The present invention is based on Japanese Patent Application No. 2003-35920, the content of which is incorporated by reference.
1. Field of the Invention
The present invention relates to a heat fixing device for use in image forming apparatuses, such as copying machines, printers and the like, for fixing a toner image to a receiving medium. The invention is characterized by an increased length of a nip portion for heat fixing the toner image to the receiving medium and by an arrangement directed to an efficient use of heat.
2. Description of the Related Art
Conventionally, the image forming apparatuses, such as copying machines and printers, operate to transfer the toner image onto the receiving medium and to fix the toner image to the receiving medium by means of a fixing device.
Heretofore, widely used fixing devices have been arranged as shown in FIG. 1. That is, a receiving medium 1 supplied with a toner t is introduced to place between a pair of fixing rollers 2, 3 which cooperate with each other to fix the toner t to the receiving medium 1. The above fixing device includes heating elements 4, 5 disposed in the respective fixing rollers 2, 3 for ensuring that the toner t is fully fixed to the receiving medium 1. Furthermore, the fixing device employs the fixing rollers 2, 3 constructed such that a core 2a, 3a formed of a metal is formed with an elastic layer 2b, 3b on an outer periphery thereof, the elastic layer formed from an elastic material such as rubber. As heated by the heating elements 4, 5, the fixing rollers 2,3 are pressed against each other so as to define the nip portion of an increased length between the elastic layers 2b, 3b overlaid on the outer peripheries of the fixing rollers 2, 3. Thus is ensured that the toner t is subjected to sufficient heat and pressure to fix the toner t to the receiving medium 1.
More recently, a demand exists for further speed-up of the above image forming apparatuses. This dictates the need for quick and positive fixing of the toner t to the receiving medium 1. In a full-color image forming apparatus, on the other hand, toners t of multiple colors are supplied to the receiving medium 1 to form thereon a thick layer of the toners t, which need be fully fixed to the receiving medium 1.
In order to permit the fixing device to fix the toner t to the receiving medium 1 in a quick and positive manner or to fully fix the thick layer of the toners t to the receiving medium 1, the fixing rollers 2, 3 need to define therebetween an even longer nip portion where the toner t is heated and pressurized.
As an approach to increase the length of the nip portion defined between the fixing rollers 2, 3 it may be contemplated to increase the diameter of the fixing rollers 2, 3 or to increase the thickness of the elastic layers 2b, 3b overlaid on the outer peripheries of the fixing rollers 2, 3.
Unfortunately, in a case where the fixing rollers 2, 3 are increased in the diameter, as described above, the fixing device is also increased in size or the receiving medium 1 is more liable to wind about the fixing roller 2 contacting the toner t on the receiving medium. In a case where the elastic layers 2b, 3b formed on the outer peripheries of the fixing rollers 2, 3 are increased in the thickness, on the other hand, heat transfer to outside surfaces of the fixing rollers 2, 3 is lowered so that it takes more time and a substantial quantity of electric power to sufficiently raise the temperature of the outside surfaces of the fixing rollers 2, 3. This results in an increased running cost.
More recently, there has been proposed a heat fixing device arranged as follows. A pair of fixing belts drivably looped about a respective pair of rollers are heated by means of heating elements, while a receiving medium supplied with a toner is introduced into a nip portion defined between a pair of fixing belt portions brought into tight contact by the roller pairs, the nip portion serving to heat and pressurize the toner for fixing the toner to the receiving medium (see, for example, JP-A No. 9-274401).
In such a heat fixing device, however, the fixing belts are driven as looped about outer peripheries of the respective pair of rollers. Therefore, the fixing belt has an increased contact area with the roller pair so that the heat of the fixing belt applied by the heating element is detrimentally absorbed by the rollers. Consequently, the heating element is decreased in the efficiency of heating the fixing belt, requiring a substantial quantity of electric power for sufficiently heating the fixing belt.
The invention is directed to a solution to the above problem encountered by the image forming apparatuses, such as copying machines and printers, during the fixing of the toner image to the receiving medium.
