1. Field of the Invention
The present invention relates to a heat exchanger, and more particularly, to a heat exchanger capable of enhancing a heat exchange function by preventing a bending portion of a refrigerant pipe from being distorted at the time of bending the refrigerant pipe.
2. Description of the Conventional Art
Generally, a heat exchanger is a device for heat exchanging by contacting two different fluids directly or indirectly, and it is mainly used in a heater, a cooler, an evaporator, a condenser, and etc.
The conventional heat exchanger comprises a refrigerant pipe 102 for passing a refrigerant and performing a heat exchange, a plurality of cooling fins 104 mounted at the refrigerant pipe 102 with a certain interval for expanding a contact area of air which passes through the refrigerant pipe 102 in order to enhance a heat transmitting performance, and a supporting holder 106 mounted at both sides of the refrigerant pipe 102 for supporting the refrigerant pipe 102.
As shown in
As shown in
Like this, in the conventional heat exchanger, the bending portion 112 of the refrigerant pipe is distorted at the time of bending the refrigerant pipe 102, thereby preventing a flow of a refrigerant which passes through the bending portion 112 and thus degrading heat transmitting efficiency.
Especially, the faster a production speed is, the more the distortion of the bending portion 112 of the refrigerant pipe 102 is, thereby lowering a productivity.
In case that the conventional heat exchanger is applied to a refrigerating apparatus, a flow of a refrigerant which passes through a refrigerant pipe is not smooth thus to lower heat transmitting performance and degrade a cooling performance of the refrigerating apparatus.
Therefore, an object of the present invention is to provide a heat exchanger having a smooth refrigerant flow and capable of enhancing a heat exchange performance by preventing a bending portion of a refrigerant pipe from being distorted at the time of fabricating the heat exchanger.
Another object of the present invention is to provide a heat exchanger capable of increasing a production speed and thus enhancing a productivity by preventing a bending portion of a refrigerant pipe from being distorted even in a fast production speed at the time of fabricating the heat exchanger.
To achieve these and other advantages and in accordance with the purpose of the present invention, as embodied and broadly described herein, there is provided a heat exchanger comprising: a plurality of refrigerant pipes bent many times for passing a refrigerant for heat exchange; and cooling fins arranged at an outer circumference surface of the refrigerant pipes for expanding a contact area of air which passes through the refrigerant pipes, wherein the refrigerant pipes have a sectional surface of an oval shape.
A major axis of the refrigerant pipe is a diameter in a direction that the refrigerant pipe is stacked, and a minor axis of the refrigerant pipe is a diameter in a perpendicular direction to the direction that the refrigerant pipe is stacked.
A length ratio between the major axis and the minor axis of the refrigerant pipe is 1.4˜2.1:1.
A plurality of grooves are formed at an inner circumferential surface of the refrigerant pipe towards an axial direction.
A heat exchanger according to the present invention comprises: a plurality of refrigerant pipes bent many times for passing a refrigerant for heat exchange; and cooling fins integrally arranged between the refrigerant pipes for expanding a contact area of air which passes through the refrigerant pipes, wherein the refrigerant pipe is composed of a straight-line portion in which the cooling fins are formed and a bending portion in which the refrigerant fins are removed, and a cross-section of the straight-line portion is an oval shape.
The foregoing and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings.
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention.
In the drawings:
Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings.
Even through plural embodiments for a heat exchanger according to the present invention can exist, the most preferable embodiment will be explained hereinafter.
The heat exchanger according to the present invention comprises a refrigerant pipes 10 arranged with a certain interval for passing a refrigerant, a plurality of cooling fins 12 mounted at the refrigerant pipe 10 for expanding a contact area of air which passes through the refrigerant pipes 10 in order to enhance a heat transmitting performance, and a supporting holder 14 mounted at both sides of the refrigerant pipes 102 for supporting the heat exchanger.
A plurality of the refrigerant pipes 10 are arranged with a certain interval as a tube type by which a refrigerant can pass, and the cooling fins 12 are integrally formed between the refrigerant pipes 10. That is, two refrigerant pipes 10 are horizontally arranged and the cooling fins 12 are integrally formed therebetween.
