This invention relates to a heat generator. It can be used to provide heat, generate hot water or as part of a water treatment/desalination system.
Known rotary heat generators such as described in WO 2015/025146 A (ROTAHEAT LIMITED) 26 Feb. 2015 using eddy current induction in a rotating disc to heat water have relatively low heat capacity because the theoretical disc size required for large heating capacity becomes unmanageable.
According to the present invention a heat generator comprises a shaft, a fluid input and fluid output, first member and second member disposed around a shaft, the first member having a disc-like portion extending radially from the shaft, the second member with a plurality of magnets mounted thereon having a disc-like portion extending radially from the shaft and in which one of the members may rotate with respect to the other member and the first member has an electrically conducting portion intersecting the magnet fields of the magnets mounted on the second member and in which rotation of one member results in one or other of the magnetic field or the conducting member to rotate with respect to the other.
In a first embodiment of the invention the heat generator comprises a first member and second member disposed around a shaft, the first member having a disc-like portion extending radially from the shaft and an electrically conducting cylinder extending laterally from the disc-like portion and co-axially with the shaft, the second member having a disc-like portion extending radially from the shaft and cylindrical portion, extending laterally from the disc-like portion and co-axially with the shaft and having magnets mounted thereon facing the electrically conducting cylinder and with a passage for liquid to be heated, coaxial with the shaft, defined between the cylindrical portion of the second member and the electrically conducting cylinder and in which one member may rotate with respect to the other member.
In one arrangement, the member which rotates has an associated impeller that in operation drives liquid into the passage.
In an arrangement in which first member rotates, the impeller can be formed on the face of the disc like portion facing the disc like portion of the second member.
In these arrangements the liquid can come from a high pressure inlet to rotate the impeller and one member about the other.
In another arrangement, one or other of the members is mounted on the shaft and the other member is fixed.
In this arrangement the shaft is driven directly by a wind turbine, water turbine, or a hydraulic motor or other source of rotational power. In such an arrangement an impeller mounted on the member mounted on the shaft can be provided to drive liquid through the passage.
In another arrangement a hydraulic motor is mounted directly on the rotatable member to rotate that member, the hydraulic motor being supplied with high pressure hydraulic fluid from a hydraulic pump. In such an arrangement an impeller mounted on the member mounted on the shaft can be provided to drive liquid through the passage.
In one arrangement the cylindrical portions each have a plain surface opposite each other, in an alternative arrangement the cylindrical surface of the rotating member opposite the other member has screw pattern on the surface to act as a further impeller to assist flow along the passage,
In one arrangement embodiment the first member comprises at least two coaxial electrically conducting cylinders, an inner cylinder and an outer cylinder, mounted on a common disc-like portion and the second member has one or more its cylindrical portions nesting between the conducting cylinders, the cylindrical portion(s) of the second member having magnets mounted opposite the conducting cylinders, with two or more passages formed between the conducting cylinders and the cylindrical portion(s). Conveniently, in such an embodiment, the disc-like portion of the second member is disposed around the shaft towards one end of the heat generator and the disc-like portion of the first member towards the other end of the heat generator. Liquid to be heated flows in the passages created parallel to the axis either in parallel or sequentially through a first passage then a second co-axially with the shaft.
In one arrangement, liquid having passed through the heat generator passes on to a heat exchanger or heat recovery unit.
In one arrangement, one member is driven by high pressure liquid which is then passed through the passage to be heated.
In one arrangement the magnets are disposed around the cylindrical portion of the second member.
In a second arrangement the magnets are disposed longitudinally along the length of a cylinder and parallel to the axis of the shaft. This arrangement of magnets enables an increase in the rate of flow of fluid through the heat generator.
In the second arrangement, ideally the poles of the magnets alternate around the cylindrical portion of the second member.
Normally, the magnets are disposed around or along the outside of the cylindrical portion of the second member, but arrangements are possible where the magnets are disposed inside the cylindrical portion of the outer member.
When the magnets are distributed on the outside of the cylindrical portion of the second member, in one arrangement they are inset in longitudinal grooves formed in the cylindrical portion of the second member. On the inner surface of the cylindrical portion of the second member, longitudinal groves can be formed between the grooves on the outside of the cylindrical portion of the second member, thereby adding flow of water between the first and cylindrical portion of the second members.
The disc-like portion of one member may have a hydraulic motor mounted thereon its high pressure input connected to the high pressure output of a hydraulic pump and its low pressure output connected to the low pressure input of the hydraulic pump, with liquid to be heated drawn onto the passage.
The hydraulic pump may be driven by a wind turbine, water turbine, a rotating propeller arrangement, or some other source of power.
