This application is a national stage of International Application No. PCT/KR2017/001184, filed Feb. 3, 2017, which claims the benefit of Korean Application No. 10-2016-0015076, filed Feb. 5, 2016, in the Korean Intellectual Property Office, the disclosures of which are incorporated herein by reference.
The present invention relates to a heat exchanger, and more particularly, to a heat exchanger capable of improving heat exchange efficiency by allowing a flow rate of a heating medium passing through heating medium channels, which are formed in multiple layers between a plurality of plates, to be evenly distributed.
A boiler used for providing heating or hot water is a device configured to heat a desired site or supply hot water by heating tap water or heating water (hereinafter referred to as a “heating medium”) with a heat source, wherein the boiler includes a burner configured to burn a mixture of a gas and air, and a heat exchanger configured to transfer combustion heat of a combustion gas to a heating medium.
As an example of a related art relating to a conventional heat exchanger, Korean Registered Patent No. 10-0813807 discloses a heat exchanger including a burner disposed at a central portion of the heat exchanger and a heat exchange tube wound around a circumference of the burner in the form of a coil.
The heat exchanger disclosed in the above-described Patent Document has problems in that, since the heat exchange tube is formed in a flat shape, the heat exchange tube is deformed into a rounded shape when a pressure is applied to a heat transfer medium portion, and, since the heat exchange tube is formed to be rolled up, a thickness of the heat transfer medium portion becomes thicker.
Further, since the conventional heat exchanger has a structure in which the heat exchange tube is wound around a combustion chamber in the form of a coil, heat exchange between the combustion gas and a heating medium is performed only in a local space around the heat exchanger formed in the form of a coil such that there is a disadvantage in that a heat transfer area cannot be widely secured.
In order to resolve such a problem, a plate-type heat exchanger has recently been developed in which a plurality of plates are stacked, and a heating medium channel and a combustion gas channel are formed in the plurality of stacked plates so that heat exchange between a heating medium and a combustion gas is performed.
A related art relating to the above-described plate-type heat exchanger is disclosed in Japanese Patent Application Publication No. 2006-214628. In the case of the plate-type heat exchanger disclosed in the above-described Patent Document, while a heating medium is distributed to flow to heating medium channels formed in a plurality of layers, a flow direction of the heating medium may be switched from a horizontal direction to a vertical direction, and a flow rate of the heating medium distributed to each of the plurality of layers may be unevenly distributed by inertia and a pressure of the heating medium.
As described above, when the flow rate of the heating medium is unevenly distributed in the heating medium channel of each of the plurality of layers, there are problems in that performance of heat exchange between the heating medium and a combustion gas is degraded, and noise and foreign materials are generated due to boiling of the heating medium resulting from local overheating in a region where the flow rate of the heating medium is low.
The present invention is directed to providing a heat exchanger capable of improving heat exchange efficiency by allowing a flow rate of a heating medium passing through heating medium channels, which are formed in multiple layers between a plurality of plates, to be evenly distributed.
One aspect of the present invention provides a heat exchanger including a heat exchange part in which a heating medium channel (P1), through which a heating medium flows, and a combustion gas channel (P2), through which a combustion gas combusted in a burner flows, are alternately formed adjacent to each other in a space between a plurality of plates, wherein the heat exchange part is configured in a stacked structure of a plurality of heat exchange parts, and heating medium distribution portions (124 and 154) are provided to form channels to be narrow in portions where a flow direction of the heating medium is switched in adjacently disposed heating medium channels (P1).
In accordance with a heat exchanger of the present invention, a heating medium dispersion portion is provided to form a channel to be narrow at a portion where a flow direction is switched in adjacently disposed heating medium channels so that a flow rate of the heating medium passing through heating medium channels formed in multiple layers between a plurality of plates can be evenly distributed, and thus heat exchange efficiency can be improved.