Specifically, an object of the invention is to provide a heat fixing device wherein a receiving medium supplied with a toner is introduced into a nip portion defined between a pair of fixing belt portions in tight contact so that the toner is fixed to the receiving medium as heated and pressurized in the nip portion, the heat fixing device designed to reduce the absorption of the heat of the fixing belts thereby achieving an efficient heating of the fixing belts by means of a heating element and obviating the temperature drop of the fixing belts.
Another object of the invention is to permit the above heat fixing device to fix the toner image to the receiving medium in an efficient and proper manner.
According to the invention, a heat fixing device for heat fixing a toner image to a receiving medium comprises: a pair of fixing belts in an endless form; a pair of rotary members individually disposed on a respective inside circumference of the fixing belts and pressed against each other via the fixing belts; a pair of fixing members individually disposed on the respective inside circumference of the fixing belts and pressed against each other via the fixing belts; and a heating element for heating at least one of the fixing belts, wherein the fixing belts contact the rotary members and the fixing members only at a respective portion thereof via which the respective pair of rotary members and fixing members are pressed against each other.
According to the heat fixing device of the invention, at least one of the fixing belts is heated by the heating element, while the toner image is heat fixed to the receiving medium by heating and pressurizing the receiving medium with the toner image transferred thereto in a nip portion defined between the respective pair of rotary members and fixing members pressed against each other via the fixing belts, the rotary members and fixing members disposed on the respective inside circumference of the fixing belts. Such an arrangement ensures that the receiving medium with the toner image transferred thereto is sufficiently heated and pressurized in the nip portion defined between the respective pair of rotary members and fixing members, whereby the toner image is fully fixed to the receiving medium.
According to the heat fixing device of the invention, the fixing belts contact the rotary members and the fixing members at a respective portion thereof via which the respective pair of rotary members and fixing members are pressed against each other. Accordingly, the fixing belt has a decreased contact area with the rotary member and the fixing member so that the rotary member and fixing member absorb less heat from the fixing belt thus heated by the heating element. As a result, the heating element is increased in the efficiency of heating the fixing belt, while the fixing belt has such a consistent temperature as to permit the toner image to be fixed to the receiving medium in a consistent manner.
These and other objects, advantages and features of the invention will become apparent from the following description thereof taken in conjunction with the accompanying drawings which illustrate specific embodiments of the invention.
A heat fixing device according to one embodiment of the invention will hereinbelow be described in details with reference to the accompanying drawings.
As shown in
A halogen lamp 17 as a heating element 17 is disposed at place within the inside circumference of the upper fixing belt 11 coming into contact with the toner t fed on the receiving medium 1. The halogen lamp 17 serves to heat the upper fixing belt 11, whereas the temperature of the fixing belt 11 is sensed by a temperature sensor 18 provided at the fixing member 15.
In this embodiment, the rotary members 13, 14 and the fixing members 15, 16 are disposed on the respective inside circumference of the fixing belts 11, 12 in the following manner. That is, the fixing members 15, 16 are located on an in-feed side to which the receiving medium 1 supplied with the toner t is delivered, whereas the rotary members 13, 14 are located on a discharge side from which the receiving medium 1 with the toner t fixed thereto is discharged.
The rotary member 13 disposed on the inside circumference of the upper fixing belt 11 is rotated thereby driving the fixing belts 11, 12 and also driving the rotary member 14 into rotation, which is disposed on the lower fixing belt 12. In the arrangement wherein the pair of fixing members 15, 16 are located on the side to which the receiving medium 1 is delivered whereas the pair of rotary members 13, 14 are located on the side from which the receiving medium 1 is discharged, the fixing belts 11, 12 may be driven properly in association with the rotation of the rotary members 13, 14.
In order to hold the pair of rotary members 13, 14 pressed against each other via the fixing belts 11, 12 the rotary member 14 on the inside circumference of the lower fixing belt 12 is biased upward against the counterpart by means of a spring 19. In order to hold the pair of fixing members 15, 16 pressed against each other via the fixing belts 11, 12, the fixing member 16 on the inside circumference of the lower fixing belt 12 is biased upward against the counterpart by means of a spring 21 mounted to a base 20.
In the above arrangement wherein the pair of rotary members 13, 14 and the pair of fixing members 15, 16 are independently brought into the pressed relation, individual pressures between the rotary members 13, 14 and between the fixing members 15, 16 may be suitably regulated according to the type of a used toner t.
