In general, this invention relates to water heaters and other heat transfer systems. More specifically, the invention relates to a heat exchanger and methods for transfer of heat to fluids. More particularly, the present invention relates to a heat exchanger configured for optimizing a percentage of heat exchange surface within an identified range of heat flux, or rate of heat energy transfer through a given surface, on a boiling curve.
Heat transfer fluids are heated to desired working temperatures for transfer of process heat in a wide range of water heater systems and other types such as boilers, central heaters, closed loop systems, residential and commercial water heaters, and water processing systems as an example.
Prior art heating apparatus including a central heat flame and a surrounding heater tube array is disclosed in U.S. Pat. Nos. 4,793,800, 4,723,513, 4,473,034, 4,444,155 and 4,338,888. U.S. Pat. No. 4,679,528 discloses a heating boiler having a central heating flame and a surrounding coil heater tube. The products of combustion pass radially through the heater tube coil, and are discharged through an axially extending vent.
Heat transfer fluids are typically heated as they flow through heater or heating tubes of a heat exchanger. In such cases, the liquid flow within the heater tube is characterized by a temperature profile that includes a relatively higher film temperature at radially outward regions in the heater tube and a relatively lower bulk fluid temperature at radially inward regions adjacent the central core region of the tube. This variance in temperature provides difficulties in maintaining a design operating temperature substantially at or near the upper thermal limit of the heat transfer fluid.
Therefore, there is a desire to improve the configuration of the heat exchangers to provide an optimal percentage of heat exchange surface within an identified range of heat flux, thus maximizing the efficiency of heat flux. In addition, there is a desire that the heat exchanger be compact since it will often comprise an ancillary device or a component of a more comprehensive apparatus.
In general, this invention relates to water heaters and other heat transfer systems. More specifically, the invention relates to a heat exchanger and methods for transfer of heat to fluids. More particularly, the present invention relates to a heat exchanger configured for optimizing a percentage of heat exchange surface within an identified range of heat flux, or rate of heat energy transfer through a given surface, on a boiling curve.
The novel features which are characteristic of the present invention are set forth in the appended claims. However, the invention's preferred embodiments, together with further objects and attendant advantages, will be best understood by reference to the following detailed description taken in connection with the accompanying drawings in which:
Referring generally to
A first embodiment of the heat exchanger of the instant invention is generally illustrated in
Referring generally to
In each of various embodiments of the heat exchanger, the heat exchanger is in the form of a tubular helix shape. The shape and configuration of the heat exchanger provides high thermal transfer capabilities. The tubing from which the helix is formed is fabricated from a heat conductive material such as copper-nickel, by way of example. In one embodiment, the heat exchanger may include a range of five to eight tiers or turns, preferably seven, within the coiled helix shape.
A critical functionality of the present invention is related to the configuration of the heat exchanger which directly impacts the flow of heat-transferring fluid. The configuration of the heat exchanger or heat exchanger element keeps an optimal percentage of the heat exchanger surface within an identified range of heat flux, the rate of heat flow across a unit of area, on a boiling curve. This combination optimizes the efficiency and reliability of the heat exchanger.
In operation, the heat-transferring fluid or medium flows through the heat exchanger starting at the upper portion through the combustion chamber and down through the heat exchanger and out of the lower portion and exhaust chamber without collecting fluid anywhere inside the geometry which is critical to its functionality and optimization of performance. Referring to
Referring to
Referring now to
The heat exchanger is configured and shaped using high efficiency copper-nickel to provide an air to fluid heat exchanger as illustrated in
For these reasons, the instant invention is believed to represent a significant advancement in the art, which has substantial commercial merit.
The foregoing has outlined, in general, the complete detailed description of the physical process, and or methods of application of the invention and is to serve as an aid to better understanding the intended application and use of the invention disclosed herein. In reference to such, there is to be a clear understanding the present invention is not limited to the method or detail of construction, fabrication, material, or application of use described and illustrated herein. Any other variation of fabrication, use, or application should be considered apparent as an alternative embodiment of the present invention.
In the foregoing specification, the invention has been described with reference to specific embodiments. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the present invention as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of present invention.
Benefits, other advantages, and solutions to problems have been described above with regard to specific embodiments. However, the benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential feature, or element, of any or all the claims.
It would be appreciated by those skilled in the art that various changes and modifications can be made to the illustrated embodiments without departing from the spirit of the present invention. All such modifications and changes are intended to be covered by the appended claims.
This continuation-in-part patent application is related to and claims priority from earlier filed, U.S. Non-Provisional patent application Ser. No. 29/450,083 filed Mar. 15, 2013, and U.S. Provisional Patent Application No. 61/740,034 filed Dec. 20, 2012, all of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1885040 | Arnold | Oct 1932 | A |
2003742 | Elliott | Jun 1935 | A |
3053511 | Godfrey | Sep 1962 | A |
3308879 | Maddocks | Mar 1967 | A |
3612175 | Ford et al. | Oct 1971 | A |
3890936 | McInerney et al. | Jun 1975 | A |
3942355 | McInerney et al. | Mar 1976 | A |
4241723 | Kitchen | Dec 1980 | A |
4766883 | Cameron | Aug 1988 | A |
5228413 | Tam | Jul 1993 | A |
5365888 | Aronov | Nov 1994 | A |
5437248 | Miura | Aug 1995 | A |
6044837 | Tyler | Apr 2000 | A |
6790481 | Bishop et al. | Sep 2004 | B2 |
7415943 | Missoum | Aug 2008 | B2 |
8720387 | Pacholski | May 2014 | B2 |
8763564 | Abdel-Rehim | Jul 2014 | B2 |
8813688 | Pacholski | Aug 2014 | B2 |
20030066632 | Bishop et al. | Apr 2003 | A1 |
20030106676 | Bishop et al. | Jun 2003 | A1 |
20050077341 | Larrieu et al. | Apr 2005 | A1 |
20070163521 | Kim | Jul 2007 | A1 |
20070209606 | Hamada | Sep 2007 | A1 |
20080296006 | Manasek | Dec 2008 | A1 |
20100012308 | Scheidegger et al. | Jan 2010 | A1 |
20100170452 | Ford et al. | Jul 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
61740034 | Dec 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 29450083 | Mar 2013 | US |
Child | 14137988 | US |