As shown in
As shown in
That is, the straight-ling portion 18 is formed as an oval shape, in which a direction that the refrigerant pipe 10 is bent becomes the major axis P and a perpendicular direction to the direction that the refrigerant pipe 10 is bent becomes the minor axis Q.
A length ratio between the major axis P and the minor axis Q of the straight-line portion 18 of the refrigerant pipe 10 is preferably 1.4˜2.1:1.
As shown in
The straight-line portion of the refrigerant pipe can be also formed as a rectangular shape besides the aforementioned oval shape.
The cooling fins 12A and 12B are arranged between the refrigerant pipes 10 with a certain interval in a perpendicular direction to an axial direction, and have a certain inclination angle in order to smoothly discharge condensation water and to smoothly contact with air.
The supporting holder 14 is provided with a plurality of slots 26 into which the bending portions 20 of the refrigerant pipes 10 are inserted.
A fabrication method of the heat exchanger according to the present invention will be explained in more detail as follows.
Two refrigerant pipes 10 and a cooling fin forming portion of a flat type having a certain thickness are extrusion-molded by using an extruder. At this time, the refrigerant pipe 10 is extrusion-molded in a condition that a cross section thereof has an oval shape. Then, the cooling fin forming portion is passed through a louvering gear which two gears are engaged, so that the cooling fin forming portion is punched with a certain interval by the louvering gear thus to form the plurality of cooling fins 12.
Then, the refrigerant pipe 10 where the cooling fins 12 are formed are bended many times with a certain interval thus to form the bending portion. At this time, since the straight-line portion 18 of the refrigerant pipe 10 is formed as an oval shape, the bending portion 20 of the refrigerant pipe 10 is formed as a circular shape.
Subsequently, the cooling fins 12 formed at the bending portion 20 are removed and the bending portion 20 is inserted into the slots 26 of the supporting holder 14, thereby completing an assembly.
Effects of the heat exchanger according to the present invention and the fabrication method thereof will be explained.
In the heat exchanger according to the present invention, the refrigerant pipe is formed as an oval shape in which a major axis is towards a direction that the refrigerant pipe is bent. According to this, when the refrigerant pipe is bending-processed, the bending portion is formed as a circular shape thus to greatly reduce a flow resistance of a refrigerant and thereby to enhance a heat exchange performance.
Also, in a fabrication process of the heat exchanger, a phenomenon that the bending portion is distorted can be prevented even when a working speed is fast, thereby accelerating a working speed and enhancing a productivity.
As the present invention may be embodied in several forms without departing from the spirit or essential characteristics thereof, it should also be understood that the above-described embodiments are not limited by any of the details of the foregoing description, unless otherwise specified, but rather should be construed broadly within its spirit and scope as defined in the appended claims, and therefore all changes and modifications that fall within the metes and bounds of the claims, or equivalence of such metes and bounds are therefore intended to be embraced by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2003-0017160 | Mar 2003 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
1284578 | Branzell | Nov 1918 | A |
3780799 | Pastemak | Dec 1973 | A |
4365667 | Hatada et al. | Dec 1982 | A |
4645001 | Hillerstrom | Feb 1987 | A |
4755331 | Merrill et al. | Jul 1988 | A |
4901791 | Kadle | Feb 1990 | A |
5036909 | Whitehead et al. | Aug 1991 | A |
5052476 | Sukumoda et al. | Oct 1991 | A |
5123482 | Abraham | Jun 1992 | A |
5407004 | DeRisi et al. | Apr 1995 | A |
5411079 | Sasaki et al. | May 1995 | A |
5425414 | Bradley et al. | Jun 1995 | A |
5584340 | Derosier | Dec 1996 | A |
5799725 | Bradley et al. | Sep 1998 | A |
5894649 | Lambert et al. | Apr 1999 | A |
6044900 | Kawahara | Apr 2000 | A |
20040256093 | Romero Beltran | Dec 2004 | A1 |
Number | Date | Country |
---|---|---|
1299954 | Jun 2001 | CN |
60-205192 | Oct 1985 | JP |
07-077397 | Mar 1995 | JP |
11-094481 | Apr 1999 | JP |
2000-176539 | Jun 2000 | JP |
102000-60550 | Oct 2000 | KR |
102001-59566 | Jul 2001 | KR |
Number | Date | Country | |
---|---|---|---|
20040194935 A1 | Oct 2004 | US |