Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 C.F.R. § 1.57.
This application relates to heat press devices, which can be used to impart a graphical work or other transfer material onto a T-shirt or other workpiece.
Heat press devices, sometimes referred to herein as heat presses, are used in commercial settings to provide high volume through-put specific articles to be decorated. A heat press can be used to decorate a T-shirt by applying pressure and heat for a set period of time to a transfer material containing the decoration after the transfer material has been placed in contact with the T-shirt. Heat and pressure are generated by two platens, which are rigid and, in some cases, heavy plates that can be separated to provide access to the transfer material and T-shirt and then brought together to apply pressure thereto. One of the plates is also heated so that the combination of heat and pressure is provided.
The quality of the end product is affected by the heat and pressure conditions provided by the heat press. For example, although decorating clothing is a core application for heat presses other workpieces with different structures can be decorated in a heat press. For example, rigid materials such as metals, wood, and ceramics are sometimes decorated in a heat press. Even types of fabrics can vary significantly in their structure, for example from silk to leather. Also, the decorative pattern can be carried on a vast array transfer types. All these variations create challenges in heat press design and operation. A heat press could work very well if made for just one type of article and just one type of transfer material. However, such a heat press would be economical only in high through-put and volume applications.
Although high volume through-put devices are known, a large hobbyist and home-based business market segment has developed for artistic consumer products. This market has been greatly expanded by the advent of internet-based sales channels such as etsy.com. Because the market for these items may be difficult to predict, a heat press has to be flexible in application to provide a viable means of producing these items. Many of these often home-based businesses would benefit from heat presses that are versatile in application and yet are not too expensive.
A need exists for a heat press device that is able to be closely controlled for relevant heat press conditions. For example, a good quality heat press product can be produced reliably if heat, time, and pressure conditions are carefully controlled. A heat press can be configured to precisely control for pressure for a single substrate or workpiece and a single transfer type in a facility producing only one type of article. However, such a press would not be flexible in application. A heat press can be equipped with sophisticated sensors to carefully control pressure across a range of substrate and transfer types to provide consistency of pressure conditions to enable a user to duplicate pressure conditions for different articles. However, such sensors may require careful calibration and maintenance and can greatly increase the cost of the heat press making it too costly for many potential users. Conventional heat presses without sensors attempt to provide consistency in pressure by a paper pressure test. The paper pressure test initially requires the platens be positioned such that a paper partially located between the platens would slip out when the platens are in the closed position. The paper pressure test then provides that the pressure be increased incrementally until the piece of paper between platens does not easily slip out when the platens are in the closed position. That relative platen position is considered to provide an appropriate pressure. Some users may also develop a feel for pressure. While these approaches to controlling pressure can provide adequate results, there is a need for a heat press that can accurately provide pressure conditions for a variety of articles without requiring expensive sensors while also providing an indicator to signal to the user that the pressure condition is as desired. Such a heat press can eliminate less clear techniques, such as the paper pressure test, when switching between different types of articles while still providing excellent pressure control for a range of articles. Such a heat press would be highly desired by the home-based and internet sales segment of the heat press market.
In one embodiment a heat press device is provided that includes a support structure, a lower platen and a heating element assembly. The lower platen can be coupled with the support structure. The lower platen can be configured to support a workpiece and a transfer material. In some cases, the lower platen is a first platen, e.g., it may be located to a side position or above another platen and not necessarily below or lower than another platen. The heating element assembly can include a heating element and an upper platen. The upper platen can be a second platen, e.g., it may be located to a side position or below another platen and not necessarily above or over another platen. The heat press device also can include a mechanism to provide relative motion between the first and second (or the lower and upper) platens. Relative motion between the first (e.g., the lower) platen and the second (e.g., the upper) platen of the heating element assembly enable the heat press device to be in an open configuration to provide access for the workpiece and the transfer material and in a closed configuration to apply pressure to the workpiece and the transfer material. The heat press device can further include a movement assembly configured to change a pressure state between the first (e.g., the lower) platen and the second (e.g., the upper) platen of the heating element assembly when the heat press device is in the closed configuration. The heat press device can also include an indicator that is configured to convey the pressure state between the first (e.g., the lower) platen and the second (e.g., the upper) platen when the heat press device is in the closed configuration.
The indicator can convey a pressure state as a function of relative position of a platen that is moved by the movement assembly. A mechanical position can be made observable directly or indirectly. An indirect mechanical position can be observed using a counter coupled to detect rotation of and therefore advancement of a load plate. An indirect mechanical position can be observed by way of a location of a pointer along a scale or a relative position of a component coupled with a load plate of the heat press.