Further, a flow direction of the heating medium circulating along a circumference of a combustion chamber is formed in one direction, and thus circulation of the heating medium is smoothly performed so that a pressure drop of the heating medium is minimized and local overheating is prevented such that the heat exchange efficiency can be improved.
Furthermore, a stepped level is formed on a surface of each of a protruding portion and a recessed portion, and protrusions are configured to be brought into contact with each other at corresponding positions in a heating medium channel and a combustion gas channel so that generation of turbulent flows of the heating medium and the combustion gas is induced such that the heat exchange efficiency can be improved and, at the same time, deformation of the plurality of plates due to a pressure of fluid can be prevented and pressure resistance performance can be improved.
Hereinafter, configurations and operations for preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
Referring to
The heat exchange part 100 may have a structure in which a plurality of plates are to be upright along a longitudinal direction and are stacked from a front side to a rear side, and a plurality of heat exchange parts 100-A, 100-B, and 100-C are stacked. Therefore, the burner may be assembled by being horizontally inserted into the combustion chamber C from the front side, and thus convenience in attachment or detachment of the burner and in maintenance of the heat exchanger 1 may be improved.
For example, the plurality of plates may be configured with first to twelfth unit plates 100-1, 100-2, 100-3, 100-4, 100-5, 100-6, 100-7, 100-8, 100-9, 100-10, 100-11, and 100-12, and the first to twelfth unit plates 100-1, 100-2, 100-3, 100-4, 100-5, 100-6, 100-7, 100-8, 100-9, 100-10, 100-11, and 100-12 are configured with first plates 100a-1, 100a-2, 100a-3, 100a-4, 100a-5, 100a-6, 100a-7, 100a-8, 100a-9, 100a-10, 100a-11, and 100a-12, which are disposed at front positions of the first to twelfth unit plates 100-1, 100-2, 100-3, 100-4, 100-5, 100-6, 100-7, 100-8, 100-9, 100-10, 100-11, and 100-12, respectively, and second plates 100b-1, 100b-2, 100b-3, 100b-4, 100b-5, 100b-6, 100b-7, 100b-8, 100b-9, 100b-10, 100b-11, and 100b-12, which are stacked in rear of the first plates 100a-1, 100a-2, 100a-3, 100a-4, 100a-5, 100a-6, 100a-7, 100a-8, 100a-9, 100a-10, 100a-11, and 100a-12, respectively.
A heating medium channel P1, through which a heating medium flows, is formed between a first plate and a second plate constituting each unit plate, and a combustion gas channel P2, through which a combustion gas flows, is formed between a second plate constituting one unit plate, which is disposed at one side, among adjacently stacked unit plates and a first plate constituting another unit plate, which is disposed at the other side, thereamong. The heating medium channel P1 and the combustion gas channel P2 are alternately formed adjacent to each other between the plurality of plates to allow heat exchange between the heating medium and the combustion gas.
Referring to
The second plate includes a second flat surface 140 having a second opening A2 formed at a central portion thereof to correspond to the first opening A1 in a front-rear direction and configured to be brought into contact with the first flat surface 110, a recessed portion 150 formed to protrude from the second flat surface 140 to the rear side, having sections being communicated a circumferential direction, and configured to form the heating medium channel P1 between the protruding portion 120 and the recessed portion 150, and a second flange 160 extending from an edge of the second flat surface 140 to the rear side and configured to be coupled to a first flange 130 of a unit plate disposed next to the second plate.
In
Referring to
A configuration for a unidirectional flow of the heating medium will be described below.
Referring to
At one side of an upper portion of the first plate 100a-1 disposed at a foremost position, a first blocked portion H1′ is formed at a position corresponding to the first through-hole H1, and the heating medium outlet 101 is formed at a position corresponding to the second through-hole H2.
At one side of an upper portion of the second plate 100b-12 disposed at a rearmost position, the heating medium inlet 101 is formed at a position corresponding to the third through-hole H3, and a fourth blocked portion H4′ is formed at a position corresponding to the fourth through-hole H4.
