section through additive manufacturing techniques (as additive manufacture may impose a limitation that it is not possible for an upper layer to be built on a lower layer of material if the upper layer overhangs by more than a certain threshold angle). Nevertheless, other waveforms could also be used. The waveforms of the first, second and third transverse waves need not be regular, e.g. they could be superposition of a set of harmonics or components. For example in some cases the first, second or third transverse waves may include waveforms which have the period from one peak to the next trough different to the period from one trough to the next peak, or which have multiple peaks/troughs per cycle at irregular intervals within the cycle.
In some examples an apex of the chevron-shaped ridges or values lies halfway between the first edge and the second edge. Hence, the chevrons may be symmetrical so that there are equal sized portions of the chevron on either side of the apex at the midpoint of the first and second edges. Alternatively, at least one of the chevron-shaped ridges or valleys may have an apex lying closer to one of the first edge and the second edge than the other. In this case the chevrons may be asymmetric as the portion on one side of the apex may be larger than the portion on the other.
Some fluid flow channels may have a single undulating surface section as discussed above, disposed across the width of the channel. However it is also possible for multiple such undulating surface sections to be disposed side by side within the heat exchanging surface, with the first edge of one undulating surface section adjacent to the second edge of another undulation surface section. In this case the chevron-shaped ridges of the adjacent undulating surface sections could join up to form a W-shaped ridge or a zigzag-shaped ridge. Alternatively, the chevrons of adjacent undulating surface sections may be out of phase with one another, in which case a number of distinct chevrons may be provided going across the undulating surface section in a direction orthogonal to the predetermined direction, with the chevrons not linking up in adjacent undulating surface sections as they are disposed at different locations along the predetermined direction for different undulating surface sections within the heat exchanging surface.
The at least one heat exchanging surface may have a substantially constant thickness in the at least one undulating surface section. Hence, even though the surface profile of the undulating surface section varies in the wave pattern discussed above, the thickness still remains the same (within bounds of manufacturing tolerance) regardless of the point of the wave at which are given point on the surfaces located. This can be useful for ensuring a consistent thermal conductance across the undulating surface so that the wave like surface of the heat exchanger surface provided to promote fluid mixing does not compromise the ability to conduct heat through the walls of the channel.
In some cases, the undulating heat exchanging surface may comprise the wall of the fluid flow channel in which the heat exchanging surface is provided. Alternatively, the heat exchanging surface could be an internal fin which partially sub-divides a given fluid flow channel. The internal fins need not pass along the entire length of the heat exchanging channel. Instead the internal fin may extend along less than a full length of the heat exchanging channel in the predetermined direction. If multiple fins are provided then these could be placed at offset locations along the length of the channel, with gaps in-between. In some cases the lateral positions of the internal fins in the channel in a direction orthogonal to the predetermined direction could be offset or staggered.
The predetermined direction corresponds to the direction of fluid flow of fluid through the fluid flow channels. For example the fluid flow direction may correspond to the long axis of the fluid flow channels. Note that the fluid flow channels could in some embodiments correspond to straight channels, but could also be bent or follow a tortuous path or a path bending around a turn, and so in some cases the fluid flow direction may not be straight but may follow a curved path. In this case the first, second and third transverse waves may also follow the curve path. By orienting the first, second and third transverse waves such that they have a direction of travel that corresponds to the fluid flow direction, this provides greater heat exchanger efficiency as this means that the fluid passing through the channels alternates across the chevron-shaped ridges and valleys in the undulating surface section and this promotes re-circulation of the fluid at periodic intervals along the channel length making it less likely that a given volume of fluid remains far from any surface by which heat can be conducted to fluid in adjacent channels.
The heat exchanger may comprise of an integrated mass of consolidated material, for example made by additive manufacture. This contrasts with heat exchangers where the respective channels are manufactured from a number of separate components. Hence, the fluid flow channels, including at least one heat exchanging surface having the undulating surface section, may be formed together as one entity from a single body of material.