In a second embodiment of the invention the heat generator comprises a shaft, a fluid input and fluid output, a first disc that is electrically conducting fixed to the shaft and rotating when the shaft rotates, a plurality magnets mounted either side of the first disc on a pair of second fixed discs mounted around the shaft but not coupled to it, said second discs being one each side of the first disc, with the planes of the pair of second discs parallel to the plane of the first disc, a plurality of runner vanes upstanding from one or both sides of the first disc and forming a plurality of fluid paths between the first and second discs from close to the shaft towards the magnets, each path having an inlet close to the shaft and an outlet close to the magnets, the widths of said paths increasing from each of their inlets to each of their outlets, a vane free portion of the first disc between the magnets on the pair of second fixed discs, and in which the all of one pole of the magnets on one second disc face the conducting disc and all of the opposite poles of the magnets mounted on the second of the second discs face the conducting disc.
Further features of the invention are set out in the accompanying description and claims. The heat generator of this invention may be integrated with a heat exchanger or be part of a hot water system or be part of a water treatment/desalination system.
In the invention the magnets may be permanent magnets or electro-magnets.
The invention will now be described, by way of example only, with reference to the accompanying drawings, in which:
In
The second member 122 has a central hole 128 in its disc-like portion 124 through which the shaft 102 passes. Bearings 130 are inset into disc-like portion 124, around the central hole 128 and held in place by keeper plates 132. The bearings 130 support the shaft 102 and allow it to turn with respect to the second member 122. The first member 112 has an inner screw thread 117 which screws onto an outer screw thread 107 on shaft 102, fixing the first member 112 in position on the shaft 102, so that the first member 112 rotates with shaft 102, and causing the conducting cylinder 116 to rotate in the magnetic fields of magnets 108, causing the conducting cylinder to heat.
The face of the disc-like portion 114 of first member 112 is formed as an impeller 118, with a plurality of impeller blades 119 formed in the surface.
High pressure liquid to be heated is fed to the input 104 on the disc-like portion 124 of second member 122. The high pressure liquid drives the impeller 118 causing the first member 112 and shaft 102 to rotate about axis A. The liquid on leaving the periphery of impeller 118 passes through passage 106 in parallel to axis A where it is heated by the heat generated in conducting cylinder 116 by its intersecting the magnetic fields of magnets 108. After passing through passage 106, the heated liquid leaves the heat generator 100 through one or more ducts 105 through sealing plate 134, which is fixed and sealed to the cylindrical portion 126.
The sealing plate 134 has a central aperture 136 containing a bearing 138 providing additional support for shaft 102. The bearing is held in place by an endplate 140.
A sealing cover 142 prevents hot liquid accesses the volume contained between conducting cylinder 116 and the disc-like portion 114 of first member 112. The sealing cover has a central bore 144 with an inner thread 146, engaging with a further outer thread 148 and thus providing additional support for the first member 112 on shaft 102.
From the output 105, hot liquid may be passed to one or more heat exchangers or, for example, a coil in a hot water tank to recover and use the heat in the liquid. From there the liquid may pass through a hydraulic pump, which can be, for example, wind or water turbine driven, and pumped back under pressure to the input 104.
The electrically conducting cylinder 116, which rotates, has a screw 110 formed in its surface opposite the cylindrical portion 126 of fixed member 122. The screw acts to aid flow of liquid through the passage in a controlled manner, providing that the liquid remains in the passage for sufficient time to heat adequately but not so long that it boils prematurely.
In
The open end of conducting cylinder 116 is optionally sealed with a sealing cover 142 mounted and supported in the same way as the sealing cover 142 shown in
A schematic drawing of a further alternative arrangement is shown in
As in
In
Moving to the further example of
The cylindrical portion 126 has magnets 108 inset into its surface on both sides. The disc like portion 124 of the second member, is towards the opposite end of the heat generator to the disc-like portion 114 of the first member 112 As in
The construction forms two fluid paths between the conducting cylinder 116A and the cylindrical portion 126, and between the conducting cylinder 116B and the cylindrical potion 126 respectively. Both fluid paths 116A and 116B are parallel to the axis A of shaft 102 and co-axial therewith.
The outer conducting cylinder 116B, if not protected would get very hot, for safety, therefore the generator 100 is mounted in a cylindrical case 180 having end plates 182 with central apertures 184 and bearings 186 through which the shaft 102 passes.
High pressure fluid is pumped into the heat generator 100 through input 104 which passes through the case end plate 182 into the volume between the disc-like portion 114 of the first member 112 and the case end plate 182. A number of apertures 119 in the disc-like portion 114 allow liquid under pressure into the passages 106A and 106B. Seals 188 around the outside of the outer conducting cylinder prevent the liquid entering the gap between the outer conducting cylinder 116B and the case 180.
The liquid passes through passages 106A and 106B where it is heated from the heat generated tin the conducting cylinders 116A and 116B by their rotation in the magnetic fields of magnets 108. After the liquid is heated its passes out of the heat generator through outlet 105 in the case 180. To allow heated liquid to pass from passage 106A to the outlet, apertures 129 are provided in the disc-like portion 124 of member 122.
It can be seen that the arrangement of
It is also possible to add further electrically conducting cylinders to the first member 112 and one or more further cylindrical portions having magnets mounted thereon to member 122, the cylindrical portions nesting between the electrically conducting cylinders.