In other cases a textual output can provide visual cue as to an indirect measure of pressure between two platens. A numerical output, e.g., digital or analog, can provide visual cue as to an indirect measure of pressure between two platens. A graphical output, e.g., a color or a symbol, can provide visual cue as to an indirect measure of pressure between two platens. An audio output can provide an audible cue as to an indirect measure of pressure between two platens. A tactile output can provide an audible cue as to an indirect measure of pressure between two platens. Any combination of the foregoing outputs as to an indirect measure of pressure between two platens can be provided to control a heat press. The indicator can provide a simple output that conveys to the user the pressure state without requiring a load sensor or other complex and expensive electronic components.
In another embodiment, a heat press pressure control apparatus is provided that includes a movement assembly configured to be coupled to one or more of a first platen of a heat press, a second platen of a heat press, and a support structure of a heat press coupled with the first platen or the second platen. The movement assembly has a threaded recess, a threaded member threaded into the threaded recess, and an actuator configured to provide rotation between the threaded member and the threaded recess. The movement assembly thereby changes a separation condition of the movement assembly. The heat press pressure control apparatus also includes an indicator configured to convey a pressure state resulting from the separation condition.
In a further embodiment, a heat press pressure control apparatus is provided that includes a housing, a bracket and a coupler. The housing at least partially enclosing a cylindrical member and a user output device disposed on an exposed face thereof. The cylindrical member is journaled for rotation on or in the housing. The housing also at least partially encloses a rotation counter configured to detect rotation of the cylindrical member and to output to the user output device an indication of a pressure state related to the rotation of the cylindrical member. The bracket is configured to secure the housing to an arm or a column of a heat press device. The coupler is configured to couple the cylindrical member journaled for rotation in the housing to a platen adjusting actuator. The coupler causes the cylindrical member to rotate when a platen adjusting actuator of a heat press device is rotated.
In another embodiment, a heat press pressure control apparatus is provided that includes a means for determining a pressure state, such as a position of or a change in position of first and second platens relative to each other when the first and second platens are in an open configuration. The heat press control apparatus also includes an indicator configured to convey a pressure state resulting from the separation condition. The heat press control apparatus can be secured to an existing heat press device to provide by the functionality to an installed customer or to existing inventory by retrofit.
The abovementioned and other features of the inventions disclosed herein are described below with reference to the drawings of the preferred embodiments. The illustrated embodiments are intended to illustrate, but not to limit the inventions. The drawings contain the following figures.
While the present description sets forth specific details of various embodiments, it will be appreciated that the description is illustrative only and should not be construed in any way as limiting. Furthermore, various applications of such embodiments and modifications thereto, which may occur to those who are skilled in the art, are also encompassed by the general concepts described herein. Each and every feature described herein, and each and every combination of two or more of such features, is included within the scope of the present invention provided that the features included in such a combination are not mutually inconsistent.
This application discloses configurations of heat press devices and components therefor that provide for control of a pressure state between two platens and an indicator to help a user achieve an operating condition. In some cases, the pressure state control is by way of detecting the actual height of a platen or one or more components that have a height related to the relative position between platens. These measurements can be closely related to pressure as to provide a functional alternative to actually sensing or directly measuring pressure. SECTION I discusses heat press devices that are able to control and convey pressure states between platens without requiring expensive or complex load sensors. SECTION II discusses a heat press control apparatus that can be coupled with heat press devices to enable such devices to control and convey pressure states between platens without requiring expensive or complex load sensors.
The heat press device 100 also includes a heating element assembly 116 that has a heating element 120 and an upper platen 124. The upper platen 124 can provide a rigid structure against which the lower platen 108 can act. The heating element assembly 116 can comprise any suitable structure for heating the upper platen 124, such as by providing a high resistance conductor that increases in temperature as current is passed therethrough. The upper platen 124 can have a lower surface that faces an upper surface of the lower platen 108, in some cases the silicon pad. These surfaces can be separated from each other in an open configuration 132 (shown in
The open configuration 132 enables the workpiece 112 and the transfer material 114 to be moved into a space disposed between the upper surface of the lower platen 108 and the lower surface of the upper platen 124. The workpiece 112 and the transfer material 114 can be placed on the upper surface of the lower platen 108. The workpiece 112 and the transfer material 114 can be placed on a silicon pad of the lower platen 108. The lower surface of the upper platen 124 can then be brought into contact with one or both of the workpiece 112 and the transfer material 114 to provide a selected pressure state between the lower platen 108 and the upper platen 124, as discussed further below.