Further, the fourth blocked portion H4′ is formed at a position corresponding to the fourth through-hole H4 on the second plate 100b-4 of the fourth unit plate 100-4, a second blocked portion H2′ is formed at a position corresponding to the second through-hole H2 on the first plate 100a-5 of the fifth unit plate 100-5, a third blocked portion H3′ is formed at a position corresponding to the third through-hole H3 on the second plate 100b-8 of the eighth unit plate 100-8, and the first blocked portion H1′ is formed at a position corresponding to the first through-hole H1, on the first plate 100a-9 of the ninth plate 100-9.
Therefore, a heating medium flowing into the heating medium channel P1 of the twelfth unit plate 100-12 through the heating medium inlet 101 formed in the second plate 100b-12 of the twelfth unit plate 100-12 disposed at the rearmost position, flows to the front side through the first to fourth through-holes H1, H2, H3, and H4 formed in the twelfth to ninth unit plates 100-12, 100-11, 100-10, and 100-9, and at the same time, since the first blocked portion H1′ is formed at the first plate 100a-9 of the nine unit plate 100-9, the heating medium flows in a clockwise direction in the heating medium channels P1 inside the twelfth to ninth unit plates 100-12, 100-11, 100-10, and 100-9.
Further, the heating medium flowing into the heating medium channel P1 of the eighth unit plate 100-8 through the second through-hole H2 formed in the first plate 100a-9 of the ninth unit plate 100-9 and the fourth through-hole H4 formed in the second plate 100b-8 of the eighth unit plate 100-8 flows to the front side through the first to fourth through-holes H1, H2, H3, and H4 formed in the eighth to fifth unit plates 100-8, 100-7, 100-6, and 100-5, and at the same time, since the second blocked portion H2′ is formed at the first plate 100a-5 of the fifth unit plate 100-5, the heating medium flows in a counterclockwise direction in the heating medium channels P1 inside the eighth to fifth unit plates 100-8, 100-7, 100-6, and 100-5.
Furthermore, the heating medium flowing into the heating medium channel P1 of the fourth unit plate 100-4 through the first through-hole H1 formed in the first plate 100a-5 of the fifth unit plate 100-5 and the third through-hole H3 formed in the second plate 100b-4 of the fourth unit plate 100-4 flows to the front side through the first to fourth through-holes H1, H2, H3, and H4 formed in the fourth to first unit plates 100-4, 100-3, 100-2, and 100-1, and at the same time, since the first blocked portion HP is formed at the first plate 100a-1 of the first unit plate 100-1, the heating medium flows in the clockwise direction in the heating medium channels P1 inside the fourth to first unit plates 100-4, 100-3, 100-2, and 100-1.
As described above, in the structure in which the heat exchange part 100 is formed to be upright along a longitudinal direction, heating medium connection channels configured with the heating medium channels P1 and the first to fourth through-holes H1, H2, H3, and H4 are formed to allow the heating medium to flow in one direction so that the heating medium flowing along the circumference of the combustion chamber C circulates smoothly such that a pressure drop of the heating medium is minimized and local overheating thereof is prevented, thus improving thermal efficiency.
Further, a capacity of the heat exchanger may be increased without a pressure drop by adjusting the number of parallel channels in each of the heat exchange parts 100-A, 100-B, and 100-C when the capacity of the heat exchanger is increased.
Referring to
As a configuration for allowing the combustion gas to be smoothly discharged by passing through the combustion gas channels P2, a configuration in which the first and second plates are stacked, the first flange 130 of the first plate and the second flange 160 of the second plate partially overlapping with each other, and the combustion gas pass-through portion D through which the combustion gas, which is flowing by passing through the combustion gas channels P2, is discharged is formed at some region of the edges of the first plate and the second plate.
