The invention relates to a heat-insulating layer system for metallic structural components, especially for structural components of a gas turbine such as an aircraft engine, which structural components are subjected to high temperature or hot gas loads, according to the preamble of the patent claim 1. Furthermore the invention relates to a structural component with such a heat-insulating layer system.
Metallic structural components of a gas turbine are provided with heat-insulating layers for protection against high temperatures and against hot gas corrosion. The DE 100 08 861 A1 discloses a heat-insulating layer system for a metallic structural component, whereby the heat-insulating layer system consists of a contact layer and a cover layer. The contact layer is located between an adhesion-promoting layer and the cover layer, whereby the adhesion-promoting layer is applied on the structural component. According to the DE 100 08 861 A1, the contact layer of the heat-insulating layer system consists entirely or predominantly of zirconium oxide partially stabilized with Y2O3 or of a glass-metal composite material, the cover layer consists of fully stabilized cubic zirconium oxide.
Beginning from this, the problem underlying the invention is to provide a novel heat-insulating layer system for metallic structural components, especially for structural components of a gas turbine such as an aircraft engine.
This problem is solved by a heat-insulating layer system according to patent claim 1. According to the invention, the inner contact layer is formed of a zirconium oxide partially stabilized with yttrium, yttrium oxide, calcium or magnesium, the outer cover layer is formed of a material that consists of at least one component with at least one phase, which stoichiometrically comprises 1 to 80 Mol-% Mx2O3, 0.5 to 80 Mol-% MyO and the remainder being A12O3 with incidental or accidentally-occurring impurities, whereby Mx is selected from the elements lanthanum, neodymium, chromium and barium or mixtures thereof, and whereby My is selected from the alkaline earth metals, the transition metals and the rare earths or mixtures thereof, preferably of magnesium, zinc, cobalt, manganese, iron, nickel, chromium, europium, samarium or mixtures thereof.
Preferably the outer cover layer is formed of lanthanum hexaaluminate.
The inventive structural component with such a heat-insulating layer system is defined in patent claim 7.
Preferred further developments of the invention arise from the dependent claims and the following description. An example embodiment of the invention is explained in further detail in connection with the drawing, without being limited thereto. In that regard:
The adhesion layer 12 applied onto the surface 11 of the metallic structural component 10 is embodied metallically and preferably embodied as an aluminum diffusion layer or as a platinum-aluminum diffusion layer or as a MCrAlY applied coating layer. The adhesion layer 12 increases the adhesion of the heat-insulating layer system 13 on the metallic structural component 10.
In the sense of the present invention, the inner contact layer 14 of the heat-insulating layer system 13 is formed of a zirconium oxide partially stabilized with yttrium, yttrium oxide, calcium or magnesium. The outer cover layer 15 of the heat-insulating layer system 13 is formed of lanthanum hexaaluminate. The lanthanum hexaaluminate in that regard is preferably stabilized with magnesium or also manganese.
In the sense of the present invention, thus there is proposed a heat-insulating layer system, which comprises or encompasses two layers, namely an inner contact layer of zirconium oxide partially stabilized with yttrium or yttrium oxide as well as an outer cover layer that is formed of lanthanum hexaaluminate.
Such a heat-insulating layer system with the inventive combination of the contact layer of partially stabilized zirconium oxide and the cover layer of lanthanum hexaaluminate provides a particularly preferred heat-insulating layer system, which comprises an optimized adhesion on the structural component on the one hand, and an optimized thermal alternation resistance or durability on the other hand. Furthermore, structural components that are loaded by or subjected to high temperatures or hot gas and that are coated with the inventive heat-insulating layer system can be subjected to higher operating temperatures.
Due to the, in total, four-layered construction of the metallic structural component 10, metallic adhesion layer 12, contact layer 14 of partially stabilized zirconium oxide and cover layer 15 of lanthanum hexaaluminate, it is achieved that the thermal expansion coefficients between the individual layers are adapted to one another. Thus, stresses within the heat-insulating layer system are minimized.
The inventive heat-insulating layer system 13 or the contact layer 14 as well as cover layer 15 thereof are preferably applied onto the structural component 10 by thermal spraying or by a PVD (Physical Vapor Deposition) or EB-PVD (Electron Beam Physical Vapor Deposition) process or a CVD (Chemical Vapor Deposition) process. The individual methods for applying the layers are well known to the skilled worker being addressed here and thus do not require any further explanation.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 025 798.1 | May 2004 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE05/00944 | 5/24/2005 | WO | 3/15/2007 |