The present disclosure relates to heat pump systems with capacity modulation.
This section provides background information related to the present disclosure and is not necessarily prior art.
A climate-control system such as, for example, a heat pump system, a refrigeration system, or an air conditioning system, may include a fluid circuit having an outdoor heat exchanger, an indoor heat exchanger, an expansion device disposed between the indoor and outdoor heat exchangers, and one or more compressors circulating a working fluid (e.g., a refrigerant) between the indoor and outdoor heat exchangers. Efficient and reliable operation of the one or more compressors is desirable to ensure that the climate-control system in which the one or more compressors are installed is capable of effectively and efficiently providing a cooling and/or heating effect on demand.
This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features.
In one form, the present disclosure provides a compressor that may include a first scroll, a second scroll, and a capacity modulation assembly. The first scroll may include a first end plate and a first spiral wrap extending from the first end plate. The second scroll may include a second end plate and a second spiral wrap extending from the second end plate. The first and second spiral wraps mesh with each other to form a plurality of pockets therebetween. The pockets include a radially outer pocket, a radially inner pocket, and an intermediate pocket disposed radially between the radially outer and inner pockets. The capacity modulation assembly may be operable in a first capacity mode and a second capacity mode. The capacity modulation assembly may include a valve ring and a modulation control valve. The valve ring is movable relative to the first scroll between a first position corresponding to the first capacity mode and a second position corresponding to the second capacity mode. The modulation control valve includes a valve body and a valve member that is movable relative to the valve body to cause corresponding movement of the valve ring between the first and second positions. The valve body includes a cavity in which the valve member is movably disposed. The valve body includes passages in fluid communication with the cavity. A first pressure differential between fluid in one of the passages and fluid in another of the passages causes movement of the valve member to cause corresponding movement of the valve ring from the first position to the second position. A second pressure differential between fluid in the one of the passages and fluid in the other of the passages causes movement of the valve member to cause corresponding movement of the valve ring from the second position to the first position.
In some configurations of the compressor of the above paragraph, the passages of the valve body include: a first passage, a second passage, a third passage, a fourth passage, and a fifth passage.
In some configurations of the compressor of either of the above paragraphs, the first passage is in fluid communication with an axial biasing chamber. The axial biasing chamber may be defined by a floating seal assembly and the valve ring.
In some configurations of the compressor of any one or more of the above paragraphs, the second passage is in fluid communication with a modulation chamber defined by the valve ring.
In some configurations of the compressor of any one or more of the above paragraphs, the third and fifth passages are in fluid communication with a suction chamber of the compressor.
In some configurations of the compressor of any one or more of the above paragraphs, the fourth passage is fluidly connected to a conduit that extends out of the compressor.
In some configurations of the compressor of any one or more of the above paragraphs, the valve member includes a main body and a stem. The stem may extend from the main body and may be narrower than the main body.
In some configurations of the compressor of any one or more of the above paragraphs, the main body includes a cutout that is in fluid communication with the second passage and the cavity of the valve body.
In some configurations of the compressor of any one or more of the above paragraphs, the cavity is in selective fluid communication with the first passage and is in selective fluid communication with the third passage.
In some configurations of the compressor of any one or more of the above paragraphs, the stem is received in the fourth passage when the cavity is in fluid communication with the first and second passages.
In some configurations of the compressor of any one or more of the above paragraphs, the conduit may extend through a shell assembly in which the first and second scrolls are housed.
In another form, the present disclosure provides a compressor including first and second scrolls and a capacity modulation assembly. The first scroll includes a first end plate and a first spiral wrap extending from the first end plate. The second scroll includes a second end plate and a second spiral wrap extending from the second end plate. The first and second spiral wraps mesh with each other and forming a plurality of pockets therebetween. The pockets include a radially outer pocket, a radially inner pocket, and an intermediate pocket disposed radially between the radially outer and inner pockets. The capacity modulation assembly is operable in a first capacity mode and a second capacity mode, wherein the capacity modulation assembly includes a valve ring and a modulation control valve. The valve ring is movable relative to the first scroll between a first position corresponding to the first capacity mode and a second position corresponding to the second capacity mode. The valve ring cooperates with a floating seal assembly to define an axial biasing chamber. Movement of the modulation control valve causes corresponding movement of the valve ring and switches the compressor between the first and second capacity modes. The modulation control valve includes a valve body and a valve member disposed within the valve body and movable relative to the valve body. The valve body includes a first passage, a second passage, a third passage, a fourth passage, and a fifth passage. The first passage is in fluid communication with the axial biasing chamber. The second passage is in fluid communication with a modulation chamber defined by the valve ring. The third and fifth passages are in fluid communication with a suction chamber of the compressor. The fourth passage is fluidly connected to a conduit that extends out of the compressor.
In some configurations of the compressor of the above paragraph, the valve member includes a main body and a stem. The stem extends from the main body and is narrower than the main body.
In some configurations of the compressor of either of the above paragraphs, the main body includes a cutout that is in fluid communication with the second passage and a cavity of the valve body, wherein the valve member is movably disposed within the cavity.
In some configurations of the compressor of any one or more of the above paragraphs, the cavity is in selective fluid communication with the first passage and is in selective fluid communication with the third passage.
In some configurations of the compressor of any one or more of the above paragraphs, the stem is received in the fourth passage when the cavity is in fluid communication with the first and second passages.
In some configurations of the compressor of any one or more of the above paragraphs, the conduit extends through a shell assembly in which the first and second scrolls are housed.
In another form, the present disclosure provides a compressor including first and second scrolls and a capacity modulation assembly. The first scroll includes a first end plate and a first spiral wrap extending from the first end plate. The second scroll includes a second end plate and a second spiral wrap extending from the second end plate. The first and second spiral wraps mesh with each other and forming a plurality of pockets therebetween. The pockets include a radially outer pocket, a radially inner pocket, and an intermediate pocket disposed radially between the radially outer and inner pockets. The capacity modulation assembly is operable in a first capacity mode and a second capacity mode. The capacity modulation assembly may include a valve ring and a modulation control valve. The valve ring is movable relative to the first scroll between a first position corresponding to the first capacity mode and a second position corresponding to the second capacity mode. The valve ring defines an axial biasing chamber and a modulation chamber. A pressure differential between fluid in the axial biasing chamber and fluid in the modulation chamber causes movement of the valve ring relative to the first scroll. The modulation control valve includes a valve member that is movable to cause corresponding movement of the valve ring. Fluid from first and second sources exert first and second forces, respectively, on the valve member. A differential between the first and second forces moves the valve member to cause corresponding movement of the valve ring.
In some configurations of the compressor of the above paragraph, the modulation control valve includes a valve body in which the valve member is movably disposed. The valve body includes a first passage, a second passage, a third passage, a fourth passage, and a fifth passage.
In some configurations of the compressor of either of the above paragraphs, the first passage is in fluid communication with the axial biasing chamber.
In some configurations of the compressor of any one or more of the above paragraphs, the second passage is in fluid communication with a modulation chamber defined by the valve ring.
In some configurations of the compressor of any one or more of the above paragraphs, the third and fifth passages are in fluid communication with a suction chamber of the compressor.
In some configurations of the compressor of any one or more of the above paragraphs, the fourth passage is fluidly connected to a conduit that extends out of the compressor.
In some configurations of the compressor of any one or more of the above paragraphs, the valve member includes a main body and a stem. The stem extends from the main body and is narrower than the main body.
In some configurations of the compressor of any one or more of the above paragraphs, the main body includes a cutout that is in fluid communication with the second passage and a cavity of the valve body. The valve member is movably disposed within the cavity.
In some configurations of the compressor of any one or more of the above paragraphs, the cavity is in selective fluid communication with the first passage and is in selective fluid communication with the third passage.
In some configurations of the compressor of any one or more of the above paragraphs, the stem is received in the fourth passage when the cavity is in fluid communication with the first and second passages.
In some configurations of the compressor of any one or more of the above paragraphs, the conduit extends through a shell assembly in which the first and second scrolls are housed.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations and are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
Example embodiments will now be described more fully with reference to the accompanying drawings.
Example embodiments are provided so that this disclosure will be thorough and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
When an element or layer is referred to as being “on,” “engaged to,” “connected to,” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to,” “directly connected to,” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
Spatially relative terms, such as “inner,” “outer,” “beneath,” “below,” “lower,” “above,” “upper,” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
With reference to
The shell assembly 12 forms a compressor housing and may include a cylindrical shell 29, an end cap 32 at the upper end thereof, a transversely extending partition 34, and a base 36 at a lower end thereof. The end cap 32 and partition 34 may generally define a discharge-pressure chamber 38. The discharge-pressure chamber 38 may generally form a discharge muffler for compressor 10. While the compressor 10 is illustrated as including the discharge-pressure chamber 38, the present disclosure applies equally to direct discharge configurations. A discharge fitting 39 may be attached to the shell assembly 12 at an opening in the end cap 32. A suction-gas-inlet fitting 40 (shown schematically in
The first bearing housing assembly 14 may be affixed to the shell 29 and may include a main bearing housing 46 and a first bearing 48 disposed therein. The main bearing housing 46 may house the bearing 48 therein and may define an annular flat thrust bearing surface 54 on an axial end surface thereof. The second bearing housing assembly 15 may be affixed to the shell 29 and may include a lower bearing housing 47 and a second bearing 49 disposed therein.
The motor assembly 16 may generally include a motor stator 58, a rotor 60, and a driveshaft 62. The motor stator 58 may be press fit into the shell 29. The driveshaft 62 may be rotatably driven by the rotor 60 and may be rotatably supported within the bearing 48. The rotor 60 may be press fit on the driveshaft 62. The driveshaft 62 may include an eccentric crankpin 64.
The compression mechanism 18 may include a first scroll (e.g., an orbiting scroll 68) and a second scroll (e.g., a non-orbiting scroll 70). The orbiting scroll 68 may include an end plate 72 having a spiral wrap 74 on the upper surface thereof and an annular flat thrust surface 76 on the lower surface. The thrust surface 76 may interface with the annular flat thrust bearing surface 54 on the main bearing housing 46. A cylindrical hub 78 may project downwardly from the thrust surface 76 and may have a drive bushing 80 rotatably disposed therein. The drive bushing 80 may include an inner bore in which the crank pin 64 is drivingly disposed. A flat surface of the crankpin 64 may drivingly engage a flat surface in a portion of the inner bore of the drive bushing 80 to provide a radially compliant driving arrangement. An Oldham coupling 82 may be engaged with the orbiting and non-orbiting scrolls 68, 70 or the orbiting scroll 68 and the main bearing housing 46 to prevent relative rotation therebetween.