Although the platen 108 is illustrated as below the platen 124 of the heating element assembly 116, other configurations are possible. For example, the spatial orientation can be modified such that the platen 108 is not lower than or below the platen 124. The platens 108, 124 can be side-by-side in some embodiments. The heating element assembly 116 can be disposed below the platen 108, such that the platen 124 is lower than the platen 108. Also, a heating element 120 can be disposed in an assembly including the platen 108 instead of or in addition to the heating element 120 in the assembly including the platen 124. Due to these variations, the lower platen 108 can be a first platen and the upper platen 124 can be a second platen or the upper platen 124 can be a first platen and the lower platen 108 can be a second platen. Also, the platens 108, 124 need not necessarily have a flat plate configuration. The platens could be curved to act on a curved workpiece, such as a cup, mug, or cap.
As noted above, the relative positions of the lower platen 108 to the upper platen 124 can change during the use of the heat press device 100. During use, the heat press device 100 can be in the open configuration 132 as shown in
In one embodiment, the configuration control mechanism 128 of the heat press device 100 includes a linkage 128A that can raise and lower the upper platen 124. The linkage 128A can include one or more bars or links, e.g., a first pair of bars pivotably coupled to a frame 129 secured to the support structure 104. The frame 129 and/or support structure can be considered, alone or together, to be a pedestal supporting other components of the heat press device 100. A handle 128B can be coupled with pivotable bars of the linkage 128A. The handle 128B can move pivotable bars down and can apply a load to the heating element assembly 116, e.g., to the heating element 120, to the upper platen 124 or to both of the heating element 120 and the upper platen 124. The handle 128B can move pivotable bars to apply a load to a load plate 128C via another pair of bars of the linkage 128A. As discussed further below, the heat press device 100 can include an arm 145 that is pivotable relative to the frame 129. The load plate 128C can be coupled with the upper platen 124, e.g., with a top surface of the heating element assembly 116 which includes the upper platen 124. The load plate 128C can be coupled to and extendable from the arm 145 to alter a pressure state in the space between the lower platen 108 and the upper platen 124.
The heat press device 100 includes a movement assembly 136 that is configured to change the pressure state between the lower platen 108 and the upper platen 124 of the heating element assembly 116 when the heat press device is in the closed configuration. The movement assembly 136 can include a manual position adjusting device. In other words, the movement assembly 136 allows the user to select how much pressure is applied to the workpiece 112 and/or the transfer material 114. Importantly, the pressure state that is selected can be accurately predicted and the pressure state can be clearly conveyed to the user by the heat press device 100. The movement assembly 136 can be mounted on or to the arm 145 of the heat press device 100 that is disposed over the heating element assembly 116 and to which the load plate 128C is coupled. In a modified embodiment, the movement assembly 136 is integrated into a swing-away format heat press. For example, in the heat press device 100A of
The heat press device 100 also includes an indicator 140. The indicator 140 can be located at an upper portion 143 of the heat press device 100 on the frame 129 secured to the support structure 104. The indicator 140 can be configured as part of a user interface portion 144. The user interface portion 144 can be an interface that provides information about one or more operational states of the heat press device 100. The user interface portion 144 allows the user to input and see displayed a selected temperature for the heating element 120 or upper platen 124. The user interface portion 144 can include a timer function by which the user can determine how long the heat and pressure will be applied. A timer function can also include a count-down to help the user know when the heat press operation will conclude. The timer function of the heat press device 100 can be set independently of other variables of the heat press device 100. The timer function of the heat press device 100 can be selected based on one or more of a temperature setting, the position of the movement assembly 136, and/or an input indicating the workpiece 112 and the transfer material 114 of the heat press device 100.
In one embodiment, the indicator 140 is not part of the user interface portion 144. For example, the indicator 140 can be located on or coupled to the arm 145 of the heat press device 100. The indicator 140 can be a component of or coupled with the movement assembly 136. The indicator 140 can be located adjacent to the movement assembly 136, whether it is on the arm 145 or on another portion of the heat press device 100. In some embodiments, the indicator 140 includes an output that shows or can be predictive of a pressure state. The pressure state can be shown or predicted from the position or configuration of the movement assembly 136. The indicator 140 can be disposed on a common housing with an actuator or other components of the movement assembly 136. As discussed above, the position of the movement assembly 136 can include a number of turns of a threaded member which corresponding to a linear position of the load plate 128C relative to one or both of the lower platen 108 and the upper platen 124.
