The present invention relates to a method for manufacturing a heat insulation box and a heat insulation box.
Conventionally, a binary freezing apparatus has been known as an ultracold freezing apparatus for storing cells, microorganisms, and the like. PTL 1 discloses a binary freezing apparatus in which a cascade capacitor is incorporated in a recessed portion provided on a back surface of a heat insulation box.
In a case where the recessed portion is formed on the back surface of the heat insulation box, a tray processed by vacuum forming is disposed in an opening of an outer box, and urethane foam is injected into a space between an inner box and the outer box to fill the space by foaming. At this time, the urethane foam is injected in such a state where the tray is fixed with a jig to prevent the tray from being deformed by foaming pressure of the urethane foam injected into the space between the inner box and the outer box.
PTL 1
Japanese Patent Application Laid-Open No. 2000-105047
However, in the case where the tray processed by the vacuum forming is used to form the recessed portion of the heat insulation box, a vacuum molding die is required to manufacture the tray, and a new die is required at each time a shape of the tray is changed. In addition, since the tray is not flexible, a gap tends to be generated between the tray and the outer box when the tray is disposed in the opening of the outer box. Therefore, it has been necessary to dispose a sealing material on the side of the tray between the outer box and the tray so that the urethane foam does not leak from the gap. As a result, productivity may be lowered in some cases. Furthermore, since the tray produced by the vacuum forming may crack at times due to shrinkage caused by heat change, condensation caused by heat change of the cascade capacitor adheres to the urethane foam through a crack, thereby lowering heat insulation performance.
An object of the present invention is to provide a method for manufacturing a heat insulation box without using a tray and a heat insulation box.
A method for manufacturing a heat insulation box according to the present invention includes an inner box that stores an article therein, an outer box that includes an opening, and a foamed material that fills a space between the inner box and the outer box by foaming and includes a recessed portion in the opening of the outer box, the method including: disposing the outer box outside the inner box with a space interposed therebetween; covering the opening from outside of the outer box with an elastic sheet; inserting a jig having a projected portion corresponding to the recessed portion from the outside of the outer box into the opening and pushing the elastic sheet into the space between the inner box and the outer box with the projected portion; and injecting the foamed material into the space between the inner box and the outer box and foaming the foamed material to form the recessed portion with the elastic sheet in close contact with a surface of the recessed portion.
A heat insulation box according to the present invention includes: an inner box that stores an article therein; an outer box that includes an opening; a foamed material that fills a space between the inner box and the outer box by foaming and includes a recessed portion in the opening of the outer box; and an elastic sheet disposed in close contact with a surface of the recessed portion.
According to the present invention, a heat insulation box can be manufactured without using a tray. Accordingly, productivity can be improved. In addition, deterioration of urethane foam due to condensation can be prevented and heat insulation performance can be maintained.
Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings. Note that the embodiment to be described below is an example, and the present invention is not limited by this embodiment.
Main body 3 includes inner box 31 (to be described later, see
As illustrated in
As illustrated in
Further, second back panel 7 formed by urethane foam as a heat insulating material being surrounded by an iron plate is fixed to the back surface of first back panel 6 using a screw (not illustrated). In this manner, cascade capacitor 2 is incorporated in main body 3.
As illustrated in
As illustrated in
Elastic sheet 9 made of polyurethane elastomer is closely fixed to the surface of recessed portion 34 of foamed urethane insulating material 33. Elastic sheet 9 is flexible and stretch, and prevents permeation of liquid such as water. Elastic sheet 9 is a sheet having flexibility and stretch even at a low temperature of −90° C. A thickness of elastic sheet 9 is 0.05 mm, for example.
Here, elastic sheet 9 will be described with reference to
Furthermore, mesh sheet 9c is attached to hole 9b. In the example illustrated in
As illustrated in
As illustrated in
With first back panel 6 being fixed to outer box back surface 32a, cascade capacitor 2 is in close contact with the bottom of recessed portion 34 and first back panel 6. In addition, a shape of a side surface of cascade capacitor 2 is a shape that follows a side surface of recessed portion 34. Accordingly, there is almost no gap between cascade capacitor 2 and recessed portion 34, thereby suppressing condensation.
The proximal end side of insertion portion 10a has a shape substantially the same as opening 32b of outer box back surface 32a (see
Next, a method for forming recessed portion 34 according to the present embodiment will be described with reference to
In step S1, outer box 32 is disposed outside inner box 31 to be spaced apart from inner box 31. Specifically, as illustrated in
In step S2, elastic sheet 9 is placed to cover opening 32b from the back surface side of outer box back surface 32a (
Note that a low-friction tape may be attached to the back surface side of elastic sheet 9. Accordingly, the jig can be smoothly removed in step S5 to be described later.
In step S3, jig 10 is inserted into opening 32b from the back surface side of outer box back surface 32a (
At this time, connection pipe 11 is inserted into a through hole (not illustrated) provided in jig 10. Accordingly, as illustrated in
In the present embodiment, prior to the insertion of jig 10, a sealing material such as a sponge is disposed on outer box back surface 32a to surround opening 32b on the side of outer box back surface 32a. With this arrangement, leakage of the urethane foam from the gap between outer box back surface 32a and jig 10 can be suppressed at the time of foaming in step S4 to be described later.