As shown in
A first pocket (e.g., pocket 94 in
As shown in
The end plate 84 of the non-orbiting scroll 70 may include a hub 138 that extends away from the spiral wraps 74, 86. A discharge passage 144 (
As shown in
As shown in
As shown in
As shown in
As will be described in more detail below, the valve ring 154 is movable in an axial direction (i.e., a direction along or parallel to a rotational axis of the driveshaft 62) relative to the end plate 84 between a first position (
As shown in
As shown in
As shown in
During steady-state operation of the compressor 10, the floating seal assembly 20 may be a stationary component. The floating seal assembly 20 is partially received in the third annular recess 186 of the valve ring 154 and cooperates with the hub 138 and the valve ring 154 to define an axial biasing chamber 202 (
The axial biasing chamber 202 is in fluid communication with the ICP port 124 (
The modulation control valve 158 may be a solenoid-operated multiway valve and may be in fluid communication with the suction-pressure chamber 42, the first and second control passages 200, 201, and the ICP port 124. During operation of the compressor 10, the modulation control valve 158 may be operable to switch the compressor 10 between a first mode (e.g., the full-capacity mode) and a second mode (e.g., the reduced-capacity mode).
When the compressor 10 is in the full-capacity mode (
When the compressor 10 is in the reduced-capacity mode (
As shown in
As shown in
The valve member 232 may include a main body 248 and a stem 250. The stem 250 has a smaller width or diameter than the main body 248. The valve member 232 is disposed within the internal cavity 234 and is movable therein between the first position (
The biasing member 233 may be a coil spring and may be disposed within the internal cavity 234 of the valve body 230. The biasing member 233 may be disposed between a ledge in the valve body 230 and an end of the valve member 232. The biasing member 233 biases the valve member 232 toward the second position (
Referring now to
The climate-control system 310 may be operable in a cooling mode (
The outdoor heat exchanger 312 may include a coil 326 (or conduit). A fan 328 may force air across the coil 326 to facilitate heat transfer between outdoor ambient air and working fluid flowing through the coil 326. The indoor heat exchanger 318 may include a coil 330 and a fan 332 may force air across the coil 330 to facilitate heat transfer between indoor air and working fluid flowing through the coil 330. The expansion device 314 may be an expansion valve or a capillary tube, for example. In configurations of the system 310 having two expansion devices 314, one of the expansion devices 314 may be closed in the cooling mode (a check valve 315 allows working fluid to bypass the closed expansion device 314 in the cooling mode) and open in the heating mode, and the other of the expansion devices 314 may be open in the cooling mode and closed in the heating mode (another check valve 315 allows working fluid to bypass the closed expansion device 314 in the heating mode).
The multiway valve 320 is movable between a first position (
The valve body of the multiway valve 320 may include a first port 340, a second port 342, a third port 344, and a fourth port 346. In the cooling mode (
The system 310 includes the conduit 246, which, as described above, is fluidly connected with the fourth passage 242 of the modulation control valve 158 (shown in
When the system 310 is in the cooling mode (
Therefore, when the system 310 is in the cooling mode, the conduit 246 provides suction-pressure (or low-pressure) working fluid to the fourth passage 242 of the modulation control valve 158 such that both longitudinal ends of the valve member 232 of the modulation control valve 158 are exposed to suction-pressure (or low-pressure) working fluid (note that, as described above, the fifth passage 244 of the modulation control valve 158 is exposed to suction-pressure working fluid of the suction-pressure chamber 42 in both of the heating and cooling modes). Therefore, with both longitudinal ends of the valve member 232 of the modulation control valve 158 being exposed to suction-pressure (or low-pressure) working fluid in the cooling mode, the biasing member 233 of the modulation control valve 158 forces the valve member 232 into the second position (
When the system 310 is in the heating mode (
Therefore, when the system 310 is in the heating mode, the conduit 246 provides discharge-pressure (or high-pressure) working fluid to the fourth passage 242 of the modulation control valve 158 such that a first longitudinal end (i.e., the end defining the stem 250) of the valve member 232 of the modulation control valve 158 is exposed to discharge-pressure working fluid while the second longitudinal end of the valve member 232 (i.e., the end at the fifth passage 244) of the modulation control valve 158 is exposed to suction-pressure (or low-pressure) working fluid. Therefore, the discharge-pressure working fluid at the first longitudinal end of the valve member 232 overcomes the biasing force of the biasing member 233 and pushes the valve member 232 into the first position (
Accordingly, as described above, the compressor 10 operates in the reduced-capacity mode (
Referring now to
The capacity modulation assembly 428 may include a valve ring 554 and a lift ring 556. The lift ring 556 may be similar or identical to the lift ring 156 described above (e.g., including an annular body 190 and a plurality of posts or protrusions 192). Unlike the capacity modulation assembly 28, some embodiments of the capacity modulation assembly 428 may not include a modulation control valve (e.g., like the modulation control valve 158). In some embodiments, the capacity modulation assembly 428 may include a modulation control fitting 558 (described in more detail below) instead of the modulation control valve 158.
The structure and function of the valve ring 554 may be similar or identical to that of the valve ring 154 described above apart from any differences described below and/or shown in the figures. Like the valve ring 154, the valve ring 554 may be an annular body having a stepped central opening 566 extending therethrough and through which the hub 138 extends. Like the valve ring 154, the central opening 566 of the valve ring 554 is defined by a plurality of steps in the valve ring 554 that form a plurality of annular recesses. A first annular recess 574 may be formed proximate a lower axial end of the valve ring 154 and may receive seal ring 160. As described above, the seal ring 160 sealingly engages the valve ring 554 and the hub 138 of the non-orbiting scroll 70. A second annular recess 576 may encircle the first annular recess 574 and may be defined by inner and outer lower annular rims 578, 580 of the valve ring 554. The lift ring 556 is partially received in the second annular recess 576. A third annular recess 586 may be disposed axially above the first and second annular recesses 574, 576 and may be defined by an axially upper rim 588 of the valve ring 554. The third annular recess 586 may receive a portion of the floating seal assembly 20. As described above, the floating seal assembly 20 cooperates with the hub 138 and the valve ring 554 to define an axial biasing chamber 202.
The valve ring 554 is movable in an axial direction (i.e., a direction along or parallel to a rotational axis of the driveshaft 62) relative to the end plate 84 between a first position (
As described above, the annular body of the lift ring 556 may cooperate with the valve ring 554 to define a modulation control chamber 598. That is, the modulation control chamber 598 is defined by and disposed axially between opposing axially facing surfaces of the lift ring 556 and the valve ring 554. The valve ring 554 includes a control passage 600 that extends from the modulation control chamber 598 to the modulation control fitting 558 (i.e., the control passage 600 fluidly communicates with the modulation control chamber 598 and the modulation control fitting 558).
The modulation control fitting 558 may be mounted to the valve ring 554 and may include a passage 559 that is fluidly connected to the control passage 600. A conduit 561 is fluidly connected to the passage 559 and may extend outward from the modulation control fitting 558. In some embodiments, the conduit 561 may be connected directly to the control passage 600.
As will be described in more detail below, the conduit 561 selectively provides high-pressure working fluid (e.g., discharge-pressure working fluid or working fluid at a pressure higher than suction pressure) to the modulation control chamber 598 (via the control passage 600) to control movement of the valve ring 554. The conduit 561 may extend from the modulation control fitting 558 (or from the valve ring 554) and through the shell assembly 12 of the compressor 10.
Referring now to
The climate-control system 610 may be operable in a cooling mode (
In configurations of the system 610 having two expansion devices 614, one of the expansion devices 614 may be closed in the cooling mode (a check valve 615 allows working fluid to bypass the closed expansion device 614 in the cooling mode) and open in the heating mode, and the other of the expansion devices 614 may be open in the cooling mode and closed in the heating mode (another check valve 615 allows working fluid to bypass the closed expansion device 614 in the heating mode).
The multiway valve 620 is movable between a first position (
When the system 610 is in the cooling mode, the multiway valve 620 directs working fluid discharged from the compressor 10 (e.g., via discharge fitting 39) to the outdoor heat exchanger 612 and the conduit 561, and the multiway valve 620 directs working fluid from the indoor heat exchanger 618 toward the suction-gas-inlet fitting 40 of the compressor 10. In the heating mode (
As shown in
When the system 610 is in the cooling mode (
When the system 610 is in the heating mode (
Accordingly, as described above, the compressor 10 operates in the reduced-capacity mode (
Referring now to
The capacity modulation assembly 728 may include a valve ring 854, a lift ring 856, and a modulation control valve 858. The valve ring 854 and lift ring 856 may be similar or identical to the valve ring 154 and lift ring 156, respectively, described above. As described above, the floating seal assembly 20 cooperates with the hub 138 and the valve ring 854 to define an axial biasing chamber 202. As described above, the annular body of the lift ring 856 may cooperate with the valve ring 854 to define a modulation control chamber 898 (similar or identical to modulation control chamber 198). That is, the modulation control chamber 898 is defined by and disposed axially between opposing axially facing surfaces of the lift ring 856 and the valve ring 854. The valve ring 854 includes a first control passage 900 and a second control passage 901. The first control passage 900 may extend from the axial biasing chamber 202 to the modulation control valve 858 (i.e., the first control passage 900 fluidly communicates with the axial biasing chamber 202 and the modulation control valve 858). The second control passage 901 extends from the modulation control chamber 898 to the modulation control valve 858 (i.e., the second control passage 901 fluidly communicates with the modulation control chamber 898 and the modulation control valve 858).
As shown in
As shown in
The valve member 932 may include a main body 948 and a stem 950. The stem 950 has a smaller width or diameter than the main body 948. The valve member 932 is disposed within the internal cavity 934 and is movable therein between the first position (
The valve member 932 is movable relative to the valve body 930 between the first position (
It should be noted that under certain compressor operating conditions, fluid in the axial biasing chamber 202 can be at a higher pressure than fluid in the suction chamber 42 and still exert a smaller force on the axial end 951 of the stem 950 than fluid in the suction chamber 42 exerts on the axial end 949 of the main body 948. This is because the stem 950 has a smaller diameter (or width) than the main body 948. Therefore, under certain operating conditions, the force on the axial end 951 (which is equal to fluid pressure in the axial biasing chamber 202 multiplied by area of the axial end 951) is less than the force on the axial end 949 (which is equal to the fluid pressure in the suction chamber 42 multiplied by the area of the axial end 949). Under such operating conditions, the valve member 932 will move toward (or remain in) in the second position (
Like the systems 310, 610, the system 1010 may include the compressor 10, an outdoor heat exchanger 1012 (similar or identical to outdoor heat exchanger 312), one or more expansion devices 1014 (similar or identical to expansion devices 314), one or more check valves 1015 (similar or identical to check valves 315), an indoor heat exchanger 1018 (similar or identical to indoor heat exchanger 318), an accumulator 1019, and a multiway valve (reversing valve) 1020 (similar or identical to multiway valve 320). The indoor heat exchanger 1018 may be disposed indoors (i.e., inside of a home or building 1024), and the compressor 10 and outdoor heat exchanger 1012 may be disposed outdoors (i.e., outside of the home or building 1024). The expansion device(s) 1014 and the valve 1020 may be disposed outdoors or indoors. The system 1010 may include a control module (not shown) that controls operation of one or more of the compressor 10, multiway valve 1020, expansion devices 1014, and heat exchanger fans.
