Heat pump with integral solar collector

Information

  • Patent Grant
  • 9316404
  • Patent Number
    9,316,404
  • Date Filed
    Wednesday, August 4, 2010
    14 years ago
  • Date Issued
    Tuesday, April 19, 2016
    8 years ago
Abstract
The present invention generally relates to heat pumps that utilize at least one solar receiver operating with the same working fluids. In one embodiment, the present invention relates to a hybrid solar heat pump comprised of at least one microchannel heat exchanger with integral solar absorber, at least one compression device as the heat pump for concurrent compression to a higher pressure and mass flow regulator of the working fluid, and at least one working fluid accumulator with the entire system operating with the same working fluid.
Description
FIELD OF THE INVENTION

The present invention generally relates to highly integrated solar collector with a heat pump. In all embodiments, the present invention utilizes the same working fluid within the primary solar collector as the heat pump.


BACKGROUND OF THE INVENTION

Due to a variety of factors including, but not limited to, global warming issues, fossil fuel availability and environmental impacts, crude oil price and availability issues, alternative energy sources are becoming more popular today. One such source of alternative and/or renewable energy is solar energy. One such way to collect solar energy is to use a solar receiver to focus and convert solar energy into a desired form (e.g., thermal energy or electrical energy). Thermal energy harvested from the sun is known in the art to be utilized in absorption heat pumps, domestic hot water and industrial processes, power generating cycles through the heating of a secondary heat transfer fluid, power generating cycles through the direct heating of power generating working fluid such as steam, and for heating. Furthermore, it is recognized that a wide range of energy consumers can be supplied via electrical and/or thermal energy such as air conditioning, refrigeration, heating, industrial processes, and domestic hot water. Given this, solar collectors that function in efficient manners are desirable.


Traditional thermal activated processes effectively consider every unit of energy into the system. Furthermore by definition solar energy is a function of solar intensity and thus at the minimum is absent during the nighttime, unless significant thermal storage is utilized that is currently very expensive. Additionally, it recognized in the art that vapor compressor heat pumps have coefficients of performance “COP” substantially higher than absorption heat pumps. And hot water heaters utilizing vapor compressor driven heat pumps also have substantially higher COPs as compared to direct heating of hot water having COPs less than unity. In addition, traditional solar collectors, particularly flat panel collectors, are temperature constrained due in large part to declining efficiencies as a function of temperature and the degradation of the working fluid which is often a mixture of a glycol and water. Solar collectors typically fall into the category of pump driven working fluid circulation or thermosiphon that respectively have the deficiency of requiring a pump or orientation of solar collector with respect to the “condenser”.


Heat pumps also have significant limitations that limit temperature including the requirement for oil lubrication that would suffer oxidative destruction at the higher temperatures desired within heat pumps. Additionally, the working fluid in virtually all refrigerants is significantly expandable across a wide operating temperature range.


The combined limitations of each individual component being the solar collector and the heat pump presents significant challenges that are further exasperated when high integration using the same working fluid for both devices is realized.


SUMMARY OF THE INVENTION

The present invention generally relates to highly integrated solar collector with a heat pump. In all embodiments, the present invention utilizes the same working fluid within the primary solar collector as the heat pump.


In one embodiment, the present invention relates to a heat pump system comprising: at least one working fluid; at least one heat pump having an inlet and an outlet designed to receive and utilize the at least one working fluid; at least one solar collector having an inlet and an outlet designed to receive and utilize the at least one working fluid, wherein the inlet of the at least one solar collector is in fluid communication via the at least one working fluid with the outlet of the at least one heat pump; and at least one thermal sink having an inlet and an outlet designed to receive and utilize the at least one working fluid, wherein the inlet of the at least one thermal sink is in fluid communication via the at least one working fluid with the outlet of the at least one solar collector, and wherein the outlet of the at least one thermal sink is in fluid communication via the at least one working fluid with the inlet of the at least one heat pump, wherein the heat pump system contains a first temperature sensor and a first pressure sensor in fluid communication with the at least one working fluid, the first temperature sensor and the first pressure sensor being located between the at least one heat pump and the at least one solar collector, wherein the heat pump system contains a second temperature sensor in fluid communication with the at least one working fluid, the second temperature sensor being located between the at least one solar collector and the least one thermal sink, and wherein the heat pump system contains a third temperature sensor in fluid communication with the at least one working fluid, the third temperature sensor being located between the at least one thermal sink and the at least one heat pump.