Note that the sealing material may not be disposed as long as contact between flange portion 10b of jig 10 and outer box back surface 32a can be secured.
In step S4, the urethane foam is injected into the space between inner box back surface 31a and outer box back surface 32a, and is foamed. Here, since elastic sheet 9 is flexible as described above, elastic sheet 9 deforms along the surface of insertion portion 10a of jig 10 by foaming pressure of the urethane foam.
With the foaming of the urethane foam, the air in the space between inner box back surface 31a and outer box back surface 32a is discharged from an air-bleeding hole (not illustrated) provided in outer box back surface 32a.
In step S5, jig 10 is removed, and an unnecessary portion of the edge portion of elastic sheet 9 extending to the back surface side of outer box back surface 32a is cut off (
Subsequently, cascade capacitor 2 is disposed in recessed portion 34 formed by the method described above. At this time, connection pipe 11 protruding from inner box back surface 31a is connected to cascade capacitor 2.
As described above, according to the present embodiment, outer box 32 is disposed outside inner box 31 to be spaced apart therefrom, opening 32b of outer box 32 is covered with elastic sheet 9 from the outside of outer box 32, jig 10 is inserted into opening 32b from the outside of outer box 32 so that elastic sheet 9 is pushed into the space between inner box 31 and outer box 32, and foamed urethane insulating material 33 is injected into the space between inner box 31 and outer box 32 and is foamed to be in close contact with elastic sheet 9, whereby a heat insulation box can be manufactured without using a tray processed by vacuum forming. Accordingly, productivity can be improved.
Moreover, since elastic sheet 9 having flexibility and stretch, which prevents permeation of liquid such as water, is in close contact with foamed urethane insulating material 33, the following effects can be exerted.
Since elastic sheet 9 prevents permeation of liquid such as water, when binary freezing apparatus 1 is used, it is possible to prevent water due to condensation caused by a temperature of cascade capacitor 2 being lowered from penetrating through foamed urethane insulating material 33. Accordingly, hydrolysis of foamed urethane insulating material 33 can be suppressed, and favorable heat insulation performance can be continuously obtained.
Furthermore, since elastic sheet 9 is not cracked due to shrinkage or the like caused by heat change, it is possible to prevent condensation caused by heat change of the cascade capacitor from adhering to the urethane foam through a crack, and is possible to prevent heat insulation performance from being lowered.
Since elastic sheet 9 is flexible and stretch, it can be easily deformed. Therefore, at the time of screwing first back panel 6 onto outer box back surface 32a while cascade capacitor 2 is being pushed, foamed urethane insulating material 33 and elastic sheet 9 deform to follow the shape of cascade capacitor 2 at the contact surface with cascade capacitor 2. As a result, the gap between cascade capacitor 2 and recessed portion 34 can be eliminated, whereby condensation in recessed portion 34 can be suppressed.
Note that, although the exemplary case where cascade capacitor 2 is disposed in recessed portion 34 has been described in the present embodiment, it is not limited thereto. For example, electrical components for controlling the apparatus may be disposed in recessed portion 34.
Further, although the exemplary case of the heat insulation box in the binary freezing apparatus has been described in the present embodiment, it is not limited thereto. The heat insulation box according to the present invention can be applied to various uses utilized for storing articles while conserving heat, such as a refrigerator and a cooling box.
Furthermore, although the exemplary case of elastic sheet 9 made of polyurethane elastomer has been described in the present embodiment, it is not limited thereto. The sheet to be used only needs to be flexible and stretch, prevent permeation of liquid such as water, and have flexibility and stretch with respect to a temperature reached by members disposed in recessed portion 34 such as cascade capacitor 2.
The present application claims priority based on Japanese Patent Application No. 2016-135697 filed on Jul. 8, 2016 at Japan Patent Office. The contents of Japanese Patent Application No. 2016-135697 are incorporated into the present application by reference.
The method for manufacturing the heat insulation box and the heat insulation box according to the present disclosure are suitable for application to a binary freezing apparatus.
Number | Date | Country | Kind |
---|---|---|---|
JP2016-135697 | Jul 2016 | JP | national |
This application is the Continuation Application of International Application No. PCT/JP2017/023383 filed on Jun. 26, 2017, which claims the benefit of Japanese Application No. 2016-135697 filed on Jul. 8, 2016, the entire contents of each are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4298947 | Tamura | Nov 1981 | A |
20010003383 | Miyake | Jun 2001 | A1 |
Number | Date | Country |
---|---|---|
1896654 | Jan 2007 | CN |
S47-21749 | Jul 1972 | JP |
S48-055445 | Aug 1973 | JP |
49046813 | Dec 1974 | JP |
S49-046813 | Dec 1974 | JP |
S53-016956 | Feb 1978 | JP |
61084213 | Apr 1986 | JP |
S63-078889 | May 1988 | JP |
H09-072651 | Mar 1997 | JP |
2000-105047 | Apr 2000 | JP |
2000105047 | Apr 2000 | JP |
Entry |
---|
Extended European Search Report dated Jun. 3, 2019 for the corresponding European Patent Application No. 17824052.9. |
International Search Report issued in International Application No. PCT/JP2017/023383 dated Sep. 12, 2017 (with English translation). |
Number | Date | Country | |
---|---|---|---|
20190137164 A1 | May 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2017/023383 | Jun 2017 | US |
Child | 16241082 | US |