The invention relates to a heat exchanging device, in particular a fluid/air heat exchanger. The device has individual fluid-conducting collecting chambers, each having an inlet or outlet for fluid supply and discharge and being connected to one another via duct-like fluid guides that control the temperature of, in particular cool, a fluid flow during operation of the device by an air flow. The air flows in duct-shaped air guides separated from the fluid guides in a medium-tight manner.
Heat exchanging devices of this type, which are also referred to as finned coolers, are state of the art. With air as the cooling medium, such heat exchangers are often used for cooling hydraulic fluids for the working hydraulics of mechanical systems, such as construction machines or the like, for hydrostatic drive units or as oil coolers for heavily loaded gears, specifically in wind power stations. The document DE 10 2010 056 567 A1 discloses an example of the application of such a heat exchanger in a fluid/air cooling system to generate a cooling capacity for the hydraulic fluid in the hydraulic working circuit of an associated machine unit. During operation of such systems, the heat exchangers are subject to not only mechanical stresses, but they are also subject to thermal stresses in particular, due to the great range of temperatures that can arise at the system components during operation. Such stresses result both from the operating temperatures of the media involved, such as air and fluid, and from the influences of the ambient temperatures at the place of application of the heat exchangers, for example due to the climatic conditions at the place of application.
In the case of heat exchangers in the form of finned coolers with a conventional design that, as is revealed in DE 10 2010 046 913 A1, are made up of a bundle of plates lying on top of one another. Between the plates, duct-shaped air guides and fluid guides are alternately formed. For example, at high operating temperatures of the fluids resulting from swings in temperature of the type that occur in intermittent operation, stresses can occur in the bundle of components due to longitudinal expansion. Possible consequences include stress cracks in the bundle, which is joined together by soldering to form a rigid block, in particular in the region of the soldered seams. These stress cracks are accompanied by the danger of a malfunction of the heat exchanger, and thus, compromising the associated system. To avoid this danger, document DE 10 2010 046 913 A1 provides strips forming the soldering surfaces on the plates with a special profile shape, which leads to an approximately linear change in the bending strength of the shanks of the profile. An optimal bending behavior of the shanks is then obtained, and the risk of stress cracks at the soldering regions is minimized.
While the risk of interruption of operation in the case of swings in temperature over high temperature ranges is thus effectively avoided, problems can develop due to low temperatures arising at the heat exchanger. When corresponding systems are used in bitterly cold climatic zones, for example in northern areas of the USA, in Canada, Northern China or similar areas and when, in these applications, the systems are directly exposed to the environmental effects, for example, in the case of wind power stations, problems develop. The changes in viscosity of the fluid that occur at low temperatures during winter operation lead to pressure losses. Due to paraffin formation, which can take place in the fluids at low temperatures, a “freezing” of the heat exchanger can occur. To make fluid/air cooling systems suitable for winter, the heat exchangers concerned are conventionally designed with larger material thicknesses and/or the cooling air quantity is reduced by speed variance of the associated fan, for example, using control systems of the type described in DE 10 201 056 567 A1, cited above.
An object of the invention is to provide an improved heat exchanging device of the type under consideration that is distinguished by improved operating performance in the lower temperature range.
According to the invention, this object is basically achieved by a heat exchanging device having, as a significant feature of the invention, among the collecting chambers conducting the fluid to be temperature controlled, with each having a fluid inlet or outlet, three or more collecting chambers provided that are disposed parallel to one another relative to the flow direction extending between the inlet and outlet. Compared with the conventional design, in which there is flow through the heat exchanger via the fluid ducts extending between the two end-side collecting chambers along the entire length, the invention, comprising at least one additional collecting chamber disposed between end-side collecting chambers, halves both the run length and the volume flow per collecting chamber. The operational pressure loss is thus reduced to a quarter of the usual value, with corresponding improvement in the operating performance at low temperatures with the associated viscosity changes. The desired winter suitability can thus be achieved without greater wall thicknesses and also with a high air throughput, so that simpler fan drives can be used, resulting in overall significantly reduced production costs.