If a user wants to enhance the pressure state of the heat press device 100 the movement assembly 136 can be operated, e.g., the actuator 258 rotated one revolution, and the user interface 146 may display “1”. From experience of use with the heat press device 100 the user can determine that a setting of “1” provides excellent results for a certain workpiece 112 and transfer material 114 at a certain time and temperature. If more pressure is desired, the movement assembly 136 can be operated, e.g., the actuator 258 rotated until the user interface 146 displays “5” for example. The setting “5” my correspond to a much higher pressure state than the setting “1” to provide best results for a different combination of the workpiece 112, transfer material 114 at a selected time and temperature. The direct mechanical output of the illustrated embodiment of the movement assembly 136 provides an immediate, reliable indication of these and other pressure state without requiring any electronic sensors or detectors.
The pulley 140B can be journaled on a housing that also contains the user interface 146. The pulley 140A can be configured to mount to an adjusting screw of a conventional heat press device to provide a heat press pressure control apparatus that can be easily installed by an end user. Accordingly these components can be part of a unit, as discussed further below in SECTION II.
A display 150 can provide enhanced or different information to a user on the user interface 146. The display 150 configured to receive signals from a processor 148. The processor 148 can be configured to process a signal indicative of the pressure state between the lower platen 108 and the upper platen 124. The processor 148 can output a signal to drive a visual representation of the pressure state on the user interface 146. The processor 148 can be configured to receive signals from another component of the heat press device 100. The signals can be based on output of a sensor. A sensor can provide an indirect measurement of a pressure state. For example, the processor 148 could receive an electrical signal indicating revolutions of the actuator 258 of the movement assembly 136. The processor 148 could receive an electrical signal indicating position of the rack 250 based on the position being detected by a linear position sensor 162.
The processor 148 can be wired to a sensor or another signal source in some embodiments. In other embodiments, a wireless signal can be received by the processor 148. The linear position sensor 162 can output a signal that is conveyed by a transmitter, e.g., can be a wireless sensor signal. The linear position sensor 162 can generate a signal indicative of the pressure state and can convey the signal indicative of the pressure state to the processor 148. The linear position sensor 162 can be coupled with a wireless transmitter 166 disposed on the heat press device 100. The wireless transmitter 166 can be coupled with the linear position sensor 162 to wirelessly convey the signal indicative of the pressure state to the processor 148. The linear position sensor 162 can detect, directly or indirectly, the amount the load plate 128C has advanced by operation of the movement assembly 136. The linear position sensor 162 can convey that position information to the processor 148 by a wired connection or by the wireless transmitter 166. If the wireless transmitter 166 is used, the processor 148 includes or is coupled with a wireless receiver to receive that information and incorporate that information into the processing performed by the processor 148.
The display 150 can include a color output field 192. The color output field 192 is configured to display a color indicating a pressure state of the heat press device 100 resulting from operating the movement assembly 136. The actuator 258 can change the position of the lower platen 108 of the heating element assembly 116 relative to the upper platen 124. The color can indicate acceptable pressure on a workpiece 112 and/or a transfer material 114 when the heat press device 100 is in the closed configuration. The color output field 192 can be provided in addition to or in place of the output windows discussed above in connection between the display 150. The color output field 192 can display green when the pressure state is acceptable and another color, e.g., red or yellow, when the pressure state is not acceptable. In one case, red indicates that the pressure state is too high for the selected heat press operation and other operating conditions. The color yellow indicates that the pressure state is too low for the selected heat press operation and other operating conditions. The color output field 192 can instead be based on a correspondence to a particular workpiece 112 and a particular transfer material 114. For example, the color in the color output field 192 can be red for screen print at a particular temperature and time and can be yellow for another combination of workpiece, transfer type, at the same or a different time and temperature.
The display 150 can have an output that is graphical or symbolic in nature. The display 150 can include, in addition to the output forms discussed above, a graphical output field 200 that displays a graphical icon. The graphical output field 200 indicates that a pressure state, e.g., resulting from a separation between the lower platen 108 and the upper platen 124 of the heating element assembly 116 corresponds to acceptable pressure on a workpiece 112 and/or a transfer material 114 when the heat press is in a closed configuration. For example the graphical output field 200 can have a happy face symbol when the user configures the movement assembly 136 to arrange the load plate 128C or otherwise position the upper platen 124 relative to the lower platen 108 to provide appropriate or acceptable pressure when the heat press device 100 is in the closed configuration. Other symbols that could be displayed include a check mark, a thumbs-up, or another visual symbolic representation that the pressure state is appropriate. In some embodiments, the graphical output field 200 provide a different graphic for the workpiece 112 and the transfer material 114 types that are appropriate for a given temperature and time given the configuration of the movement assembly 136. In other words, the graphical output field 200 can display one of a plurality of images upon setting a temperature and time and further by setting the configuration of the movement assembly 136, e.g., by moving the actuator 258. The graphical output field 200 can show a symbol of a T-shirt for a screen print processing.
