The present disclosure relates to a technical field of heat exchange, and more particularly to a heat pump system.
A commercial air-cooled conditioning unit in the related art is generally composed of a plurality of modules. Each module generally includes at least two sheets of heat exchangers in parallel, and in order to improve a heat exchange area, each heat exchanger is arranged to be double-rowed.
When the heat pump system is switched between a cooling mode and a heating mode, a flow direction of a refrigerant in the double-rowed heat exchanger is changed as well. Since a flow direction of air is not changed, heat exchange effects of the heat exchanger in the cooling mode and in the heating mode are different, such that optimization cannot be achieved in both modes, thereby influencing properties of the heat pump system.
The present disclosure is made on basis of discoveries of inventors of the present disclosure about following facts and problems.
In the related art, a heat exchanger of each module in a heat pump system is usually configured to include double rows (i.e., a first heat exchanger and a second heat exchanger) in series with each other. For example, supposing when the heat pump system operates in a cooling mode, a refrigerant enters the first heat exchanger firstly, and then flows out of the second heat exchanger; when the heat pump system operates in the heating mode, the refrigerant enters the second heat exchanger firstly, and then flows out of the first heat exchanger.
No matter whether in the cooling mode or in the heating mode, the air exchanges heat with the refrigerant in the second heat exchanger firstly, and then exchanges heat with the refrigerant in the first heat exchanger. Since a flow direction of the air is always constant, a heat exchange sequence of the air with the refrigerant in the first heat exchanger and the second heat exchanger in the cooling mode is different from a heat exchange sequence of the air with the refrigerant in the first heat exchanger and the second heat exchanger in the heating mode. In other words, in the cooling mode, the flow direction of the air is opposite to the flow direction of the refrigerant (i.e., the air and the refrigerant has a countercurrent flow exchange heat therebetween), and in the heating mode, the flow direction of the air is the same with the flow direction of the refrigerant (i.e., the air and the refrigerant flow has a parallel flow exchange heat therebetween).
It is found by the inventors of the present disclosure through a lot of research that, the heat exchange effect in the case that the flow direction of the air is opposite to the flow direction of the refrigerant is better than the heat exchange effect in the case that the flow direction of the air is the same with the flow direction of the refrigerant. Therefore, the heat pump system in the related art cannot achieve the best heat exchange effects both in the cooling mode and in the heating mode at the same time, so that there is a need for improvements.
The present disclosure seeks to solve one of the above technical problems in the related art to some extent. For that reason, the present disclosure provides a heat pump system. The heat pump system enhances the heat exchange capacity of the heat exchanger, improves the heat exchange efficiency, and can achieve the optimal heat exchange effects both in the cooling mode and in the heating mode, thereby improving the properties of the heat pump system.
The heat pump system according to embodiments of the present disclosure includes a compressor, a four-way valve, an outdoor heat exchanger, a throttling device and an indoor heat exchanger connected in sequence to form a refrigerant main circuit, in which the outdoor heat exchanger includes at least one double-rowed heat exchanger, the double-rowed heat exchanger includes a first heat exchanger and a second heat exchanger connected in series with each other, an included angle α between the first heat exchanger and the second heat exchanger is larger than or equal to 0 degree and smaller than 180 degrees; the heat pump system has a cooling mode and a heating mode, and also includes a switching unit, the switching unit is connected in the refrigerant main circuit, and switches a flow direction of a refrigerant, such that the refrigerant flows into the outdoor heat exchanger through one of the first heat exchanger and the second heat exchanger, and flows out of the outdoor heat exchanger through the other one of the first heat exchanger and the second heat exchanger both in the cooling mode and in the heating mode.
The heat pump system according to embodiments of the present disclosure uses the switching unit to control the flow direction of the refrigerant in the outdoor heat exchanger, such that there exists the countercurrent flow heat exchange between the refrigerant in the outdoor heat exchanger and the air both in the cooling mode and in the heating mode, thus improving the heat exchange efficiency of the outdoor heat exchanger, ensuring heat exchange effects of the heat pump system to be optimal both in the cooling mode and in the heating mode, thereby improving the heat exchange capacity and the heat exchange efficiency of the heat pump system.
Additional aspects and advantages of embodiments of present disclosure will be given in part in the following descriptions, become apparent in part from the following descriptions, or be learned from the practice of the embodiments of the present disclosure.