In some configurations, the compressor 10 having the capacity modulation system 728 (of
Referring now to
The system 1210 may include a compressor 1211, an outdoor heat exchanger 1212 (similar or identical to outdoor heat exchanger 312), one or more expansion devices 1214 (similar or identical to expansion devices 314), a flash tank 1216, an indoor heat exchanger 1218 (similar or identical to indoor heat exchanger 318), an accumulator 1219, and a multiway valve (reversing valve) 1220 (similar or identical to multiway valve 320).
The compressor 1211 may be similar to the compressor 10 described above, except the compressor 1211 may not include the capacity modulation assembly 28, 428, 728, and instead, may include a capacity-modulation passage 1228 (which will be described in more detail below). As shown in
The capacity-modulation passage 1228 may include a passage 1264 (formed in an end plate 1236 of the non-orbiting scroll 1222), a conduit 1262 (connected to the end plate 1236 and in fluid communication with the passage 1264), and a fluid line 1266 (
As noted above,
When the system 1210 is in the high-capacity mode, the control valve 1268 may open to allow fluid flow between the intermediate pocket 1297 and the third opening 1274 of the flash tank 1216. In the high-capacity mode, the expansion devices 1214 can be controlled to cause pressure of vapor working fluid in the flash tank 1216 to be higher than the pressure of working fluid in the intermediate pocket 1297, thereby causing vapor working fluid in the flash tank 1216 to exit the flash tank 1216 through the third opening 1274 and flow into the line 1266 toward the compressor 1211. That is, the vapor working fluid may flow through the line 1266, through the control valve 1268, through the conduit 1262 and into the intermediate pocket 1297 (via passage 1264), thereby raising the capacity of the compressor 1211.
As noted above,
As noted above,
As noted above,
As noted above,
The system 1210 may include a control module (not shown) that controls operation of one or more of the compressor 1211, the multiway valve 1220, the expansion devices 1214, the control valve 1268, and the heat exchanger fans.
Referring now to
As noted above,
When the system 1410 is in the high-capacity mode, the first expansion device 1414 may open to allow a portion of fluid exiting the indoor heat exchanger 1418 to flow through a second passage 1472 of the plate-heat exchanger 1416. Heat may transfer between the fluid in the first and second passages 1472, 1470. Fluid exiting the second passage 1472 may flow through the capacity-modulation passage 1428 to a conduit 1462 of the compressor 1411 and then to a passage (similar or identical to passage 1264) in a scroll of the compressor 1411 to an intermediate pocket (similar or identical to intermediate pocket 1297), thereby raising the capacity of the compressor 1411.
In the intermediate-capacity mode, the first expansion device 1414 may close to restrict or prevent fluid flow through the second passage 1472 and the capacity-modulation passage 1428.
The system 1410 may include a control module (not shown) that controls operation of one or more of the compressor 1411, multiway valve 1420, expansion devices 1414, control valve 1468, and heat exchanger fans.
It will be appreciated that any of the systems 310, 610, 1010 described above could include fluid-injection structure and functionality such as the capacity-modulation passage 1228, control valve 1268, and flash tank 1216 (or plate-heat exchanger 1416) with any of the capacity modulation assemblies 28, 428, 728 to provide additional stages of capacity modulation for the compressor 10.
In this application, including the definitions below, the term “module” or the term “control module” may be replaced with the term “circuit.” The term “module,” “control module,” “control circuitry,” or “control system” may refer to, be part of, or include: an Application Specific Integrated Circuit (ASIC); a digital, analog, or mixed analog/digital discrete circuit; a digital, analog, or mixed analog/digital integrated circuit; a combinational logic circuit; a field programmable gate array (FPGA); a processor circuit (shared, dedicated, or group) that executes code; a memory circuit (shared, dedicated, or group) that stores code executed by the processor circuit; other suitable hardware components that provide the described functionality; or a combination of some or all of the above, such as in a system-on-chip.
The module may include one or more interface circuits. In some examples, the interface circuits may include wired or wireless interfaces that are connected to a local area network (LAN), the Internet, a wide area network (WAN), or combinations thereof. The functionality of any given module of the present disclosure may be distributed among multiple modules that are connected via interface circuits. For example, multiple modules may allow load balancing. In a further example, a server (also known as remote, or cloud) module may accomplish some functionality on behalf of a client module.
The term code, as used above, may include software, firmware, and/or microcode, and may refer to programs, routines, functions, classes, data structures, and/or objects. The term shared processor circuit encompasses a single processor circuit that executes some or all code from multiple modules. The term group processor circuit encompasses a processor circuit that, in combination with additional processor circuits, executes some or all code from one or more modules. References to multiple processor circuits encompass multiple processor circuits on discrete dies, multiple processor circuits on a single die, multiple cores of a single processor circuit, multiple threads of a single processor circuit, or a combination of the above. The term shared memory circuit encompasses a single memory circuit that stores some or all code from multiple modules. The term group memory circuit encompasses a memory circuit that, in combination with additional memories, stores some or all code from one or more modules.
The term memory circuit is a subset of the term computer-readable medium. The term computer-readable medium, as used herein, does not encompass transitory electrical or electromagnetic signals propagating through a medium (such as on a carrier wave); the term computer-readable medium may therefore be considered tangible and non-transitory. Non-limiting examples of a non-transitory, tangible computer-readable medium are nonvolatile memory circuits (such as a flash memory circuit, an erasable programmable read-only memory circuit, or a mask read-only memory circuit), volatile memory circuits (such as a static random access memory circuit or a dynamic random access memory circuit), magnetic storage media (such as an analog or digital magnetic tape or a hard disk drive), and optical storage media (such as a CD, a DVD, or a Blu-ray Disc).
In this application, apparatus elements described as having particular attributes or performing particular operations are specifically configured to have those particular attributes and perform those particular operations. Specifically, a description of an element to perform an action means that the element is configured to perform the action. The configuration of an element may include programming of the element, such as by encoding instructions on a non-transitory, tangible computer-readable medium associated with the element.
The apparatuses and methods described in this application may be partially or fully implemented by a special purpose computer created by configuring a general purpose computer to execute one or more particular functions embodied in computer programs. The functional blocks, flowchart components, and other elements described above serve as software specifications, which can be translated into the computer programs by the routine work of a skilled technician or programmer.
The computer programs include processor-executable instructions that are stored on at least one non-transitory, tangible computer-readable medium. The computer programs may also include or rely on stored data. The computer programs may encompass a basic input/output system (BIOS) that interacts with hardware of the special purpose computer, device drivers that interact with particular devices of the special purpose computer, one or more operating systems, user applications, background services, background applications, etc.
The computer programs may include: (i) descriptive text to be parsed, such as HTML (hypertext markup language), XML (extensible markup language), or JSON (JavaScript Object Notation) (ii) assembly code, (iii) object code generated from source code by a compiler, (iv) source code for execution by an interpreter, (v) source code for compilation and execution by a just-in-time compiler, etc. As examples only, source code may be written using syntax from languages including C, C++, C#, Objective-C, Swift, Haskell, Go, SQL, R, Lisp, Java®, Fortran, Perl, Pascal, Curl, OCaml, Javascript®, HTML5 (Hypertext Markup Language 5th revision), Ada, ASP (Active Server Pages), PHP (PHP: Hypertext Preprocessor), Scala, Eiffel, Smalltalk, Erlang, Ruby, Flash®, Visual Basic®, Lua, MATLAB, SIMULINK, and Python®.