The heat exchanger described above can be used in a range of engineering systems. However it can be particularly useful for a system comprising a combustor for generating heat by combusting a fuel and a recuperator for recovering heat from exhaust gas output by the combustor. The recuperator may comprise the heat exchanger as discussed above. Compactness can often be an important requirement for such systems. By improving the heat exchanger efficiency, the heat exchanger can often be made smaller as shorter channels may be sufficient to provide a given amount of heat exchange.
For example the heat exchanger can be formed by additive manufacture. In additive manufacture, an article may be manufactured by successively building up layer after layer of material in order to produce an entire article. For example the additive manufacture could be by selective laser melting, selective laser centring, electron beam melting, etc. The material used for the heat exchanger can vary, but in some examples may be a metal, for example aluminium, titanium or steel or could be an alloy. In some cases the heat exchanger may be formed in one single process whereby the layers making up the respective parts of the heat exchanger may be laid down successfully by additive manufacture.
The additive manufacture process may be controlled by supplying an electronic design file which represents characteristics of the design to be manufactured, and inputting the design file to a computer which translates the design file into instructions supplied to the manufacturing device. For example, the computer may slice a three-dimensional design into successive two-dimensional layers, and instructions representing each layer may be supplied to the additive manufacture machine, e.g. to control scanning of a laser across a powder bed to form the corresponding layer. Hence, in some embodiments rather than providing a physical heat exchanger, the technique could also be implemented in a computer-readable data structure (e.g. a computer automated design (CAD) file) which represents the design of a heat exchanger as discussed above. Thus, rather than selling the heat exchanger in its physical form, it may also be sold in the form of data controlling an additive manufacturing machine to form such a heat exchanger. A storage medium may be provided storing the data structure.
The exhaust gas from the combustor 306 having driven the turbine 310 is passed to the recuperator 4 which comprises a heat exchanger with alternating channels for the exchange of heat between first and second fluids. The heat in the exhaust gas is used to pre-heat the compressed air intake for the combustor so that the air is at a higher temperature upon entering the combustor and so the combustion efficiency of the combustor 306 can be improved. Having passed through the recuperator 4, the exhaust gas still contains some heat which can be recovered for example to heat the domestic water supply or central heating within the home at heating element 314, and then the exhaust gas is exhausted to the outside at vent 316. The combustor intake air entering the recuperator 4 is at higher pressure than the exhaust gas from the combustor 306 and turbine 310, since the intake air has been compressed by the compressor 308 and the exhaust gas has been expanded by the turbine 310.
Of course, it will be appreciated that
In this example the hot channels and cold channels are separated by primary channel walls 8 which extend along the Y axis shown in
While
As described above, a primary surface separates two different fluids, such as a hot channel from a cold channel, whilst a secondary surface separates two channels containing the same fluid, for example where the two channels contain the hot fluid or the two channels contain the cold fluid. Due to the difference in fluid properties on either side of a primary surface, such as temperature and pressure, compared to a secondary surface, the primary surfaces are required to be stronger and more robust than the secondary surfaces. For example, primary surfaces may have a greater wall thickness than secondary surfaces.
As shown in
More particular, for each undulating section of the secondary heat exchanging surface 10, at a first edge E1 of the undulating section which is aligned with the predetermined direction (Z axis), the surface profile varies according to a first transverse wave 20 with a direction of travel corresponding to the predetermined direction. Similarly at a second edge E2 aligned with the predetermined direction, the profile varies according to a second transverse wave 22 with a direction travel that corresponds to the predetermined direction (Z axis, which in this example corresponds to the fluid flow direction). On the other hand, at an intermediate point I which lies between the first edge E1 and the second edge E2, the surface profile of the undulating surface section varies according to a third transverse wave 24 with a direction of travel corresponding to the predetermined direction.