As in
In
Performance of the embodiments shown in
In
Magnets 20, 21 in the form of elongate plates are mounted in recesses 36 in the second fixed discs 22, 23 either side of the first disc 18. The opposite poles of the magnets 20, 21 face one another through the first disc 18, say the north poles of magnets 20 face the surface of disc 18, and the south poles of magnets 21 face the opposite side of disc 18. The north-south poles of magnets 20 and 21 are thus aligned parallel to the axis of the shaft 12 and orthogonally to the first disc 18. The north/south pole are designated 20N 20S, 21N, 21S in
A plurality of runner vanes are 24 cast as part of the first disc 18 and are upstanding up from the surface of the first disc on both sides thereof and forming a plurality paths 26 between the first and second discs 18 and 22 from close to the shaft 12 towards the magnets 20 The widths of said paths 26 increase from their inlets 28 close to the shaft to their outlets 30 close to the magnets 20.
The fluid input 14 to the heat generator passes through one of the pair of second discs and links with an inlet 28 causing water to flow the associated path 26. As disc 18 turns with the shaft 12, the water will be moved centrifugally outwards through the path 26. Each of the inlets 28 in turn passes by input 14 causing water to enter each of the paths 26. The water will flow out of outlets 30 into a thin passages 32 passing between the magnets 20, 21 and the vane free outer portion 34 of first disc 18.
Thin pieces 38 of the second discs 22 and 23 between the magnets 20,21 and passages 32 to prevent contact between the magnets 20, 21 and the water flowing in passages 32. The magnets are held in place in the recesses 36 by covers 40 over the recesses 36 in the second discs 22, 23.
The second discs 22, 23 have central holes 42 through which the shaft 12 passes. Bearings 44 are inset into second discs 22, 23, around the central holes 42 held in place by keeper plates 46. The bearings 44 support the shaft 12 and allow it to turn with respect to the second discs 22, 23. A plurality of bolts 48 in holes 49 around the outer edges of the pair of second discs 22 and 23 hold the pair of second discs in place around the first disc 18, allowing the first disc 18 freely to rotate between the two second discs, with its vane free portion 34 rotating within the fields created by the magnets 20, 21.
The outer rim of each of the second discs 22, 23 have “ears” 50 through which holes 52 pass, enabling the heat generators to be mounted in a frame or on a support. These “ears” 50 and holes 52 are not necessary in a small hand operated heat generators.
To assist good distribution of water over the vane free portions 34 of first disc 18, radial grooves 56 (see
A circular channel 57 cut into the inner surfaces of the pair of second discs extends around the outside of the recesses 36 and radial grooves 56, but connected to neither. Around the outside of each channel 57 is an upstanding circular lip 60 (see
In operation, the shaft 12 is connected to a power source, such as a wind turbine or hydraulic motor. The input 14 is connected to a source of water. Turning the shaft causes the fluid to be move centrifugally and be pushed by runner vanes 24 to the vane free portions 34 of first disc 18, into thin passages 32 and grooves 56. Turning disc 18 between the magnets 20, 2 causes currents to be generated in the first disc 18, particularly in the vane free portion 34 thereof and for the first disc 18 to heat again particularly the vane free portion 34; this in turn heats the fluid in thin passages 32 which then passes into collector channel 58 and out of the heat generator through output 16.
The unit is can be sized to requirement. For example, a unit suitable to generate 3 kW would be about 30 cm in diameter, driven by a 3 meter wind turbine. Large heat outputs the arrangements of
Multiple outlets 16 can be provided. If say, two are used, one spaced from the other by a quarter of the distance around the periphery of the heat generator, two different temperature outlets can be provided as the dwell time of fluid in the heat penetrator will be different at each outlet.
The outside of the heat generators shown in the figures would normally be lagged to minimise heat loss. The heat generator was supplying a heating coil of a hot water tank, pipework to and from the heat generator would need to be lagged, and the system pressurised to ensure water or other fluid was always present in the heat generator. For other applications, the fluid supply would need to be under some pressure, for example from a header tank, for the heat generator to be primed with water before use to ensure the presence of fluid in the system; if a header tank is not available a small priming pump may be needed to pump fluid into the heat generator initially.
Although normally the heat generators as described in the figures use water as the operating fluid, other fluids can be used if specific performance was needed or the generator was in a closed loop systems. The output, when water, can be used directly. The output when the fluid is water or another fluid can be taken a heat exchanger or the heating coil of hot water tank and used for indirect heating purposes.
Throughout the description the magnets can be permanent magnets or electro-magnets. Where hydraulic motors discussed, they can be any conventional hydraulic motors, although for long life displacement motors are preferred.
Number | Date | Country | Kind |
---|---|---|---|
1602399.6 | Feb 2016 | GB | national |
1618275.0 | Oct 2016 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/GB2017/050369 | 2/10/2017 | WO | 00 |