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
Number | Name | Date | Kind |
---|---|---|---|
3303988 | Weatherhead | Feb 1967 | A |
3777508 | Imabayashi et al. | Dec 1973 | A |
4058988 | Shaw | Nov 1977 | A |
4216661 | Tojo et al. | Aug 1980 | A |
4313314 | Boyanich | Feb 1982 | A |
4382370 | Suefuji et al. | May 1983 | A |
4383805 | Teegarden et al. | May 1983 | A |
4389171 | Eber et al. | Jun 1983 | A |
4466784 | Hiraga | Aug 1984 | A |
4475360 | Suefuji et al. | Oct 1984 | A |
4475875 | Sugimoto et al. | Oct 1984 | A |
4480965 | Ishizuka | Nov 1984 | A |
4496296 | Arai et al. | Jan 1985 | A |
4497615 | Griffith | Feb 1985 | A |
4508491 | Schaefer | Apr 1985 | A |
4545742 | Schaefer | Oct 1985 | A |
4547138 | Mabe et al. | Oct 1985 | A |
4552518 | Utter | Nov 1985 | A |
4564339 | Nakamura et al. | Jan 1986 | A |
4580949 | Maruyama et al. | Apr 1986 | A |
4609329 | Pillis et al. | Sep 1986 | A |
4650405 | Iwanami et al. | Mar 1987 | A |
4696630 | Sakata et al. | Sep 1987 | A |
4727725 | Nagata et al. | Mar 1988 | A |
4772188 | Kimura et al. | Sep 1988 | A |
4774816 | Uchikawa et al. | Oct 1988 | A |
4818195 | Murayama et al. | Apr 1989 | A |
4824344 | Kimura et al. | Apr 1989 | A |
4838773 | Noboru | Jun 1989 | A |
4842499 | Nishida et al. | Jun 1989 | A |
4846633 | Suzuki et al. | Jul 1989 | A |
4877382 | Caillat et al. | Oct 1989 | A |
4886425 | Itahana et al. | Dec 1989 | A |
4886433 | Maier | Dec 1989 | A |
4898520 | Nieter et al. | Feb 1990 | A |
4927339 | Riffe et al. | May 1990 | A |
4936543 | Kamibayasi | Jun 1990 | A |
4940395 | Yamamoto et al. | Jul 1990 | A |
4954057 | Caillat et al. | Sep 1990 | A |
4990071 | Sugimoto | Feb 1991 | A |
4997349 | Richardson, Jr. | Mar 1991 | A |
5024589 | Jetzer et al. | Jun 1991 | A |
5040952 | Inoue et al. | Aug 1991 | A |
5040958 | Arata et al. | Aug 1991 | A |
5055010 | Logan | Oct 1991 | A |
5059098 | Suzuki et al. | Oct 1991 | A |
5071323 | Sakashita et al. | Dec 1991 | A |
5074760 | Hirooka et al. | Dec 1991 | A |
5080056 | Kramer et al. | Jan 1992 | A |
5085565 | Barito | Feb 1992 | A |
5098265 | Machida et al. | Mar 1992 | A |
5145346 | Iio et al. | Sep 1992 | A |
5152682 | Morozumi et al. | Oct 1992 | A |
RE34148 | Terauchi et al. | Dec 1992 | E |
5169294 | Barito | Dec 1992 | A |
5171141 | Morozumi et al. | Dec 1992 | A |
5192195 | Iio et al. | Mar 1993 | A |
5193987 | Iio et al. | Mar 1993 | A |
5199862 | Kondo et al. | Apr 1993 | A |
5213489 | Kawahara et al. | May 1993 | A |
5240389 | Oikawa et al. | Aug 1993 | A |
5253489 | Yoshii | Oct 1993 | A |
5304047 | Shibamoto | Apr 1994 | A |
5318424 | Bush et al. | Jun 1994 | A |
5330463 | Hirano | Jul 1994 | A |
5336068 | Sekiya et al. | Aug 1994 | A |
5340287 | Kawahara et al. | Aug 1994 | A |
5356271 | Miura et al. | Oct 1994 | A |
5385034 | Haselden | Jan 1995 | A |
5395224 | Caillat et al. | Mar 1995 | A |
5411384 | Bass et al. | May 1995 | A |
5425626 | Tojo et al. | Jun 1995 | A |
5427512 | Kohsokabe et al. | Jun 1995 | A |
5451146 | Inagaki et al. | Sep 1995 | A |
5458471 | Ni | Oct 1995 | A |
5458472 | Kobayashi et al. | Oct 1995 | A |
5482637 | Rao et al. | Jan 1996 | A |
5511959 | Tojo et al. | Apr 1996 | A |
5547354 | Shimizu et al. | Aug 1996 | A |
5551846 | Taylor et al. | Sep 1996 | A |
5557897 | Kranz et al. | Sep 1996 | A |
5562426 | Watanabe et al. | Oct 1996 | A |
5577897 | Inagaki et al. | Nov 1996 | A |
5591014 | Wallis et al. | Jan 1997 | A |
5607288 | Wallis et al. | Mar 1997 | A |
5611674 | Bass et al. | Mar 1997 | A |
5613841 | Bass et al. | Mar 1997 | A |
5624247 | Nakamura | Apr 1997 | A |
5639225 | Matsuda et al. | Jun 1997 | A |
5640854 | Fogt et al. | Jun 1997 | A |
5649817 | Yamazaki | Jul 1997 | A |
5660539 | Matsunaga et al. | Aug 1997 | A |
5667371 | Prenger et al. | Sep 1997 | A |
5674058 | Matsuda et al. | Oct 1997 | A |
5678985 | Brooke et al. | Oct 1997 | A |
5707210 | Ramsey et al. | Jan 1998 | A |
5722257 | Ishii et al. | Mar 1998 | A |
5741120 | Bass et al. | Apr 1998 | A |
5775893 | Takao et al. | Jul 1998 | A |
5791328 | Alexander | Aug 1998 | A |
5842843 | Haga | Dec 1998 | A |
5855475 | Fujio et al. | Jan 1999 | A |
5885063 | Makino et al. | Mar 1999 | A |
5888057 | Kitano et al. | Mar 1999 | A |
5938417 | Takao et al. | Aug 1999 | A |
5993171 | Higashiyama | Nov 1999 | A |
5993177 | Terauchi et al. | Nov 1999 | A |
6010312 | Suitou et al. | Jan 2000 | A |
6015277 | Richardson, Jr. | Jan 2000 | A |
6030192 | Hill et al. | Feb 2000 | A |
6047557 | Pham et al. | Apr 2000 | A |
6068459 | Clarke et al. | May 2000 | A |
6086335 | Bass et al. | Jul 2000 | A |
6093005 | Nakamura | Jul 2000 | A |
6095765 | Khalifa | Aug 2000 | A |
6102671 | Yamamoto et al. | Aug 2000 | A |
6120255 | Schumann et al. | Sep 2000 | A |
6123517 | Brooke et al. | Sep 2000 | A |
6123528 | Sun et al. | Sep 2000 | A |
6132179 | Higashiyama | Oct 2000 | A |
6139287 | Kuroiwa et al. | Oct 2000 | A |
6139291 | Perevozchikov | Oct 2000 | A |
6149401 | Iwanami et al. | Nov 2000 | A |
6152714 | Mitsuya et al. | Nov 2000 | A |
6164940 | Terauchi et al. | Dec 2000 | A |
6174149 | Bush | Jan 2001 | B1 |
6176686 | Wallis et al. | Jan 2001 | B1 |
6179589 | Bass et al. | Jan 2001 | B1 |
6182646 | Silberstein et al. | Feb 2001 | B1 |
6202438 | Barito | Mar 2001 | B1 |
6210120 | Hugenroth et al. | Apr 2001 | B1 |
6213731 | Doepker et al. | Apr 2001 | B1 |
6231316 | Wakisaka et al. | May 2001 | B1 |
6257840 | Ignatiev et al. | Jul 2001 | B1 |
6264444 | Nakane et al. | Jul 2001 | B1 |
6264452 | Sun et al. | Jul 2001 | B1 |
6267565 | Seibel et al. | Jul 2001 | B1 |
6273691 | Morimoto et al. | Aug 2001 | B1 |
6280154 | Clendenin et al. | Aug 2001 | B1 |
6290477 | Gigon | Sep 2001 | B1 |
6293767 | Bass | Sep 2001 | B1 |
6293776 | Hahn et al. | Sep 2001 | B1 |
6309194 | Fraser et al. | Oct 2001 | B1 |
6322340 | Itoh et al. | Nov 2001 | B1 |
6327871 | Rafalovich | Dec 2001 | B1 |
6338912 | Ban et al. | Jan 2002 | B1 |
6350111 | Perevozchikov et al. | Feb 2002 | B1 |
6361890 | Ban et al. | Mar 2002 | B1 |
6379123 | Makino et al. | Apr 2002 | B1 |
6389837 | Morozumi | May 2002 | B1 |
6412293 | Pham et al. | Jul 2002 | B1 |
6413058 | Williams et al. | Jul 2002 | B1 |
6419457 | Seibel et al. | Jul 2002 | B1 |
6422842 | Sheridan et al. | Jul 2002 | B2 |
6428286 | Shimizu et al. | Aug 2002 | B1 |
6454551 | Kuroki et al. | Sep 2002 | B2 |
6457948 | Pham | Oct 2002 | B1 |
6457952 | Haller et al. | Oct 2002 | B1 |
6464481 | Tsubai et al. | Oct 2002 | B2 |
6478550 | Matsuba et al. | Nov 2002 | B2 |
6506036 | Tsubai et al. | Jan 2003 | B2 |
6514060 | Ishiguro et al. | Feb 2003 | B1 |
6537043 | Chen | Mar 2003 | B1 |
6544016 | Gennami et al. | Apr 2003 | B2 |
6558143 | Nakajima et al. | May 2003 | B2 |
6589035 | Tsubono et al. | Jul 2003 | B1 |
6619062 | Shibamoto et al. | Sep 2003 | B1 |
6679683 | Seibel et al. | Jan 2004 | B2 |
6705848 | Scancarello | Mar 2004 | B2 |
6715999 | Ancel et al. | Apr 2004 | B2 |
6746223 | Manole | Jun 2004 | B2 |
6769881 | Lee | Aug 2004 | B2 |
6769888 | Tsubono et al. | Aug 2004 | B2 |
6773242 | Perevozchikov | Aug 2004 | B1 |
6817847 | Agner | Nov 2004 | B2 |
6821092 | Gehret et al. | Nov 2004 | B1 |
6863510 | Cho | Mar 2005 | B2 |
6881046 | Shibamoto et al. | Apr 2005 | B2 |
6884042 | Zili et al. | Apr 2005 | B2 |
6887051 | Sakuda et al. | May 2005 | B2 |
6893229 | Choi et al. | May 2005 | B2 |
6896493 | Chang et al. | May 2005 | B2 |
6896498 | Patel | May 2005 | B1 |
6913448 | Liang et al. | Jul 2005 | B2 |
6984114 | Zili et al. | Jan 2006 | B2 |
7018180 | Koo | Mar 2006 | B2 |
7029251 | Chang et al. | Apr 2006 | B2 |
7112046 | Kammhoff et al. | Sep 2006 | B2 |
7118358 | Tsubono et al. | Oct 2006 | B2 |
7137796 | Tsubono et al. | Nov 2006 | B2 |
7160088 | Peyton | Jan 2007 | B2 |
7172395 | Shibamoto et al. | Feb 2007 | B2 |
7197890 | Taras et al. | Apr 2007 | B2 |
7207787 | Liang et al. | Apr 2007 | B2 |
7228710 | Lifson | Jun 2007 | B2 |
7229261 | Morimoto et al. | Jun 2007 | B2 |
7255542 | Lifson et al. | Aug 2007 | B2 |
7261527 | Alexander et al. | Aug 2007 | B2 |
7311740 | Williams et al. | Dec 2007 | B2 |
7344365 | Takeuchi et al. | Mar 2008 | B2 |
RE40257 | Doepker et al. | Apr 2008 | E |
7354259 | Tsubono et al. | Apr 2008 | B2 |
7364416 | Liang et al. | Apr 2008 | B2 |
7371057 | Shin et al. | May 2008 | B2 |
7371059 | Ignatiev et al. | May 2008 | B2 |
RE40399 | Hugenroth et al. | Jun 2008 | E |
RE40400 | Bass et al. | Jun 2008 | E |
7393190 | Lee et al. | Jul 2008 | B2 |
7404706 | Ishikawa et al. | Jul 2008 | B2 |
7429167 | Bonear et al. | Sep 2008 | B2 |
RE40554 | Bass et al. | Oct 2008 | E |
7484374 | Pham et al. | Feb 2009 | B2 |
7510382 | Jeong | Mar 2009 | B2 |
7547202 | Knapke | Jun 2009 | B2 |