The user interface 146 can have a speaker 196 to communicate a pressure state to the user of the heat press device 100. The user interface 146 is configured to use the speaker 196 to provide an audio output indicating the pressure state such as by using a position of the upper platen 124 of the heating element assembly 116 relative to the lower platen 108. The speaker 196 can output audio indicating acceptable pressure on the workpiece 112 and/or transfer material 114 when the heat press is in the closed configuration. The speaker 196 can emit a sound such as a bell tone or a word such as “good”. In some implementations the speaker 196 can emit a specific workpiece 112 and/or transfer material 114 (e.g., “Cotton T-Shirt” and “decal”) or heat press process (e.g., “screen print”) that would be successfully processed at selected temperature and time settings.
The user interface 146 can be configured to combine one or more types of outputs, including in various examples a visual output on any one or more of the display 150 and an audio output on the speaker 196. The outputs can be divided, for example providing an audio output of the workpiece 112 and transfer material 114 while visually displaying on the display 150 that the pressure state arising from operating the movement assembly 136 is acceptable. In other embodiments, the user interface 146 could also be configured to include a tactile feedback integrated into the movement assembly 136, e.g., into the actuator 258. The actuator 258 can be made to vibrate when the position of the actuator 258 is appropriate for a particular heat press process.
Although the technology described herein can be applied to a heat press, such as the heat press device 100 or the heat press device 100A, in other embodiments a heat press pressure control apparatus 300 can be provided. The heat press pressure control apparatus 300 is sometimes referred to as a heat press control apparatus 300 herein. The heat press pressure control apparatus 300 can include sub-components of the heat press device 100 for example.
The heat press pressure control apparatus 300 can include a support bracket 304 configured to enable the heat press pressure control apparatus 300 to be coupled with other components of the heat press device 100. The support bracket 304 can include a first end 308 configured to be secured to an outside surface of the heat press device 100, e.g., to the arm 145. The support bracket 304 can include a second end 312 disposed away from the first end 308. The second end 312 can be configured to support a housing 316 of the indicator 140. The housing 316 can have a lower portion configured to be secured to the second end 312 of the support bracket 304. The housing 316 can have an upper surface having a shaft 320 extending therethrough. The shaft 320 can be coupled with the pulley 140B. The pulley 140B can be coupled with the pulley 140A by the belt 140C.
As discussed above, the rotation of the actuator 258 of the movement assembly 136 can cause one-to-one rotation of the pulley 140A. The rotation of pulley 140A can cause rotation of the pulley 140B by the belt 140C. The rotation of the belt 140C can cause rotation of the shaft 320. The rotation of the shaft 320 can be counted by a counter disposed in the housing 316. Each revolution of the actuator 258 can be counted on the user interface 146 of the indicator 140 on the housing 316 can be incremented to provide user feedback of a pressure state of the heat press device 100 between the lower platen 108 and the upper platen 124.
In one case, the actuator 258 is a standard adjustment knob of a heat press. The pulley 140A is configured to be mounted to a standard shaft of the actuator 258. The pulley 140A can be positioned between the actuator 258 and the arm 145 of the heat press device 100. In some cases, an adapter is provided lengthen the shaft of the actuator 258 to enable the pulley 140A to be accommodated between the actuator 258 and the arm 145. The heat press pressure control apparatus 300 can be used to retrofit an existing heat press. The heat press pressure control apparatus 300 can be sold separately to allow end users to modify existing heat press devices such that they can provide enhanced control of a pressure state between a first platen, e.g., the lower platen 108, and a second platen, e.g., the upper platen 124.
After the pressure control apparatus 400 is applied to the coupler 404 the bracket 418 can be advanced over the top of the pressure control apparatus such that an opening thereof is aligned with the opening 402 in the pressure control apparatus 400. See
Although these inventions have been disclosed in the context of certain preferred embodiments and examples, it will be understood by those skilled in the art that the present inventions extend beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the inventions and obvious modifications and equivalents thereof. In addition, while several variations of the inventions have been shown and described in detail, other modifications, which are within the scope of these inventions, will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combination or sub-combinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the inventions. It should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the disclosed inventions. Thus, it is intended that the scope of at least some of the present inventions herein disclosed should not be limited by the particular disclosed embodiments described above.
Number | Date | Country | |
---|---|---|---|
62834190 | Apr 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16846879 | Apr 2020 | US |
Child | 17813207 | US |