In this example the first and second transverse waves 20, 22 are in phase and have the same frequency and amplitude so that the Y-position (profile) of the surface is the same at both edges E1 and E2 of the undulating surface section. On the other hand, in this example the third transverse wave 24 has the same frequency and amplitude as the first and second transverse waves but a different phase relationship. As the third transverse wave 24 is out of phase with the first and second transverse waves 20, 22, the crests and troughs of the wave occur at different positions along the Z axis (predetermined direction). Note that in order to show the relationship between the first, second and third transverse waves in a two dimensional diagram, the portion shown on the right hand side of
As shown in
As shown in
As shown in
While
As shown in
In the examples of
It is not essential for the entire surface of a given heat exchange surface 10 to have the wave-like undulating section as discussed above. In some cases only part of the secondary heat exchanging surfaces 10 may be provided with the wave-like surface and other parts may be flat.
Also, while the above example show cases where the undulating surface is in the secondary walls 10 of the heat exchanging channels (which divide different portions of the hot channels or different portions of the cold channels respectively), it is also possible to form the primary walls 8 which divide a hot channel from a cold channel with such an undulating surface section.
Also, in the examples shown above the secondary wall surfaces 10 comprise a single undulating section with a single chevron across the width of the surface. However, as shown in
Also, whilst in the examples shown above the first, second and third transverse waves which form the undulating surface have a constant frequency, amplitude and phase along the length of the undulating surface in the predetermined direction, it is possible for one or more of the frequency, amplitude and phase of the waves to vary along the length of the surface. For example, the frequency of each of the first, second and third transverse waves may decrease along the Z axis, thereby increasing the wavelength of each of the first, second and third transverse waves along the Z axis. Alternatively, or in addition, the amplitude of the each of the first, second and third transverse waves may increase along the Z axis. In another example, the frequency of the first and second transverse waves may increase along the Z axis whilst the frequency of the third transverse wave remains constant along the Z axis. Alternatively, the frequency of the first and second transverse waves may increase along the Z axis at a greater rate than the frequency of the third transverse wave. In both cases, this reduces the internal angle of the chevron-shaped ridges or valleys along the Z axis, resulting in different chevron-shaped ridges or valleys along the Z axis.
Any changes in the frequency, amplitude and phase of the first, second and/or third transverse waves along the length of the undulating surface may account for changes in the properties of the fluid in the fluid flow channels. For example, if the fluid is expected to decelerate as it flows along the z axis, the frequency of the first, second and/or third transverse waves can be increased in the z axis to ensure the same degree of fluid mixing occurs along the length of the undulating surface. In this way, the undulating surface can be tuned to the expected flow properties of the fluid in the fluid flow channels. It will be appreciated that any combination of changes in frequency, amplitude and phase of the first, second and/or third transverse waves along the Z axis may be employed in order to achieve the desired undulations in the undulating surface.
Providing the undulating surface on a secondary surface instead of a primary surfaces makes the heat exchanger easier to build using additive manufacture whilst not adversely impact the structural rigidity of the primary surface. It also allows a different undulating surface pattern to be used on a secondary surface dividing two hot fluid channels compared to a secondary surface dividing two cold fluid channels, thereby allowing pattern of each undulating surface to be tailored to the fluid properties of the particular fluid on both sides of the secondary surface, such as temperature, pressure and mass flow.
The undulating surfaces may be arranged such that a given fluid channel has an undulating surface on more than one surface of the channel. In such a case, the transverse waves making up each undulating surface may have a frequency, amplitude and/or phase that ensures that the peaks and/or troughs of a wave on one undulating surface of the fluid channel do not contact the peaks and/or troughs of a wave on another undulating surface of the fluid channel.
At step 202 the CAD file is converted to instructions for supplying to an additive manufacturing machine. The instructions control the additive manufacturing machine to deposit or form respective layers of material, which are built up layer by layer to form the overall heat exchanger. For example, the 3D design represented by the CAD file may be sliced into layers each providing a two-dimensional representation of the material to be formed in the corresponding layer.