Embodiments of the present disclosure will be described in details in the following, and examples of the embodiments are illustrated in accompanying drawings. The same or similar elements and the elements having same or similar functions are denoted by like reference numerals throughout the descriptions. The embodiments described herein with reference to drawings are explanatory, and used to generally understand the present disclosure. The embodiments shall not be construed to limit the present disclosure.
The present disclosure is made on basis of discoveries of inventors of the present disclosure about the following facts and problems.
As illustrated in
No matter whether in the cooling mode or in the heating mode, the air exchanges heat with the refrigerant in the second heat exchanger 312′ firstly, and then exchanges heat with the refrigerant in the first heat exchanger 311′. The flow direction of the air is always constant, therefore, in the cooling mode, the flow direction of the air is opposite to the flow direction of the refrigerant (i.e.,
It is found by the inventors of the present disclosure through a lot of research that, the heat exchange effect in the case that the flow direction of the air is opposite to the flow direction of the refrigerant is better than the heat exchange effect in the case that the flow direction of the air is the same with the flow direction of the refrigerant. Therefore, the heat pump system in the related art cannot achieve the best heat exchange effects both in the cooling mode and in the heating mode at the same time, and thus there is a need for improvements.
For that reason, the present disclosure provides a heat pump system 100 with high heat exchange efficiency and good heat exchange properties.
The heat pump system 100 according to embodiments of the present disclosure will be described herein with reference to
As illustrated in
It could be understood by those skilled in the art that the compressor 1 may have an air inlet and an air outlet, the refrigerant enters the compressor 1 through the air inlet and is discharged out of the compressor 1 through the air outlet. The four-way valve 2 may have a first port 21, a second port 22, a third port 23 and a fourth port 24, the first port 21 is communicated with the air outlet, the second port 22 is communicated with the outdoor heat exchanger 3, the third port 23 is communicated with the air inlet, and the fourth port 24 is communicated with the indoor heat exchanger 5.
Specifically, the outdoor heat exchanger 3 includes at least one double-rowed heat exchanger 31. The double-rowed heat exchanger 31 includes a first heat exchanger 311 and a second heat exchanger 312 connected in series with each other. An included angle α between the first heat exchanger 311 and the second heat exchanger 312 is larger than or equal to 0 degree and smaller than 180 degrees. For example, as illustrated in
It could be understood that, as illustrated in
The heat pump system 100 has the cooling mode and the heating mode, and the cooling mode and the heating mode are switched through the four-way valve 2. The heat pump system 100 further includes a switching unit. The switching unit is connected in the refrigerant main circuit, so as to switch the flow direction of the refrigerant, such that the refrigerant can flow into the outdoor heat exchanger 3 through one of the first heat exchanger 311 and the second heat exchanger 312, and flow out of the outdoor heat exchanger 3 through the other one of the first heat exchanger 311 and the second heat exchanger 312 both in the cooling mode and in the heating mode. For example, the refrigerant flows into the outdoor heat exchanger 3 through the first heat exchanger 311 and flows out of the outdoor heat exchanger 3 through the second heat exchanger 312 both in the cooling mode and in the heating mode. Thus, the heat pump system 100 can achieve the countercurrent flow heat exchange between the air and the refrigerant both in the cooling mode and in the heating mode.
Specifically, as illustrated in
As illustrated in
From the above, no matter whether in the cooling mode or in the heating mode, the refrigerant flows into the outdoor heat exchanger 3 through the first heat exchanger 311 firstly, and then flows out of the outdoor heat exchanger 3 through the second heat exchanger 312. Moreover, the flow direction of the air is always constant (always being opposite to the flow direction of the refrigerant); therefore, both in the cooling mode and in heating mode, the countercurrent flow heat exchange between the air and the refrigerant is provided.
The heat pump system 100 according to embodiments of the present disclosure uses the switching unit to control the flow direction of the refrigerant, such that the refrigerant can flow into the outdoor heat exchanger 3 through the first heat exchanger 311 and flow out of the outdoor heat exchanger 3 through the second heat exchanger 312 both in the cooling mode and in the heating mode. Thus, both in the cooling mode and in the heating mode, there exists the countercurrent flow heat exchange between the refrigerant in the outdoor heat exchanger 3 and the air, thus improving the heat exchange efficiency of the outdoor heat exchanger 3, ensuring the heat exchange effects of the heat pump system 100 to be optimal both in the cooling mode and in the heating mode, and thereby improving the properties of the heat pump system 100.