7641455 | Fujiwara et al. | Jan 2010 | B2 |
7674098 | Lifson | Mar 2010 | B2 |
7695257 | Joo et al. | Apr 2010 | B2 |
7717687 | Reinhart | May 2010 | B2 |
7771178 | Perevozchikov et al. | Aug 2010 | B2 |
7802972 | Shimizu et al. | Sep 2010 | B2 |
7815423 | Guo et al. | Oct 2010 | B2 |
7827809 | Pham et al. | Nov 2010 | B2 |
7891961 | Shimizu et al. | Feb 2011 | B2 |
7896629 | Ignatiev et al. | Mar 2011 | B2 |
RE42371 | Peyton | May 2011 | E |
7956501 | Jun et al. | Jun 2011 | B2 |
7967582 | Akei et al. | Jun 2011 | B2 |
7967583 | Stover et al. | Jun 2011 | B2 |
7972125 | Stover et al. | Jul 2011 | B2 |
7976289 | Masao | Jul 2011 | B2 |
7976295 | Stover et al. | Jul 2011 | B2 |
7988433 | Akei et al. | Aug 2011 | B2 |
7988434 | Stover et al. | Aug 2011 | B2 |
8020402 | Pham et al. | Sep 2011 | B2 |
8025492 | Seibel et al. | Sep 2011 | B2 |
8079229 | Lifson et al. | Dec 2011 | B2 |
8162622 | Shoulders | Apr 2012 | B2 |
8303278 | Roof et al. | Nov 2012 | B2 |
8303279 | Hahn | Nov 2012 | B2 |
8308448 | Fields et al. | Nov 2012 | B2 |
8313318 | Stover et al. | Nov 2012 | B2 |
8328531 | Milliff et al. | Dec 2012 | B2 |
8328543 | Wilson | Dec 2012 | B2 |
8393882 | Ignatiev et al. | Mar 2013 | B2 |
8424326 | Mitra et al. | Apr 2013 | B2 |
8505331 | Pham et al. | Aug 2013 | B2 |
8506271 | Seibel et al. | Aug 2013 | B2 |
8517703 | Doepker | Aug 2013 | B2 |
8585382 | Akei et al. | Nov 2013 | B2 |
8616014 | Stover et al. | Dec 2013 | B2 |
8672646 | Ishizono et al. | Mar 2014 | B2 |
8757988 | Fukudome et al. | Jun 2014 | B2 |
8790098 | Stover et al. | Jul 2014 | B2 |
8840384 | Patel et al. | Sep 2014 | B2 |
8857200 | Stover et al. | Oct 2014 | B2 |
8932036 | Monnier et al. | Jan 2015 | B2 |
9068765 | Huff | Jun 2015 | B2 |
9080446 | Heusler et al. | Jul 2015 | B2 |
9127677 | Doepker | Sep 2015 | B2 |
9145891 | Kim et al. | Sep 2015 | B2 |
9169839 | Ishizono et al. | Oct 2015 | B2 |
9194395 | Ginies et al. | Nov 2015 | B2 |
9217433 | Park et al. | Dec 2015 | B2 |
9228587 | Lee et al. | Jan 2016 | B2 |
9249802 | Doepker et al. | Feb 2016 | B2 |
9297383 | Jin et al. | Mar 2016 | B2 |
9303642 | Akei et al. | Apr 2016 | B2 |
9360011 | Perevozchikov et al. | Jun 2016 | B2 |
9435340 | Doepker et al. | Sep 2016 | B2 |
9494157 | Doepker | Nov 2016 | B2 |
9541084 | Ignatiev et al. | Jan 2017 | B2 |
9556862 | Yoshihiro et al. | Jan 2017 | B2 |
9605677 | Heidecker et al. | Mar 2017 | B2 |
9612042 | Sjoholm et al. | Apr 2017 | B2 |
9624928 | Yamazaki et al. | Apr 2017 | B2 |
9638191 | Stover | May 2017 | B2 |
9651043 | Stover et al. | May 2017 | B2 |
9777730 | Doepker et al. | Oct 2017 | B2 |
9777863 | Higashidozono et al. | Oct 2017 | B2 |
9790940 | Doepker et al. | Oct 2017 | B2 |
9850903 | Perevozchikov | Dec 2017 | B2 |
9869315 | Jang et al. | Jan 2018 | B2 |
9879674 | Akei et al. | Jan 2018 | B2 |
9885347 | Lachey et al. | Feb 2018 | B2 |
9920759 | Sung et al. | Mar 2018 | B2 |
9926932 | Perevozchikov et al. | Mar 2018 | B2 |
9989057 | Lochner et al. | Jun 2018 | B2 |
10066622 | Pax et al. | Sep 2018 | B2 |
10087936 | Pax et al. | Oct 2018 | B2 |
10088202 | Huff et al. | Oct 2018 | B2 |
10094380 | Doepker et al. | Oct 2018 | B2 |
10323639 | Doepker et al. | Jun 2019 | B2 |
10428818 | Jin et al. | Oct 2019 | B2 |
10563891 | Smerud et al. | Feb 2020 | B2 |
10724523 | Wu et al. | Jul 2020 | B2 |
10815999 | Jeong | Oct 2020 | B2 |
10907633 | Doepker et al. | Feb 2021 | B2 |
10954940 | Akei et al. | Mar 2021 | B2 |
10974317 | Ruxanda et al. | Apr 2021 | B2 |
11209000 | Moore et al. | Dec 2021 | B2 |
11231034 | Funakoshi et al. | Jan 2022 | B2 |
11300329 | Yan et al. | Apr 2022 | B2 |
11378290 | Locke et al. | Jul 2022 | B2 |
11493040 | Zou et al. | Nov 2022 | B2 |
11846287 | Gehret et al. | Dec 2023 | B1 |
20010010800 | Kohsokabe et al. | Aug 2001 | A1 |
20020039540 | Kuroki et al. | Apr 2002 | A1 |
20020057975 | Nakajima et al. | May 2002 | A1 |
20030044296 | Chen | Mar 2003 | A1 |
20030044297 | Gennami et al. | Mar 2003 | A1 |
20030186060 | Rao | Oct 2003 | A1 |
20030228235 | Sowa et al. | Dec 2003 | A1 |
20040126259 | Choi et al. | Jul 2004 | A1 |
20040136854 | Kimura et al. | Jul 2004 | A1 |
20040146419 | Kawaguchi et al. | Jul 2004 | A1 |
20040170509 | Wehrenberg et al. | Sep 2004 | A1 |
20040184932 | Lifson | Sep 2004 | A1 |
20040197204 | Yamanouchi et al. | Oct 2004 | A1 |
20050019177 | Shin et al. | Jan 2005 | A1 |
20050019178 | Shin et al. | Jan 2005 | A1 |
20050053507 | Takeuchi et al. | Mar 2005 | A1 |
20050069444 | Peyton | Mar 2005 | A1 |
20050140232 | Lee et al. | Jun 2005 | A1 |
20050201883 | Clendenin et al. | Sep 2005 | A1 |
20050214148 | Ogawa et al. | Sep 2005 | A1 |
20060099098 | Lee et al. | May 2006 | A1 |
20060138879 | Kusase et al. | Jun 2006 | A1 |
20060198748 | Grassbaugh et al. | Sep 2006 | A1 |
20060228243 | Sun et al. | Oct 2006 | A1 |
20060233657 | Bonear et al. | Oct 2006 | A1 |
20070003666 | Gutknecht et al. | Jan 2007 | A1 |
20070036661 | Stover | Feb 2007 | A1 |
20070110604 | Peyton | May 2007 | A1 |
20070130973 | Lifson et al. | Jun 2007 | A1 |
20070148026 | Higashi | Jun 2007 | A1 |
20070194261 | Kato et al. | Aug 2007 | A1 |
20080034772 | Chumley et al. | Feb 2008 | A1 |
20080115357 | Li et al. | May 2008 | A1 |
20080138227 | Knapke | Jun 2008 | A1 |
20080159892 | Huang et al. | Jul 2008 | A1 |
20080159893 | Caillat | Jul 2008 | A1 |
20080196445 | Lifson et al. | Aug 2008 | A1 |
20080223057 | Lifson et al. | Sep 2008 | A1 |
20080226483 | Iwanami et al. | Sep 2008 | A1 |
20080286118 | Gu et al. | Nov 2008 | A1 |
20080305270 | Uhlianuk et al. | Dec 2008 | A1 |
20090013701 | Lifson et al. | Jan 2009 | A1 |
20090035167 | Sun | Feb 2009 | A1 |
20090068048 | Stover et al. | Mar 2009 | A1 |
20090071183 | Stover et al. | Mar 2009 | A1 |
20090185935 | Seibel et al. | Jul 2009 | A1 |
20090191080 | Ignatiev et al. | Jul 2009 | A1 |
20090205345 | Narayanamurthy et al. | Aug 2009 | A1 |
20090297377 | Stover et al. | Dec 2009 | A1 |
20090297378 | Stover et al. | Dec 2009 | A1 |
20090297379 | Stover et al. | Dec 2009 | A1 |
20090297380 | Stover et al. | Dec 2009 | A1 |
20100111741 | Chikano et al. | May 2010 | A1 |
20100135836 | Stover et al. | Jun 2010 | A1 |
20100158731 | Akei et al. | Jun 2010 | A1 |
20100209278 | Tarao et al. | Aug 2010 | A1 |
20100212311 | McQuary et al. | Aug 2010 | A1 |
20100212352 | Kim et al. | Aug 2010 | A1 |
20100254841 | Akei et al. | Oct 2010 | A1 |
20100300659 | Stover et al. | Dec 2010 | A1 |
20100303659 | Stover et al. | Dec 2010 | A1 |
20110052437 | Iitsuka et al. | Mar 2011 | A1 |
20110135509 | Fields et al. | Jun 2011 | A1 |
20110174014 | Scarcella et al. | Jul 2011 | A1 |
20110206548 | Doepker | Aug 2011 | A1 |
20110243777 | Ito et al. | Oct 2011 | A1 |
20110250085 | Stover et al. | Oct 2011 | A1 |
20110293456 | Seibel et al. | Dec 2011 | A1 |
20120009076 | Kim et al. | Jan 2012 | A1 |
20120067070 | Albertson | Mar 2012 | A1 |
20120107163 | Monnier et al. | May 2012 | A1 |
20120183422 | Bahmata | Jul 2012 | A1 |
20120195781 | Stover et al. | Aug 2012 | A1 |
20130078128 | Akei | Mar 2013 | A1 |
20130089448 | Ginies et al. | Apr 2013 | A1 |
20130094987 | Yamashita et al. | Apr 2013 | A1 |
20130098071 | Means | Apr 2013 | A1 |
20130121857 | Liang et al. | May 2013 | A1 |
20130177465 | Clendenin et al. | Jul 2013 | A1 |
20130195707 | Kozuma et al. | Aug 2013 | A1 |
20130302198 | Ginies et al. | Nov 2013 | A1 |
20130309118 | Ginies et al. | Nov 2013 | A1 |
20130315768 | Le Coat et al. | Nov 2013 | A1 |
20140023540 | Heidecker et al. | Jan 2014 | A1 |
20140024563 | Heidecker et al. | Jan 2014 | A1 |
20140037486 | Stover et al. | Feb 2014 | A1 |
20140134030 | Stover et al. | May 2014 | A1 |
20140134031 | Doepker et al. | May 2014 | A1 |
20140147294 | Fargo et al. | May 2014 | A1 |
20140154121 | Doepker | Jun 2014 | A1 |
20140154124 | Doepker et al. | Jun 2014 | A1 |
20140219846 | Ignatiev et al. | Aug 2014 | A1 |
20150037184 | Rood et al. | Feb 2015 | A1 |
20150086404 | Kiem et al. | Mar 2015 | A1 |
20150192121 | Sung et al. | Jul 2015 | A1 |
20150275898 | Ahire et al. | Oct 2015 | A1 |
20150300353 | Utpat et al. | Oct 2015 | A1 |
20150330386 | Doepker | Nov 2015 | A1 |
20150345493 | Lochner et al. | Dec 2015 | A1 |
20150354719 | van Beek et al. | Dec 2015 | A1 |
20160025093 | Doepker | Jan 2016 | A1 |
20160025094 | Ignatiev et al. | Jan 2016 | A1 |
20160032924 | Stover | Feb 2016 | A1 |
20160047380 | Kim et al. | Feb 2016 | A1 |
20160053755 | Taguchi | Feb 2016 | A1 |
20160053759 | Choi et al. | Feb 2016 | A1 |
20160076543 | Akei et al. | Mar 2016 | A1 |
20160115954 | Doepker et al. | Apr 2016 | A1 |
20160138732 | Lively et al. | May 2016 | A1 |
20160138879 | Matsukado et al. | May 2016 | A1 |
20160201673 | Perevozchikov et al. | Jul 2016 | A1 |