In another embodiment, the present invention relates to a heat pump system comprising: at least one working fluid; at least one heat pump having an inlet and an outlet designed to receive and utilize the at least one working fluid; at least one solar collector having an inlet and an outlet designed to receive and utilize the at least one working fluid, wherein the inlet of the at least one solar collector is in fluid communication via the at least one working fluid with the outlet of the at least one heat pump; at least one thermal sink having an inlet and an outlet designed to receive and utilize the at least one working fluid, wherein the inlet of the at least one thermal sink is in fluid communication via the at least one working fluid with the outlet of the at least one solar collector; at least one expander having an inlet and an outlet designed to receive and utilize the at least one working fluid, wherein the inlet of the at least one expander is in fluid communication via the at least one working fluid with the outlet of the at least one thermal sink; and at least one condenser having an inlet and an outlet designed to receive and utilize the at least one working fluid, wherein the inlet of the at least one condenser is in fluid communication via the at least one working fluid with the outlet of the at least one expander, and wherein the outlet of the at least one condenser is in fluid communication via the at least one working fluid with the inlet of the at least one heat pump, wherein the heat pump system contains a first temperature sensor and a first pressure sensor in fluid communication with the at least one working fluid, the first temperature sensor and the first pressure sensor being located between the at least one heat pump and the at least one solar collector, wherein the heat pump system contains a second temperature sensor in fluid communication with the at least one working fluid, the second temperature sensor being located between the at least one solar collector and the least one thermal sink, wherein the heat pump system contains a third temperature sensor in fluid communication with the at least one working fluid, the third temperature sensor being located between the at least one thermal sink and the at least one heat pump, and wherein the heat pump system contains a fourth temperature sensor and a second pressure sensor in fluid communication with the at least one working fluid, the fourth temperature sensor and the second pressure sensor being located between the at least one expander and the at least one condenser.


In still another embodiment, the present invention relates to a heat pump system comprising: at least one working fluid; at least one heat pump having an inlet and an outlet designed to receive and utilize the at least one working fluid; at least one solar collector having an inlet and an outlet designed to receive and utilize the at least one working fluid, wherein the inlet of the at least one solar collector is in fluid communication via the at least one working fluid with the outlet of the at least one heat pump; at least one thermal sink having an inlet and an outlet designed to receive and utilize the at least one working fluid, wherein the inlet of the at least one thermal sink is in fluid communication via the at least one working fluid with the outlet of the at least one solar collector; at least one expansion valve having an inlet and an outlet designed to receive and utilize the at least one working fluid, wherein the inlet of the at least one expansion valve is in fluid communication via the at least one working fluid with the outlet of the at least one thermal sink; and at least one evaporator having an inlet and an outlet designed to receive and utilize the at least one working fluid, wherein the inlet of the at least one evaporator is in fluid communication via the at least one working fluid with the outlet of the at least one expansion valve, and wherein the outlet of the at least one evaporator is in fluid communication via the at least one working fluid with the inlet of the at least one heat pump, wherein the heat pump system contains a first temperature sensor and a first pressure sensor in fluid communication with the at least one working fluid, the first temperature sensor and the first pressure sensor being located between the at least one heat pump and the at least one solar collector, wherein the heat pump system contains a second temperature sensor in fluid communication with the at least one working fluid, the second temperature sensor being located between the at least one solar collector and the least one thermal sink, wherein the heat pump system contains a third temperature sensor in fluid communication with the at least one working fluid, the third temperature sensor being located between the at least one thermal sink and the at least one heat pump, and wherein the heat pump system contains a fourth temperature sensor and a second pressure sensor in fluid communication with the at least one working fluid, the fourth temperature sensor and the second pressure sensor being located between the at least one expansion valve and the at least one evaporator.