When the pressure between the fixing members 15, 16 is increased, the toner t is fully fixed to the receiving medium 1 as pressed between the fixing members 15, 16 so that an image having a good gloss may be obtained. When, on the other hand, the pressure between the rotary members 13, 14 is increased, the toner t is fully fixed to the receiving medium 1 just as when pressed between the fixing members 15, 16. Furthermore, the receiving medium 1 may suitably be separated from the fixing belts 11, 12 when discharged.
A pressure release unit 22 is provided for moving up or down the base 20 so as to release the pair of fixing members 15, 16 from the pressed relation. When the heat fixing device is at rest or when the receiving medium 1 becomes jammed in a nip portion defined between the fixing member pair 15, 16 and the rotary member pair 13, 14, the pressure release unit 22 moves down the base 20 for releasing the pair of fixing members 15, 16 from the pressed relation. This arrangement facilitates the removal of the jammed receiving medium 1. In this case, the pair of rotary members 13, 14 stay in the pressed relation. However, the rotary members 13, 14 are rotatable and hence, difficulty in removing the receiving medium 1 from between the rotary member pair is rarely encountered. Furthermore, when the pair of rotary members 13, 14 are held in the pressed relation, the fixing belts 11, 12 are prevented from being displaced during the removal of the receiving medium 1.
The heat fixing device of the embodiment operates as follows to fix the toner t to the receiving medium 1. First, the upper fixing belt 11 is heated by means of the aforesaid halogen lamp 17 for a given period of time, say 10 seconds or so. Subsequently, an output to the halogen lamp 17 is decreased while the rotary member 13 on the inside circumference of the upper fixing belt 11 is caused to rotate thereby driving the pair of fixing belts 11, 12.
Where the upper fixing belt 11 is heated before the pair of fixing belts 11, 12 are driven into rotation, the heat of the fixing belt 11 is transferred to the rotary member 13 the fixing member 15 and the lower fixing belt 12 which are in contact with the upper fixing belt 11. Thus, the rotary member 13, fixing member 15 and lower fixing belt 12 are heated. In the meantime, the heat of the lower fixing belt 12 thus heated is transferred to the rotary member 14 and the fixing member 16 disposed on the inside circumference thereof, so that these members are also heated.
The aforesaid temperature sensor 18 takes measurement on the temperature of the upper fixing belt 11 at a portion thereof via which the fixing members 15, 16 are pressed against each other. After the temperature thus taken reaches a predetermined level say 160° C. or so, the receiving medium 1 supplied with the toner t is introduced to place between the pair of fixing belts 11, 12.
At place where the pair of fixing members 15, 16 are pressed against each other, the receiving medium 1 is subjected to the heat and pressure as held between the fixing belt pair 11, 12. As held between the pair of fixing belts 11, 12, the receiving medium 1 is advanced to place where the pair of rotary members 13, 14 are pressed against each other. At this place, the receiving medium 1 is further heated and pressurized for fixing the toner t thereto. Subsequently, the receiving medium 1 with the toner t thus fixed thereto is discharged from between the pair of fixing belt portions 11, 12 via which the pair of rotary members 13, 14 are pressed against each other.
The aforesaid operations,for fixing the toner t to the receiving medium 1 are carried out for a predetermined number of cycles. After the lapse of a predetermined period of time (e.g., 30 minutes), the heating by means of the halogen lamp 17 is terminated. At the same time, the rotation of the rotary member 13 is stopped while the pressure release unit 22 moves down the base 20 to release the pair of fixing members 15, 16 from the pressed relation, as shown in FIG. 3.
Thus, the deformation or the like of the fixing belts 11, 12 is prevented by releasing the fixing member pair 15, 16 from the pressed relation by means of the pressure release unit 22.
As described above, the heat fixing device of the embodiment is arranged such that the fixing belts 11, 12 contact the rotary members 13, 14 and the fixing members 15, 16 on the inside circumferences thereof only at a respective portion thereof via which the respective pair of rotary members 13, 14 and fixing members 15, 16 are pressed against each other. Therefore, the fixing belts 11, 12 contact the rotary members 13, 14 and the fixing members 15, 16 at reduced contact areas so that the rotary members 13, 14 and the fixing members 15, 16 absorb less heat from the fixing belts 11, 12. As a result, the temperature drop of the fixing belts 11, 12 is suppressed.