20160208803 | Uekawa et al. | Jul 2016 | A1 |
20160272047 | Gan | Sep 2016 | A1 |
20170002817 | Stover | Jan 2017 | A1 |
20170002818 | Stover | Jan 2017 | A1 |
20170030354 | Stover | Feb 2017 | A1 |
20170097108 | Huff | Apr 2017 | A1 |
20170241417 | Jin et al. | Aug 2017 | A1 |
20170268510 | Stover et al. | Sep 2017 | A1 |
20170306960 | Pax et al. | Oct 2017 | A1 |
20170314558 | Pax et al. | Nov 2017 | A1 |
20170342978 | Doepker | Nov 2017 | A1 |
20170342983 | Jin et al. | Nov 2017 | A1 |
20170342984 | Jin et al. | Nov 2017 | A1 |
20180023570 | Huang et al. | Jan 2018 | A1 |
20180038369 | Doepker et al. | Feb 2018 | A1 |
20180038370 | Doepker et al. | Feb 2018 | A1 |
20180066656 | Perevozchikov et al. | Mar 2018 | A1 |
20180066657 | Perevozchikov et al. | Mar 2018 | A1 |
20180135625 | Naganuma et al. | May 2018 | A1 |
20180149155 | Akei et al. | May 2018 | A1 |
20180216618 | Jeong | Aug 2018 | A1 |
20180223823 | Ignatiev et al. | Aug 2018 | A1 |
20190040861 | Doepker et al. | Feb 2019 | A1 |
20190041107 | Piscopo et al. | Feb 2019 | A1 |
20190101120 | Perevozchikov et al. | Apr 2019 | A1 |
20190162185 | Mizushima et al. | May 2019 | A1 |
20190186491 | Perevozchikov et al. | Jun 2019 | A1 |
20190203709 | Her et al. | Jul 2019 | A1 |
20190277288 | Flanigan et al. | Sep 2019 | A1 |
20190353164 | Berning et al. | Nov 2019 | A1 |
20200057458 | Taguchi | Feb 2020 | A1 |
20200291943 | McBean et al. | Sep 2020 | A1 |
20200370808 | Feng et al. | Nov 2020 | A1 |
20210262470 | Wei et al. | Aug 2021 | A1 |
20220065504 | Zou | Mar 2022 | A1 |
20220235774 | Cui et al. | Jul 2022 | A1 |
Number | Date | Country |
---|---|---|
2002301023 | Jun 2005 | AU |
1137614 | Dec 1996 | CN |
1158944 | Sep 1997 | CN |
1158945 | Sep 1997 | CN |
1177681 | Apr 1998 | CN |
1177683 | Apr 1998 | CN |
1259625 | Jul 2000 | CN |
1286358 | Mar 2001 | CN |
1289011 | Mar 2001 | CN |
1339087 | Mar 2002 | CN |
1349053 | May 2002 | CN |
1382912 | Dec 2002 | CN |
1407233 | Apr 2003 | CN |
1407234 | Apr 2003 | CN |
1517553 | Aug 2004 | CN |
1601106 | Mar 2005 | CN |
1680720 | Oct 2005 | CN |
1702328 | Nov 2005 | CN |
2747381 | Dec 2005 | CN |
1757925 | Apr 2006 | CN |
1828022 | Sep 2006 | CN |
1854525 | Nov 2006 | CN |
1963214 | May 2007 | CN |
1995756 | Jul 2007 | CN |
101358592 | Feb 2009 | CN |
101684785 | Mar 2010 | CN |
101761479 | Jun 2010 | CN |
101806302 | Aug 2010 | CN |
101910637 | Dec 2010 | CN |
102076963 | May 2011 | CN |
102089525 | Jun 2011 | CN |
102272454 | Dec 2011 | CN |
102400915 | Apr 2012 | CN |
102422024 | Apr 2012 | CN |
102449314 | May 2012 | CN |
102705234 | Oct 2012 | CN |
102762866 | Oct 2012 | CN |
202926640 | May 2013 | CN |
103502644 | Jan 2014 | CN |
103671125 | Mar 2014 | CN |
203962320 | Nov 2014 | CN |
204041454 | Dec 2014 | CN |
104838143 | Aug 2015 | CN |
105317678 | Feb 2016 | CN |
205533207 | Aug 2016 | CN |
205823629 | Dec 2016 | CN |
205876712 | Jan 2017 | CN |
205876713 | Jan 2017 | CN |
205895597 | Jan 2017 | CN |
106662104 | May 2017 | CN |
106979153 | Jul 2017 | CN |
207513832 | Jun 2018 | CN |
207795587 | Aug 2018 | CN |
209621603 | Nov 2019 | CN |
209654225 | Nov 2019 | CN |
209781195 | Dec 2019 | CN |
3917656 | Nov 1995 | DE |
102011001394 | Sep 2012 | DE |
0256445 | Feb 1988 | EP |
0747598 | Dec 1996 | EP |
0822335 | Feb 1998 | EP |
1067289 | Jan 2001 | EP |
1087142 | Mar 2001 | EP |
1182353 | Feb 2002 | EP |
1 241 417 | Sep 2002 | EP |
1371851 | Dec 2003 | EP |
1382854 | Jan 2004 | EP |
2151577 | Feb 2010 | EP |
1927755 | Nov 2013 | EP |
2764347 | Dec 1998 | FR |
747832 | Apr 1956 | GB |
2107829 | May 1983 | GB |
S58214689 | Dec 1983 | JP |
S60259794 | Dec 1985 | JP |
S62220789 | Sep 1987 | JP |
S6385277 | Apr 1988 | JP |
S63205482 | Aug 1988 | JP |
H01178789 | Jul 1989 | JP |
H0281982 | Mar 1990 | JP |
H02153282 | Jun 1990 | JP |
H03081588 | Apr 1991 | JP |
H03233101 | Oct 1991 | JP |
H04121478 | Apr 1992 | JP |
H04272490 | Sep 1992 | JP |
H0610601 | Jan 1994 | JP |
H0726618 | Mar 1995 | JP |
H07293456 | Nov 1995 | JP |
H08247053 | Sep 1996 | JP |
H08320079 | Dec 1996 | JP |
H08334094 | Dec 1996 | JP |
H09177689 | Jul 1997 | JP |
H11107950 | Apr 1999 | JP |
H11166490 | Jun 1999 | JP |
2951752 | Sep 1999 | JP |
H11324950 | Nov 1999 | JP |
2000104684 | Apr 2000 | JP |
2000161263 | Jun 2000 | JP |
2000329078 | Nov 2000 | JP |
3141949 | Mar 2001 | JP |
2002202074 | Jul 2002 | JP |
2003074481 | Mar 2003 | JP |
2003074482 | Mar 2003 | JP |
2003106258 | Apr 2003 | JP |
2003214365 | Jul 2003 | JP |
2003227479 | Aug 2003 | JP |
2004239070 | Aug 2004 | JP |
2005264827 | Sep 2005 | JP |
2006083754 | Mar 2006 | JP |
2006183474 | Jul 2006 | JP |
2007154761 | Jun 2007 | JP |
2007228683 | Sep 2007 | JP |
2008248775 | Oct 2008 | JP |
2008267707 | Nov 2008 | JP |
2013104305 | May 2013 | JP |
2013167215 | Aug 2013 | JP |
870000015 | Jan 1987 | KR |
10-2001-0009403 | Feb 2001 | KR |
20050027402 | Mar 2005 | KR |
20050095246 | Sep 2005 | KR |
100547323 | Jan 2006 | KR |
20100017008 | Feb 2010 | KR |
101009266 | Jan 2011 | KR |
20120008045 | Jan 2012 | KR |
101192642 | Oct 2012 | KR |
20120115581 | Oct 2012 | KR |
20130011864 | Jan 2013 | KR |
20130094646 | Aug 2013 | KR |
20140114212 | Sep 2014 | KR |
10-2018-0094219 | Aug 2018 | KR |
101917697 | Nov 2018 | KR |
9515025 | Jun 1995 | WO |
0073659 | Dec 2000 | WO |
2007046810 | Apr 2007 | WO |
2008060525 | May 2008 | WO |
2009017741 | Feb 2009 | WO |
2009155099 | Dec 2009 | WO |
2010118140 | Oct 2010 | WO |
2011106422 | Sep 2011 | WO |
2012114455 | Aug 2012 | WO |
2015187816 | Dec 2015 | WO |
2017071641 | May 2017 | WO |
2019128793 | Jul 2019 | WO |
2019165254 | Aug 2019 | WO |
2019222535 | Nov 2019 | WO |
Entry |
---|
Advisory Action regarding U.S. Appl. No. 14/073,293, dated Apr. 18, 2016. |
Office Action regarding Chinese Patent Application No. 201380062657.4, dated May 4, 2016. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Chinese Patent Application No. 201380059963.2, dated May 10, 2016. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding U.S. Appl. No. 14/060,102, dated Jun. 14, 2016. |
Office Action regarding U.S. Appl. No. 14/846,877, dated Jul. 15, 2016. |
Office Action regarding Chinese Patent Application No. 201410461048.2, dated Jul. 26, 2016. Translation provided by Unitalen Attorneys at Law. |
Search Report regarding European Patent Application No. 13858194.7, dated Aug. 3, 2016. |
Search Report regarding European Patent Application No. 13859308.2, dated Aug. 3, 2016. |
Office Action regarding U.S. Appl. No. 14/294,458, dated Aug. 19, 2016. |
Office Action regarding Chinese Patent Application No. 201410460792.0, dated Oct. 21, 2016. Translation provided by Unitalen Attorneys at Law. |
Search Report regarding European Patent Application No. 11747996.4, dated Nov. 7, 2016. |
Office Action regarding Chinese Patent Application No. 201380059666.8, dated Nov. 23, 2016. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding U.S. Appl. No. 14/060,102, dated Dec. 28, 2016. |
International Search Report regarding International Application No. PCT/CN2016/103763, dated Jan. 25, 2017. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/CN2016/103763, dated Jan. 25, 2017. |
Office Action regarding U.S. Appl. No. 15/156,400, dated Feb. 23, 2017. |
Office Action regarding U.S. Appl. No. 14/294,458, dated Feb. 28, 2017. |
Advisory Action regarding U.S. Appl. No. 14/060,102, dated Mar. 3, 2017. |
Office Action regarding U.S. Appl. No. 14/663,073, dated Apr. 11, 2017. |
Office Action regarding Chinese Patent Application No. 201410460792.0, dated Apr. 24, 2017. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding U.S. Appl. No. 14/946,824, dated May 10, 2017. |
Advisory Action regarding U.S. Appl. No. 14/294,458, dated Jun. 9, 2017. |
Office Action regarding Chinese Patent Application No. 201610703191.7, dated Jun. 13, 2017. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Chinese Patent Application No. 201610516097.0, dated Jun. 27, 2017. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Indian Patent Application No. 2043/MUMNP/2011, dated Jul. 28, 2017. |
Restriction Requirement regarding U.S. Appl. No. 14/809,786, dated Aug. 16, 2017. |
Office Action regarding U.S. Appl. No. 14/294,458, dated Sep. 21, 2017. |
Office Action regarding U.S. Appl. No. 14/757,407, dated Oct. 13, 2017. |
Office Action regarding Chinese Patent Application No. 201610158216.X, dated Oct. 30, 2017. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Chinese Patent Application No. 201410460792.0, dated Nov. 1, 2017. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Chinese Patent Application No. 201610512702.7, dated Dec. 20, 2017. Partial translation provided by Unitalen Attorneys at Law. |