In still another embodiment, the present invention relates to a heat pump system comprising: at least one working fluid; at least one heat pump having an inlet and an outlet designed to receive and utilize the at least one working fluid; at least one solar collector having an inlet and an outlet designed to receive and utilize the at least one working fluid, wherein the inlet of the at least one solar collector is in fluid communication via the at least one working fluid with the outlet of the at least one heat pump; at least one thermal sink having an inlet and an outlet designed to receive and utilize the at least one working fluid, wherein the inlet of the at least one thermal sink is in fluid communication via the at least one working fluid with the outlet of the at least one solar collector; at least one fluid accumulator having an inlet and an outlet designed to receive and utilize the at least one working fluid, wherein the inlet of the at least one fluid accumulator is in fluid communication via the at least one working fluid with the outlet of the at least one thermal sink; and at least one control valve having an inlet and an outlet designed to receive and utilize the at least one working fluid, wherein the inlet of the at least one control valve is in fluid communication via the at least one working fluid with the outlet of the at least one fluid accumulator, and wherein the outlet of the at least one control valve is in fluid communication via the at least one working fluid with the inlet of the at least one heat pump, wherein the heat pump system contains a first temperature sensor and a first pressure sensor in fluid communication with the at least one working fluid, the first temperature sensor and the first pressure sensor being located between the at least one heat pump and the at least one solar collector, wherein the heat pump system contains a second temperature sensor in fluid communication with the at least one working fluid, the second temperature sensor being located between the at least one solar collector and the least one thermal sink, and wherein the heat pump system contains a third temperature sensor in fluid communication with the at least one working fluid, the third temperature sensor being located between the at least one thermal sink and the at least one heat pump.


In still another embodiment, the present invention relates to a heat pump system comprising: at least one working fluid; at least one heat pump having an inlet and an outlet designed to receive and utilize the at least one working fluid; at least one solar collector having an inlet and an outlet designed to receive and utilize the at least one working fluid, wherein the inlet of the at least one solar collector is in fluid communication via the at least one working fluid with the outlet of the at least one heat pump; and at least one working fluid inventory storage system, wherein the at least one working fluid inventory storage system is in fluid communication with both the at least one heat pump and the at least one solar collector, wherein the at least one working fluid inventory storage system is designed to working in a bi-directional manner, and wherein the at least one working fluid inventory storage system comprises: at least one bi-directional expansion valve having an inlet and an outlet designed to receive and utilize the at least one working fluid, wherein the inlet of the at least one bi-directional expansion valve is in fluid communication via the at least one working fluid with both the outlet of the at least one heat pump and the inlet of the at least one solar collector; at least one bi-directional condenser having an inlet and an outlet designed to receive and utilize the at least one working fluid, wherein the inlet of the at least one bi-directional condenser is in fluid communication via the at least one working fluid with the outlet of the at least one bi-directional expansion valve; and at least one bi-directional fluid accumulator having an inlet and an outlet designed to receive and utilize the at least one working fluid, wherein the inlet of the at least one bi-directional fluid accumulator is in fluid communication via the at least one working fluid with the outlet of the at least one bi-directional condenser, wherein the heat pump system contains a first temperature sensor in fluid communication with the at least one working fluid, the first temperature sensor being located between the at least one heat pump and the at least one solar collector, wherein the heat pump system contains a second temperature sensor in fluid communication with the at least one working fluid, the second temperature sensor being located downstream of the at least one solar collector, wherein the heat pump system contains a third temperature sensor in fluid communication with the at least one working fluid, the third temperature sensor being located between the at least one bi-directional expansion valve and the at least one bi-directional fluid accumulator, and wherein the heat pump system contains a first pressure sensor in fluid communication with the at least one working fluid, the first pressure sensor being located between the at least one bi-directional expansion valve and the at least one bi-directional fluid condenser.