The device can advantageously be designed such that a collecting chamber with an inlet or outlet for fluid is disposed centrally between two groups of duct-shaped fluid guides separated from one another by this collecting chamber. The fluid guides open at their free ends facing away from one another into an exterior collecting chamber, which has an outlet or an inlet.
The heat exchanging device can also be made up of at least two fluid/air heat exchangers which, preferably disposed in a plane, point in a common fluid flow direction with their adjacent collecting chambers and have an inlet or outlet. The collecting chambers are each connected via the duct-shaped fluid guides forming the outlet or inlet for the fluid.
In an embodiment designed in this manner, having at least two fluid/air heat exchangers, one collecting chamber of a heat exchanger has an inlet and an outlet on opposite end areas. This collecting chamber can be connected in series to the inlet of the following collecting chamber of another heat exchanger.
The collecting chambers connected to one another in series can have an opposite flowthrough direction to one another when the device is in operation. The additional collecting chamber of the second heat exchanger connected in series to the one heat exchanger is connected with its outlet to the inlet of the collecting chamber of the one heat exchanger, which has an outlet at its other, opposite end. This arrangement, in turn, halves the run lengths of the fluid ducts and the volume flows inside the collecting chambers. In exemplary embodiments with two or more fluid/air heat exchangers, these can be disposed in desired spatial relationships relative to one another, so that the entire device can be easily adapted to given installation situations.
For particularly good operating performance in the low temperature range, in every heat exchanger, all collecting chambers used can be selected to be the same size in terms of volume, to obtain the same optimal flow conditions in all collecting chambers.
Furthermore and advantageously, across the entire construction height or construction length of a collecting chamber formed as a collecting box, the duct-shaped fluid guides can open into the collecting box. The air flow during operation of the device takes place essentially transverse to the fluid guide in the connected collecting chamber.
To increase the air throughput for an efficient heat exchange, in particular a cooling, an assigned fan device can preferably be disposed at the front side on the duct-shaped fluid guides.
Other objects, advantages and salient features of the present invention will become apparent from the following detailed description, which, taken in conjunction with the drawings, discloses preferred embodiments of the present invention.
Referring to the drawings that form a part of this disclosure:
Of the depicted air/fluid heat exchangers in the form of plate coolers, also referred to as finned coolers, the figures show only collecting chambers with a fluid inlet and/or fluid outlet and also the fluid flow course between collecting chambers that is illustrated only with flow arrows. The structural details of the fluid guides for the fluid flow between collecting chambers as well as the details of the air guides extending transverse to the fluid guides are omitted in the simplified sketch-type figures. As an example of this type of special design of a corresponding plate bundle, with duct-shaped fluid and air guides extending between the plates, reference is made to the already mentioned document DE 10 2010 046 913 A1.
The second exemplary embodiment depicted in
In the exemplary embodiments of
The exemplary embodiment of
The exemplary embodiment of
While various embodiments have been chosen to illustrate the invention, it will be understood by those skilled in the art that various changes and modifications can be made therein without departing from the scope of the invention as defined in the claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2014 001 703 | Feb 2014 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/003446 | 12/19/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/117635 | 8/13/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2124787 | Lachasse | Jul 1938 | A |
20120017877 | Laube et al. | Jan 2012 | A1 |
20120073793 | Kuehne | Mar 2012 | A1 |
Number | Date | Country |
---|---|---|
20 25 207 | Mar 1975 | DE |
44 41 503 | May 1996 | DE |
10322165 | Dec 2004 | DE |
10 2010 046 913 | Mar 2012 | DE |
10 2010 056 567 | Jul 2012 | DE |
2 873 799 | Feb 2006 | FR |
2010-107131 | May 2010 | JP |
2005116415 | Dec 2005 | WO |
Entry |
---|
Translation of German Patent Document DE 10322165 A1 entitled Translation—DE 10322165 A1. |
International Search Report (ISR) dated Mar. 12, 2015 in International (PCT) Application No. PCT/EP2014/003446. |
Number | Date | Country | |
---|---|---|---|
20160341482 A1 | Nov 2016 | US |