In addition, when operating in a frosting condition, the first heat exchanger 311 in the double-rowed heat exchanger 31 is seriously frosted. The heat pump system 100 according to embodiments of the present disclosure can ensure that heat enters the first heat exchanger 311 preferentially in a defrosting mode, thus accelerating the melting of frost, and reducing the defrosting time. For example, in the heating mode, the gas-liquid two-phase refrigerant enters the outdoor heat exchanger 3 through the first heat exchanger 311, and after entering in the defrosting mode, the high temperature refrigerant enters the outdoor heat exchanger 3 through the first heat exchanger 311 firstly, such that the frost of the first heat exchanger 311 may be heated to melt firstly, thereby shortening the frosting time.
Preferably, the indoor heat exchanger 5 and the outdoor heat exchanger 3 both can be a parallel flow micro-channel heat exchanger, such that the heat pump system 100 can have a more compact structure and better heat exchange properties.
As illustrated in
According to some embodiments of the present disclosure, two or more than two double-rowed heat exchangers 31 may be provided and the two or more than two double-rowed heat exchangers 31 are connected in parallel to one another, such that the heat exchange effects of the outdoor heat exchanger 3 can be further enhanced and hence the heat exchange efficiency of the outdoor heat exchanger 3 can be further improved. For example, as illustrated in
In embodiments illustrated in
As illustrated in
Furthermore, as illustrated in
For example, the first on-off valve 61 is connected between the first port 31a and the second port 22, the second on-off valve 62 is connected between the second port 31b and the throttling device 4, the third on-off valve 63 is disposed in the first refrigerant branch circuit 71, and the fourth on-off valve 64 is disposed in the second refrigerant branch circuit 72. The first end 711 of the first refrigerant branch circuit 71 is connected between the first on-off valve 61 and the first port 31a, and the second end 712 of the first refrigerant branch circuit 71 is connected between the second on-off valve 62 and the throttling device 4. The first end 721 of the second refrigerant branch circuit 72 is connected between the first on-off valve 61 and the second port 22, and the second end 722 of the second refrigerant branch circuit 72 is connected between the second on-off valve 62 and the second port 31b.
Specifically, as illustrated in
As illustrated in
Preferably, the first on-off valve 61, the second on-off valve 62, the third on-off valve 63 and the fourth on-off valve 64 all can be an electromagnetic valve, thus facilitating switching of the switching unit between the cooling mode and the heating mode, and enabling exact, rapid electronic control and high security.
The heat pump system 100 according to a specific embodiment of the present disclosure will be described in details with reference to the drawings. It could be understood that, the following descriptions are just explanatory, but should not be construed to limit the present disclosure.
As illustrated in
The compressor 1 has the air inlet and the air outlet, the refrigerant enters the compressor 1 through the air inlet and is discharged out of the compressor 1 through the air outlet. The four-way valve 2 has the first port 21, the second port 22, the third port 23 and the fourth port 24, the first port 21 is communicated with the air outlet, the second port 22 is communicated with the outdoor heat exchanger 3, the third port 23 is communicated with the air inlet, and the fourth port 24 is communicated with the indoor heat exchanger 5. The indoor heat exchanger 5 and the outdoor heat exchanger 3 both are the parallel flow micro-channel heat exchanger. The outdoor heat exchanger 3 is provided with an air flow orientation component 8 (for example, a fan), so as to ensure the flow direction of the air to be presented as the arrow e.
Specifically, the outdoor heat exchanger 3 includes two double-rowed heat exchangers 31 connected in parallel, each double-rowed heat exchanger 31 is formed by bending a single heat exchanger and includes the first heat exchanger 311 and the second heat exchanger 312 connected in series with each other. The included angle α between the first heat exchanger 311 and the second heat exchanger 312 equals to 0 degree, that is, the first heat exchanger 311 and the second heat exchanger 312 are parallel to each other and spaced apart from each other. Each double-rowed heat exchanger 31 has the first port 31a and the second port 31b, the first port 31a is provided to the first heat exchanger 311 and the second port 31b is provided to the second heat exchanger 312. The first port 31a of the double-rowed heat exchanger 31 at the left side is communicated with the first port 31a of the double-rowed heat exchanger 31 at the right side, and the second port 31b of the double-rowed heat exchanger 31 at the left side is communicated with the second port 31b of the double-rowed heat exchanger 31 at the right side, such that the two double-rowed heat exchangers 31 are connected in parallel.