In the heat fixing device of the embodiment, the fixing belts 11, 12 may be formed from, for example, a resin such as thermosetting polyimide, thermoplastic polyimide, polyamide and polyamideimide; or a metal such as nickel, stainless steel and copper. In the light of enhancing the heat resistance, wear resistance, chemical resistance and the like, the fixing belts 11, 12 may preferably be formed from a thermosetting polyimide. From a standpoint of increasing thermal conductivity, it is preferred to form the fixing belts 11, 12 from a metal such as nickel or stainless steel.
If the fixing belts 11, 12 are too great in thickness, the rate of heating the fixing belts 11, 12 is lowered so that it takes longer to heat the fixing belts sufficiently. Therefore, it is preferred that the fixing belts 11, 12 have the minimum possible thickness that a sufficient strength is ensured. Thus, the fixing belts may normally have a thickness of not more than 500 μm, or preferably of not more than 300 μm.
As shown in
The separator layers 11b, 12b may be formed from a material suffering less adhesion of the toner t, such as a fluorine resin and a fluorine rubber. It is preferred to use the fluorine resin.
Examples of a usable fluorine resin include perfluoroalkoxy fluorine resin (PFA), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polyethylene-tetrafluoroethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polychloro-trifluoroethylene (PCTFE), polyvinyl fluoride (PVF) and the like. Examples of a usable fluorine rubber include vinylidene fluoride rubbers, fluorosilicone rubbers, tetrafluoroethylene-propylene rubbers, tetrafluoroethylene-perfluorovinylether rubbers, tetrafluoroethylene-perfluoro rubbers and the like.
As shown in
In the case where the fixing belt 11 is heated by means of the halogen lamp 17, it is preferred to increase the radiation absorptivity of the fixing belt 11 for quick heating of the fixing belt 11. Hence, it is favorable to employ a fixing belt having a radiation absorptivity of at least 80%, or more preferably of at least 90%.
In order to increase the radiation absorptivity of the fixing belt 11, the fixing belt 11 may be formed from a metal such as nickel or stainless steel, or otherwise, a coating solution having a radiation-absorbing property may be applied to the inside circumference of the fixing belt 11. Alternatively, radiation-absorbing particles such as carbon black, graphite, iron black, ferrite, copper oxide, cobalt oxide or iron red may be dispersed in the fixing belt 11.
The following experiment was conducted on the fixing belt 11 having the structure wherein the elastic layer 11c and the separator layer 11b were laminated on the belt base 11a, as shown in FIG. 5. The experiment was to determine which of the belt base 11a, the elastic layer 11c and the separator layer 11b should be increased in the radiation absorptivity in order to achieve the most efficient heating of the fixing belt 11 by means of the halogen lamp 17.
In this experiment, the following fixing belts were prepared. A fixing belt A had carbon black dispersed only in the belt base, presenting an overall radiation absorptivity of 99%. A fixing belt B had carbon black dispersed only in the separator layer, presenting an overall radiation absorptivity of 99%. A fixing belt B had carbon black dispersed only in the elastic layer, presenting an overall radiation absorptivity of 80%. A fixing belt D had carbon black dispersed in the whole body thereof, presenting an overall radiation absorptivity of 99%. A fixing belt E was free from carbon black. The overall radiation absorptivity of this fixing belt was 25%.
A respective inside circumference of the above fixing belts A to D was irradiated with light from the halogen lamp for heating the respective fixing belts A to D. The fixing belts A to D were each determined for the average heating rate (° C./sec) during a period of time that a surface temperature thereof was raised from 50° C. to 160° C. The results are listed in Table 1 as below.
As seen from the results, the heating rate was dramatically improved in the fixing belt C wherein the radiation-absorbing particles of carbon black were dispersed in the elastic layer alone for increasing the radiation absorptivity thereof. This indicates that it is preferred to increase the radiation absorptivity of the elastic layer.
The heat fixing device of the embodiment may employ the rotary members 13, 14 constructed such that a metal roller 13a, 14a such as formed of iron is formed with a surface layer 13b, 14b on an outer periphery thereof, as shown in FIG. 6.