At step 204 the converted instructions are supplied to an additive manufacturing machine which manufactures the heat exchanger as an integrated mass of consolidated material using additive manufacture. The heat exchanger can be made from various materials, e.g. metals or alloys, such as titanium or stainless steel, or a polymer for example. Various forms of additive manufacturing can be used, but in one example the additive manufacture uses selective laser melting.
In one example, a heat exchanger comprises: a plurality of fluid flow channels; at least one of the fluid flow channels comprising at least one heat exchanging surface comprising at least one undulating surface section extending along at least part of a length of the channel; wherein for each undulating surface section: along a first edge of the undulating surface section aligned with a predetermined direction, a profile of the heat exchanging surface varies according to a first transverse wave with a direction of travel corresponding to the predetermined direction; along a second edge of the undulating surface section aligned with the predetermined direction, a profile of the heat exchanging surface varies according to a second transverse wave with a direction of travel corresponding to the predetermined direction; and at an intermediate portion of the undulating surface section lying between the first edge and the second edge, a profile of the heat exchanging surface varies according to a third transverse wave with a direction of travel corresponding to the predetermined direction; wherein said third transverse wave has at least one of different phase, different amplitude and different frequency to at least one of said first transverse wave and said second transverse wave, to provide one or more chevron-shaped ridges or valleys in the undulating surface section.
In one example, a method of manufacturing a heat exchanger is provided comprising: forming a plurality of fluid flow channels; at least one of the fluid flow channels comprising at least one heat exchanging surface comprising at least one undulating surface section extending along at least part of a length of the channel; wherein for each undulating surface section: along a first edge of the undulating surface section aligned with a predetermined direction, a profile of the heat exchanging surface varies according to a first transverse wave with a direction of travel corresponding to the predetermined direction; along a second edge of the undulating surface section aligned with the predetermined direction, a profile of the heat exchanging surface varies according to a second transverse wave with a direction of travel corresponding to the predetermined direction; and at an intermediate portion of the undulating surface section lying between the first edge and the second edge, a profile of the heat exchanging surface varies according to a third transverse wave with a direction of travel corresponding to the predetermined direction; wherein said third transverse wave has at least one of different phase, different amplitude and different frequency to at least one of said first transverse wave and said second transverse wave, to provide one or more chevron-shaped ridges or valleys in the undulating surface section.
Although illustrative embodiments of the invention have been described in detail herein with reference to the accompanying drawings, it is to be understood that the invention is not limited to those precise embodiments, and that various changes and modifications can be effected therein by one skilled in the art without departing from the scope of the invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
1712575 | Aug 2017 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/GB2018/052194 | 8/1/2018 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/025793 | 2/7/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3372743 | Pall et al. | Mar 1968 | A |
4781248 | Pfeiffer | Nov 1988 | A |
20060289152 | Leuschner et al. | Dec 2006 | A1 |
20100139631 | Geskes | Jun 2010 | A1 |
20150099453 | Eleftheriou et al. | Apr 2015 | A1 |
20160305720 | Rhee et al. | Oct 2016 | A1 |
Number | Date | Country |
---|---|---|
0 014 066 | Aug 1980 | EP |
1 688 692 | Aug 2006 | EP |
2 787 316 | Oct 2014 | EP |
S46-003389 | Feb 1971 | JP |
S54-079048 | Jun 1979 | JP |
2005036086 | Apr 2005 | WO |
2007012874 | Feb 2007 | WO |
2015082348 | Jun 2015 | WO |
2017033306 | Feb 2017 | WO |
Entry |
---|
International Search Report and Written Opinion of the ISA for PCT/GB2018/052194, dated Oct. 23, 2018, 15 pages. |
Search Report for GB1712575.8, dated Jan. 23, 2018, 4 pages. |
Office Action for JP Application No. 2020-505172 dated Jul. 15, 2022 and English translation, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20210080194 A1 | Mar 2021 | US |