International Search Report regarding International Application No. PCT/US2017/050525, dated Dec. 28, 2017. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2017/050525, dated Dec. 28, 2017. |
Office Action regarding Chinese Patent Application No. 201610499158.7, dated Jan. 9, 2018. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding U.S. Appl. No. 14/809,786, dated Jan. 11, 2018. |
Office Action regarding Chinese Patent Application No. 201580029636.1, dated Jan. 17, 2018. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Chinese Patent Application No. 201580041209.5, dated Jan. 17, 2018. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding U.S. Appl. No. 15/646,654, dated Feb. 9, 2018. |
Office Action regarding U.S. Appl. No. 15/651,471, dated Feb. 23, 2018. |
Office Action regarding Indian Patent Application No. 1907/MUMNP/2012, dated Feb. 26, 2018. |
Restriction Requirement regarding U.S. Appl. No. 15/186,092, dated Apr. 3, 2018. |
Restriction Requirement regarding U.S. Appl. No. 15/784,458, dated Apr. 5, 2018. |
Office Action regarding Korean Patent Application No. 10-2016-7034539, dated Apr. 11, 2018. Translation provided by Y.S. Chang & Associates. |
Office Action regarding U.S. Appl. No. 15/186,151, dated May 3, 2018. |
Office Action regarding Chinese Patent Application No. 201610930347.5, dated May 14, 2018. Translation provided by Unitalen Attorneys at Law. |
Restriction Requirement regarding U.S. Appl. No. 15/187,225, dated May 15, 2018. |
Notice of Allowance regarding U.S. Appl. No. 14/757,407, dated May 24, 2018. |
Office Action regarding Chinese Patent Application No. 201610158216.X, dated Jun. 13, 2018. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding European Patent Application No. 13859308.2, dated Jun. 22, 2018. |
Office Action regarding U.S. Appl. No. 15/186,092, dated Jun. 29, 2018. |
Yanagisawa, M.; Uematsu, T.; Hiodoshi, S.; Saito, M.; and Era, S., “Noise Reduction Technology for Inverter Controlled Scroll Compressors” (2002). International Compressor Engineering Conference. Paper 1578. |
Lee, J. K.; Lee, S. J.; Lee, D. S.; Lee, B. C.; and Lee, U. S., “Identification and Reduction of Noise in a Scroll Compressor” (2000). International Compressor Engineering Conference. Paper 1496. |
Non-Final Office Action for U.S. Appl. No. 18/835,048 dated Nov. 24, 2023. |
Office Action regarding Chinese Patent Application No. 201811168307.7, dated Mar. 27, 2020. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Korean Patent Application No. 10-2018-0159231, dated Apr. 7, 2020. Translation provided by Ks Koryo International IP Law Firm. |
Office Action regarding Chinese Patent Application No. 201780055443.2, dated Apr. 14, 2020. Translation provided by Unitalen Attorneys at Law. |
Notice of Allowance regarding U.S. Appl. No. 15/682,599, dated Apr. 22, 2020. |
Notice of Allowance regarding U.S. Appl. No. 15/831,423, dated May 20, 2020. |
Notice of Allowance regarding U.S. Appl. No. 15/692,844, dated Jun. 4, 2020. |
Restriction Requirement regarding U.S. Appl. No. 16/147,920, dated Jun. 25, 2020. |
Office Action regarding U.S. Appl. No. 16/154,406, dated Jun. 29, 2020. |
International Search Report regarding International Application No. PCT/US2020/022030, dated Jul. 2, 2020. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2020/022030, dated Jul. 2, 2020. |
Restriction Requirement regarding U.S. Appl. No. 16/154,844, dated Jul. 2, 2020. |
Office Action regarding Chinese Patent Application No. 201811480347.5, dated Jul. 21, 2020. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding U.S. Appl. No. 15/881,016, dated Jul. 21, 2020. |
Office Action regarding U.S. Appl. No. 16/177,902, dated Jul. 23, 2020. |
Office Action regarding U.S. Appl. No. 16/147,920, dated Sep. 25, 2020. |
Notice of Allowance regarding U.S. Appl. No. 16/154,406, dated Oct. 2, 2020. |
Office Action regarding U.S. Appl. No. 16/154,844, dated Oct. 5, 2020. |
Notice of Allowance regarding U.S. Appl. No. 15/881,016, dated Nov. 17, 2020. |
Notice of Allowance regarding U.S. Appl. No. 16/177,902, dated Nov. 27, 2020. |
Notice of Allowance regarding U.S. Appl. No. 16/147,920, dated Feb. 2, 2021. |
Notice of Allowance regarding U.S. Appl. No. 16/154,844, dated Feb. 10, 2021. |
Heatcraft RPD; How and Why we use Capacity Control; dated Jan. 17, 2016; 12 Pages. |
Non-Final Office Action regarding U.S. Appl. No. 17/176,080 dated Mar. 30, 2022. |
First Chinese Office Action & Search Report regarding Application No. 201980040745.1 dated Jan. 6, 2022. English translation provided by Unitalen Attorneys at Law. |
Non-Final Office Action regarding U.S. Appl. No. 17/388,923 dated Jun. 9, 2022. |
Notice of Allowance regarding U.S. Appl. No. 17/157,588 dated Jun. 16, 2022. |
Final Office Action regarding U.S. Appl. No. 17/176,080 dated Aug. 12, 2022. |
Advisory Action regarding U.S. Appl. No. 17/176,080 dated Oct. 17, 2022. |
Performance of the Use of Plastics in Oil-Free Scroll Compressors, Shaffer et al., 2012. |
Notice of Allowance regarding U.S. Appl. No. 17/176,080 dated Dec. 15, 2022. |
Corrected Notice of Allowance regarding U.S. Appl. No. 17/176,080 dated Dec. 21, 2022. |
Notice of Allowance regarding U.S. Appl. No. 17/176,080 dated Feb. 8, 2023. |
Office Action mailed Jan. 19, 2023, in U.S. Appl. No. 17/196,119. |
Office Action mailed Mar. 9, 2023, in U.S. Appl. No. 17/835,048. |
Notice of Allowance regarding U.S. Appl. No. 17/196,119 dated Apr. 26, 2023. |
Non-Final Office Action regarding U.S. Appl. No. 17/886,047 dated May 17, 2023. |
Non-Final Office Action regarding U.S. Appl. No. 17/980,798 dated May 24, 2023. |
Office Action regarding Chinese Patent Application No. 2022109807542, dated May 15, 2023. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding European Patent Application No. 198040792, dated Jun. 13, 2023. |
Notice of Allowance regarding U.S. Appl. No. 17/866,047 dated Aug. 18, 2023. |
Notice of Allowance regarding U.S. Appl. No. 17/980,798 dated Sep. 20, 2023. |
Final Office Action regarding U.S. Appl. No. 17/835,048 dated Aug. 10, 2023. |
International Search Report and Written Opinion regarding App. No. PCT/US2023/023852 dated Sep. 20, 2023. |
International Search Report and Written Opinion in corresponding Application No. PCT/US2023/029860 dated Nov. 21, 2023. |
Non-Final Office Action for U.S. Appl. No. 18/115,355 dated Jul. 18, 2023. |
International Search Report Regarding Application PCT/US2023/015116-WO-POA Dated Sep. 5, 2023. |
International Search Report and Written Opinion in corresponding Application No. PCT/US2022/033029 dated Dec. 6, 2022. |
Liegeois, Olivier and Winandy, Eric, “Scroll Compressors for Dedicated Heat Pumps: Development and Performance Comparison” (2008). International Compressor Engineering Conference. Paper 1906. |
Itoh, T.; Fujitani, M.; and Takeda, K., “Investigation of Discharge Flow Pulsation in Scroll Crompressors” (1994). International Compressor Engineering Conference. Paper 1056. |
Toyama, T.; Nishikawa, Y.; Yoshida, Y.; Hiodoshi, S.; and Shibamoto, Y., “Reduction of Noise and Over-Compression Loss by Scroll Compressor With Modified Discharge Check Valve” (2002). International Compressor Engineering Conference. Paper 1587. |
Notice of Allowance regarding U.S. Appl. No. 15/646,654, dated Jul. 11, 2018. |
Notice of Allowance regarding U.S. Appl. No. 15/651,471, dated Jul. 11, 2018. |
Office Action regarding U.S. Appl. No. 15/784,540, dated Jul. 17, 2018. |
Office Action regarding U.S. Appl. No. 15/784,458, dated Jul. 19, 2018. |
Restriction Requirement regarding U.S. Appl. No. 15/587,735, dated Jul. 23, 2018. |
Office Action regarding Chinese Patent Application No. 201610499158.7, dated Aug. 1, 2018. Translation provided by Unitalen Attorneys at Law. |
Interview Summary regarding U.S. Appl. No. 15/186,092, dated Aug. 14, 2018. |
Office Action regarding U.S. Appl. No. 15/187,225, dated Aug. 27, 2018. |
Office Action regarding Chinese Patent Application No. 201710795228.8, dated Sep. 5, 2018. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Korean Patent Application No. 10-2016-7034539, dated Sep. 6, 2018. Translation provided by Y.S. Chang & Associates. |
Office Action regarding Indian Patent Application No. 1307/MUMNP/2015, dated Sep. 12, 2018. |
Office Action regarding Chinese Patent Application No. 201580029636.1, dated Oct. 8, 2018. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding U.S. Appl. No. 15/587,735, dated Oct. 9, 2018. |
Office Action regarding U.S. Appl. No. 15/186,151, dated Nov. 1, 2018. |
Office Action regarding Korean Patent Application No. 10-2017-7033995, dated Nov. 29, 2018. Translation provided by KS Koryo International IP Law Firm. |
Notice of Allowance regarding U.S. Appl. No. 15/186,092, dated Dec. 20, 2018. |