If the rotary members 13, 14 are too great in diameter, the rotary members 13, 14 are increased in heat capacity so as to absorb more heat of the fixing belts 11, 12. In addition, such rotary members entail a problem that the receiving medium 1 is less prone to separate from the fixing belts 11, 12 when discharged from therebetween. If, on the other hand, the rotary members 13, 14 are too small in diameter, the rotary members have difficulty in driving the fixing belts 11, 12. Accordingly, it is preferred that the diameter of the rotary members 13, 14 is in the range of 8 to 20 mm.
The surface layers 13b, 14b overlaid on the outer peripheries of the rotary members 13, 14 may be formed from a material having a high heat resistance and such a high friction coefficient as to permit the fixing belts 11, 12 to be properly driven by the rotation of the rotary members 13, 14. Examples of a usable material for the surface layer include silicone rubbers, ceramic materials, polyimide resins and the like.
In the heat fixing device of the embodiment, the aforesaid fixing member 15, 16 may be constructed such that a pad support member 15a, 16a is laminated with a pad member 15b, 16b, which, in turn, is laminated with a low-friction layer 15c, 16c for reducing friction to the fixing belt 11, 12, as shown in
The above pad support members 15a, 16a may be formed from a material including a metal such as stainless steel and iron, a hard resin and the like, such that the fixing members 15, 16 may be pressed against each other at a consistent pressure.
Examples of a suitable material for the pad members 15b, 16b include resins, rubbers, foamed rubbers, ceramics, metals and the like. In a case where the pad members are formed from an elastic material such as rubber, the fixing members 15, 16 may be pressed against each other at a consistent pressure. In a case where, on the other hand, the pad members are formed from a hard material such as ceramic or metal, the fixing members 15, 16 may be pressed against each other at an increased pressure so that the toner t is more positively fixed to the receiving medium 1.
The above low-friction layer 15c, 16c may preferably be formed from a material having a low friction coefficient and an excellent heat resistance. Examples of a usable material include fluorine resins, ceramics, glass cloth, polymides and the like. Above all, a fluorine resin is preferred. Although the embodiment has the arrangement wherein the low-friction layer 15c 16c is overlaid on the pad member 15b, 16b, it is also possible to interpose a sheet formed from the above low-friction material between the fixing belt 11, 12 and the pad member 15b, 16b.
Examples of a usable fluorine resin include perfluoroalkoxy fluorine resin (PFA), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polyethylene-tetrafluoroethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polychloro-trifluoroethylene (PCTFE), polyvinyl fluoride (PVF) and the like. Such fluorine resins may be added with a material having a good wear resistance. In addition, the glass cloth or polyimide, having a good wear resistance, may be surface-coated with such a fluorine resin.
As shown in
The high-thermal-conductivity layers 15b1, 16b1 may be formed from a material having a thermal conductivity of at least 0.6×10−3 cal/cm·sec·° C. Examples of such a material include silicone rubbers, metals, perfluoroalkoxy fluorine resin (PFA) and the like. On the other hand, the low-thermal-conductivity layers 15b2, 16b2 may be formed from a material having a thermal conductivity of 0.5×10−3 cal/cm·sec·° C. or less. Examples of such a material include foamed silicone rubbers, ceramics and the like.
The aforesaid pad member 15b, 16b may have an alternative structure, as shown in
Although the present invention has been fully described by way of examples, it is noted that various changes and modifications will be apparent to those skilled in the art.
Therefore, unless otherwise such changes and modifications depart from the scope of the invention, they should be construed as being included therein.
Number | Date | Country | Kind |
---|---|---|---|
2003-035920 | Feb 2003 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5124755 | Hediger | Jun 1992 | A |
5970301 | De Cock | Oct 1999 | A |
6721532 | Kosugi et al. | Apr 2004 | B2 |
Number | Date | Country |
---|---|---|
09-274401 | Oct 1997 | JP |
09274401 | Oct 1997 | JP |
10207272 | Aug 1998 | JP |
10-333459 | Dec 1998 | JP |
11174878 | Jul 1999 | JP |
2001-034094 | Feb 2001 | JP |
Number | Date | Country | |
---|---|---|---|
20040161271 A1 | Aug 2004 | US |