A plurality of first incised portions 131 are formed at a combustion gas discharge side of the first flange 130, a plurality of second incised portions 161 are formed at a combustion gas discharge side of the second flange 160, and when the first plate and the second plate are stacked, the combustion gas pass-through portion D is formed at some regions of the first incised portion 131 and the second incised portion 161.
A plurality of combustion gas pass-through portions D are formed to be spaced apart from each other in lateral and longitudinal directions at the lower portion of the heat exchange part 100, and thus the combustion gas passing through the heat exchange part 100 may be distributed and discharged at a uniform flow rate across an entire region of the lower portion of the heat exchange part 100 such that flow resistance of the discharged combustion gas is reduced and noise and vibration are prevented.
Meanwhile, in a section where the flow direction of the heating medium is switched in the heat exchange parts 100-A, 100-B, and 100-C, that is, a section connected from the third heat exchange part 100-C to the second heat exchange part 100-B, or a section connected from the second heat exchange part 100-B to the first heat exchange part 100-A, a flow rate of the heating medium flowing to the heating medium channel P1 formed in each of the heat exchange parts 100-A, 100-B, and 100-C may tend to be unevenly distributed by inertia and pressure.
As described above, when a flow rate is unevenly distributed to the heating medium channels P1, there are problems in that performance of heat exchange is degraded, and noise and foreign materials are generated due to boiling of the heating medium caused by local overheating in a region where the flow rate is low.
As a part for resolving the problem of uneven distribution in flow rate of the heating medium, as shown in
The heating medium distribution portions 124 and 154 may be formed in embossed shapes protruding toward the heating medium channel P1 in portions where the heating medium flows into and flows out from the heating medium channel P1.
Therefore, a cross-sectional area of a channel formed between a first heating medium distribution portion 124 formed at the first plate and a second heating medium distribution portion 154 formed at the second plate is formed to be smaller than a cross-sectional area of the heating medium channel P1 formed between the first plate and the second plate, and thus a phenomenon in which the heating medium is intensively flowed into on some of the heating medium channels P1 of layers may be prevented so that a flow rate of the heating medium flowing through the heating medium channel P1 of each layer may be evenly adjusted.
As another part for resolving the problem of uneven distribution in flow rate of the heating medium, as shown in
A plurality of heating medium dispersion portions 123 and 153 are provided to be spaced apart in the flow direction of the heating medium, and the opened portions 123′ and 153′ and the blocked portions 123″ and 153″ are provided to intersect with each other along the flow direction of the heating medium between adjacently disposed heating medium dispersion portions 123 and 153.
The opened portions 123′ and 153′ and the blocked portions 123″ and 153″ are alternately formed at the heating medium dispersion portions 123 and 153 in a circumferential direction thereof.
Thus, as indicated by arrows in
Meanwhile, referring to
Referring to
Number | Date | Country | Kind |
---|---|---|---|
10-2016-0015076 | Feb 2016 | KR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/KR2017/001184 | 2/3/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/135728 | 8/10/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
7669643 | Ekelund | Mar 2010 | B2 |
8220529 | Kim | Jul 2012 | B2 |
20170059201 | Kim | Mar 2017 | A1 |
Number | Date | Country |
---|---|---|
H 11-83239 | Mar 1999 | JP |
2000-18871 | Jan 2000 | JP |
2001-59688 | Mar 2001 | JP |
2002-130985 | May 2002 | JP |
2005-527777 | Sep 2005 | JP |
2005-326074 | Nov 2005 | JP |
2006-214628 | Aug 2006 | JP |
10-0813807 | Mar 2008 | KR |
10-2015-0108959 | Oct 2015 | KR |
20150108959 | Oct 2015 | KR |
WO 03106909 | Dec 2003 | WO |
WO 2015141994 | Sep 2015 | WO |
Entry |
---|
International search Report dated May 2, 2017, issued to International Application No. PCT/KR2017/001184. |
Number | Date | Country | |
---|---|---|---|
20190024981 A1 | Jan 2019 | US |