Office Action regarding Indian Patent Application No. 1306/MUMNP/2015, dated Dec. 31, 2018. |
Notice of Allowance regarding U.S. Appl. No. 15/187,225, dated Jan. 3, 2019. |
Office Action regarding Chinese Patent Application No. 201610499158.7, dated Feb. 1, 2019. Translation provided by Unitalen Attorneys at Law. |
Notice of Allowance regarding U.S. Appl. No. 15/784,458, dated Feb. 7, 2019. |
Notice of Allowance regarding U.S. Appl. No. 15/784,540, dated Feb. 7, 2019. |
Search Report regarding European Patent Application No. 18198310.7, dated Feb. 27, 2019. |
Notice of Allowance regarding U.S. Appl. No. 15/186,151, dated Mar. 19, 2019. |
Notice of Allowance regarding U.S. Appl. No. 15/186,092, dated Apr. 19, 2019. |
Office Action regarding Chinese Patent Application No. 201710795228.8, dated Apr. 29, 2019. Translation provided by Unitalen Attorneys at Law. |
Notice of Allowance regarding U.S. Appl. No. 15/187,225, dated May 2, 2019. |
Office Action regarding U.S. Appl. No. 15/587,735, dated May 17, 2019. |
Office Action regarding Chinese Patent Application No. 201811011292.3, dated Jun. 21, 2019. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding European Patent Application No. 11747996.4, dated Jun. 26, 2019. |
Notice of Allowance regarding U.S. Appl. No. 15/186,151, dated Jul. 25, 2019. |
Office Action regarding Chinese Patent Application No. 201610499158.7, dated Aug. 1, 2019. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Chinese Patent Application No. 201811168307.7, dated Aug. 12, 2019. Translation provided by Unitalen Attorneys at Law. |
Restriction Requirement regarding U.S. Appl. No. 15/682,599, dated Aug. 14, 2019. |
Notice of Allowance regarding U.S. Appl. No. 15/587,735, dated Aug. 23, 2019. |
International Search Report regarding International Application No. PCT/US2019/032718, dated Aug. 23, 2019. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2019/032718, dated Aug. 23, 2019. |
Office Action regarding Chinese Patent Application No. 201780055443.2, dated Sep. 2, 2019. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding U.S. Appl. No. 15/692,844, dated Sep. 20, 2019. |
Office Action regarding Chinese Patent Application No. 201710795228.8, dated Oct. 28, 2019. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding European Patent Application No. 11747996.4, dated Nov. 5, 2019. |
Notice of Allowance regarding U.S. Patent Application No. 15/186, 151, dated Nov. 14, 2019. |
Office Action regarding Indian Patent Application No. 2043/MUMNP/2011, dated Nov. 27, 2019. |
Office Action regarding Chinese Patent Application No. 201811480347.5, dated Jan. 10, 2020. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Chinese Patent Application No. 201811541653.5, dated Jan. 10, 2020. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding European Patent Application No. 11747996.4, dated Jan. 14, 2020. |
Office Action regarding U.S. Appl. No. 15/881,016, dated Jan. 23, 2020. |
Office Action regarding U.S. Appl. No. 15/682,599, dated Jan. 24, 2020. |
Office Action regarding U.S. Appl. No. 15/831,423, dated Jan. 31, 2020. |
Notice of Allowance regarding U.S. Appl. No. 15/692,844, dated Feb. 20, 2020. |
Office Action regarding European Patent Application No. 13859308.2, dated Mar. 4, 2020. |
Luckevich, Mark, “MEMS microvalves: the new valve world.” Valve World, May 2007, pp. 79-83. |
Office Action regarding U.S. Appl. No. 11/522,250, dated Aug. 1, 2007. |
Search Report regarding European Patent Application No. 07254962.9, dated Mar. 12, 2008. |
Office Action regarding Chinese Patent Application No. 200710153687.2, dated Mar. 6, 2009. Translation provided by CCPIT Patent and Trademark Law Office. |
Office Action regarding U.S. Appl. No. 12/103,265, dated May 27, 2009. |
Office Action regarding U.S. Appl. No. 11/645,288, dated Nov. 30, 2009. |
Office Action regarding U.S. Appl. No. 12/103,265, dated Dec. 17, 2009. |
Office Action regarding Korean Patent Application No. 10-2007-0093478, dated Feb. 25, 2010. Translation provided by Y.S. Chang & Associates. |
Office Action regarding U.S. Appl. No. 12/103,265, dated Jun. 15, 2010. |
Office Action regarding Chinese Patent Application No. 200710160038.5, dated Jul. 8, 2010. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Korean Patent Application No. 10-2007-0093478, dated Aug. 31, 2010. Translation provided by Y.S. Chang & Associates. |
Advisory Action regarding U.S. Appl. No. 12/103,265, dated Sep. 17, 2010. |
International Search Report regarding International Application No. PCT/US2010/030248, dated Nov. 26, 2010. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2010/030248, dated Nov. 26, 2010. |
International Search Report regarding International Application No. PCT/US2011/025921, dated Oct. 7, 2011. |
Written Opinion of the International Search Authority regarding International Application No. PCT/US2011/025921, dated Oct. 7, 2011. |
Office Action regarding Chinese Patent Application No. 200710160038.5, dated Jan. 31, 2012. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Chinese Patent Application No. 201010224582.3, dated Apr. 17, 2012. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Indian Patent Application No. 1071/KOL/2007, dated Apr. 27, 2012. |
Office Action regarding U.S. Appl. No. 13/036,529, dated Aug. 22, 2012. |
Office Action regarding U.S. Appl. No. 13/181,065, dated Nov. 9, 2012. |
International Search Report regarding International Application No. PCT/US2013/051678, dated Oct. 21, 2013. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2013/051678, dated Oct. 21, 2013. |
Office Action regarding Chinese Patent Application No. 201080020243.1, dated Nov. 5, 2013. Translation provided by Unitalen Attorneys at Law. |
International Search Report regarding International Application No. PCT/US2013/069456, dated Feb. 18, 2014. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2013/069456, dated Feb. 18, 2014. |
International Search Report regarding International Application No. PCT/US2013/069462, dated Feb. 21, 2014. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2013/069462, dated Feb. 21, 2014. |
International Search Report regarding International Application No. PCT/US2013/070992, dated Feb. 25, 2014. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2013/070992, dated Feb. 25, 2014. |
International Search Report regarding International Application No. PCT/US2013/070981, dated Mar. 4, 2014. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2013/070981, dated Mar. 4, 2014. |
Office Action regarding Chinese Patent Application No. 201180010366.1, dated Jun. 4, 2014. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Chinese Patent Application No. 201180010366.1, dated Dec. 31, 2014. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding U.S. Appl. No. 14/081,390, dated Mar. 27, 2015. |
Search Report regarding European Patent Application No. 10762374.6, dated Jun. 16, 2015. |
Office Action regarding U.S. Appl. No. 14/060,240, dated Aug. 12, 2015. |
International Search Report regarding International Application No. PCT/US2015/033960, dated Sep. 1, 2015. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2015/033960, dated Sep. 1, 2015. |
Office Action regarding U.S. Appl. No. 14/073,293, dated Sep. 25, 2015. |
Restriction Requirement regarding U.S. Appl. No. 14/060,102, dated Oct. 7, 2015. |
International Search Report regarding International Application No. PCT/US2015/042479, dated Oct. 23, 2015. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2015/042479, dated Oct. 23, 2015. |
Office Action regarding Chinese Patent Application No. 201410461048.2, dated Nov. 30, 2015. Translation provided by Unitalen Attorneys at Law. |
Notice of Allowance regarding U.S. Appl. No. 14/060,240, dated Dec. 1, 2015. |
Office Action regarding U.S. Appl. No. 14/073,293, dated Jan. 29, 2016. |
Office Action regarding Chinese Patent Application No. 201410460792.0, dated Feb. 25, 2016. Translation provided by Unitalen Attorneys at Law. |
Restriction Requirement regarding U.S. Appl. No. 14/060,102, dated Mar. 16, 2016. |
Office Action regarding Chinese Patent Application No. 201380059666.8, dated Apr. 5, 2016. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Chinese Patent Application No. 201380062614.6, dated Apr. 5, 2016. Translation provided by Unitalen Attorneys at Law. |
Non-Final Office Action regarding U.S. Appl. No. 18/394,474 dated Apr. 11, 2024. |
International Search Report and Written Opinion regarding Application No. PCT/US2023/086010 dated Apr. 24, 2024. |
Final Office Action regarding U.S. Appl. No. 17/835,048 dated May 3, 2024. |
Non-Final Office Action regarding U.S. Appl. No. 18/381,884 dated May 10, 2024. |