The heat pump system 100 has the cooling mode and the heating mode, and the heat pump system 100 further includes the switching unit. The switching unit is connected in the refrigerant main circuit, so as to switch the flow direction of the refrigerant, such that the refrigerant flows into the outdoor heat exchanger 3 through the first heat exchanger 311, and flows out of the outdoor heat exchanger 3 through the second heat exchanger 312 both in the cooling mode and in the heating mode. Specifically, the switching unit includes the first on-off valve 61, the second on-off valve 62, the third on-off valve 63 and the fourth on-off valve 64. The first on-off valve 61, the second on-off valve 62, the third on-off valve 63 and the fourth on-off valve 64 all are an electromagnetic valve. The first on-off valve 61 is connected between the first port 31a and the second port 22, the second on-off valve 62 is connected between the second port 31b and the throttling device 4, the third on-off valve 63 is disposed in the first refrigerant branch circuit 71 and the fourth on-off valve 64 is disposed in the second refrigerant branch circuit 72. The first end 711 of the first refrigerant branch circuit 71 is connected between the first on-off valve 61 and the first port 31a, and the second end 712 of the first refrigerant branch circuit 71 is connected between the second on-off valve 62 and the throttling device 4. The first end 721 of the second refrigerant branch circuit 72 is connected between the first on-off valve 61 and the second port 22, and the second end 722 of the second refrigerant branch circuit 72 is connected between the second on-off valve 62 and the second port 31b.
As illustrated in
As illustrated in
The heat pump system 100 according to embodiments of the present disclosure uses the switching unit to control the flow direction of the refrigerant in the outdoor heat exchanger 3, and thus enables the flow direction of the refrigerant in the outdoor heat exchanger 3 to be opposite to the flow direction of the air both in the cooling mode and in the heating mode, i.e., there exists the countercurrent flow heat exchange between the refrigerant in the outdoor heat exchanger 3 and the air both in the cooling mode and in the heating mode, thereby ensuring the heat exchange effects of the outdoor heat exchanger 3 to be optimal both in the cooling mode and in the heating mode, and improving the properties of the heat pump system 100.
In the specification, it is to be understood that terms such as “central,” “longitudinal,” “lateral,” “length,” “width,” “thickness,” “upper,” “lower,” “front,” “rear,” “left,” “right,” “vertical,” “horizontal,” “top,” “bottom,” “inner,” “outer,” “clockwise,” “counterclockwise,” “axial,” “radial,” and “circumferential” should be construed to refer to the orientation as then described or as illustrated in the drawings under discussion. These relative terms are for convenience of description and do not require that the present disclosure be constructed or operated in a particular orientation. In addition, terms such as “first” and “second” are used herein for purposes of description and are not intended to indicate or imply relative importance or significance or to imply the number of indicated technical features. Thus, the feature defined with “first” and “second” may comprise one or more of this feature. In the description of the present disclosure, “a plurality of” means two or more than two, unless specified otherwise.
In the present disclosure, unless specified or limited otherwise, the terms “mounted,” “connected,” “coupled,” “fixed” and the like are used broadly, and may be, for example, fixed connections, detachable connections, or integral connections; may also be mechanical or electrical connections; may also be direct connections or indirect connections via intervening structures; may also be inner communications of two elements, which can be understood by those skilled in the art according to specific situations.
Reference throughout this specification to “an embodiment,” “some embodiments,” “one embodiment”, “another example,” “an example,” “a specific example,” or “some examples,” means that a particular feature, structure, material, or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the present disclosure. Thus, the appearances of the phrases such as “in some embodiments,” “in one embodiment”, “in an embodiment”, “in another example,” “in an example,” “in a specific example,” or “in some examples,” in various places throughout this specification are not necessarily referring to the same embodiment or example of the present disclosure. Furthermore, the particular features, structures, materials, or characteristics may be combined in any suitable manner in one or more embodiments or examples.
Although explanatory embodiments have been illustrated and described, it would be appreciated by those skilled in the art that the above embodiments cannot be construed to limit the present disclosure, and changes, alternatives, and modifications can be made in the embodiments without departing from spirit, principles and scope of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
201510796839.5 | Nov 2015 | CN | national |
The present application is a U.S. National Phase application under 35 USC § 371 of the International Patent Application No. PCT/CN2016/105365, filed on Nov. 10, 2016, which claims the benefit of prior Chinese Application No. 201510796839.5, filed with the State Intellectual Property Office of P. R. China on Nov. 18, 2015. The entire contents of the before-mentioned patent applications are incorporated by reference as part of the disclosure of this U.S. application.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2016/105365 | 11/10/2016 | WO | 00 |