In still another embodiment, the present invention relates to a heat pump system comprising: at least one working fluid; at least one heat pump having an inlet and an outlet designed to receive and utilize the at least one working fluid; at least one solar collector having an inlet and an outlet designed to receive and utilize the at least one working fluid, wherein the inlet of the at least one solar collector is in fluid communication via the at least one working fluid with the outlet of the at least one heat pump via at least one first valve; at least one first thermal sink/condenser having an inlet and an outlet designed to receive and utilize the at least one working fluid, wherein the inlet of the at least one first thermal sink/condenser is in fluid communication via the at least one working fluid with the outlet of the at least one heat pump via at least one second valve; at least one fluid accumulator having an inlet and an outlet designed to receive and utilize the at least one working fluid, wherein the inlet of the at least one fluid accumulator is in fluid communication via the at least one working fluid with the outlet of the at least one heat pump via at least one third valve; at least one thermal sink/heat exchanger combination having an inlet and an outlet designed to receive and utilize the at least one working fluid, wherein the inlet of the at least one thermal sink/heat exchanger combination is in thermal communication, or fluid communication, via the at least one working fluid with the outlet of the at least one solar collector, and wherein the outlet of the at least one thermal sink/heat exchanger combination is in thermal communication, or fluid communication, via the at least one working fluid with the inlet of the at least one first thermal sink/condenser; and at least one second thermal sink/condenser having an inlet and an outlet designed to receive and utilize the at least one working fluid, wherein the inlet of the at least one second thermal sink/condenser is in fluid communication via the at least one working fluid with the outlet of the at least one first thermal sink/condenser, and wherein the inlet of the at least one second thermal sink/condenser is in fluid communication via the at least one working fluid with the outlet of the at least one fluid accumulator pump via at least one fourth valve.


In still another embodiment, the present invention relates to a heat pump system comprising: at least one working fluid; at least one heat pump having an inlet and an outlet designed to receive and utilize the at least one working fluid; at least one thermal sink having an inlet and an outlet designed to receive and utilize the at least one working fluid, wherein the inlet of the at least one thermal sink is in fluid communication via the at least one working fluid with the outlet of the at least one heat pump via at least one first valve; at least one heat exchanger/pump combination, wherein the at least one heat exchanger/pump combination is in thermal communication, or fluid communication, with the at least one thermal sink; at least one solar collector having an inlet and an outlet designed to receive and utilize the at least one working fluid, wherein the inlet of the at least one solar collector is in fluid communication via the at least one working fluid with the outlet of the at least one thermal sink; and at least one evaporator having an inlet and an outlet designed to receive and utilize the at least one working fluid, wherein the inlet of the at least one evaporator is in fluid communication via the at least one working fluid with the outlet of the at least one solar collector via at least one second valve, and wherein the outlet of the at least one evaporator is in fluid communication via the at least one working fluid with the inlet of the at least one heat pump, wherein the heat pump system contains a first temperature sensor and a first pressure sensor in fluid communication with the at least one working fluid, the first temperature sensor and the first pressure sensor being located between the at least one heat pump and the at least thermal sink, wherein the heat pump system contains a second temperature sensor in fluid communication with the at least one working fluid, the second temperature sensor being located between the least one thermal sink and the at least one solar collector, wherein the heat pump system contains a third temperature sensor in fluid communication with the at least one working fluid, the third temperature sensor being located between the at least one solar collection and the at least one evaporator, and wherein the heat pump system contains a fourth temperature sensor and a second pressure sensor in fluid communication with the at least one working fluid, the fourth temperature sensor and the second pressure sensor being located between the at least one evaporator and the at least one heat pump.


In still another embodiment, the present invention relates to a heat pump system comprising: at least one working fluid; at least one heat pump designed to receive and utilize the at least one working fluid; at least one thermal sink designed to receive and utilize the at least one working fluid, wherein the at least one thermal sink is in fluid communication via the at least one working fluid with the at least one heat pump via at least one first bi-directional valve; at least one solar collector designed to receive and utilize the at least one working fluid, wherein the at least one solar collector is in fluid communication via the at least one working fluid with the at least one thermal sink via a bi-directional connection, and wherein the at least one solar collection is in fluid communication via the at least one working fluid with the at least one heat pump via the first bi-directional valve; and at least one evaporator designed to receive and utilize the at least one working fluid, wherein the at least one evaporator is in fluid communication via the at least one working fluid with both the at least one thermal sink and the at least one solar collector via the combination of at least one second bi-directional valve and at least one valve, and wherein the at least one evaporator is in fluid communication via the at least one working fluid with the at least one heat pump.


In still another embodiment, the present invention relates to a heat pump system comprising: at least one working fluid; at least one heat pump designed to receive and utilize the at least one working fluid; at least one solar collector designed to receive and utilize the at least one working fluid, wherein the at least one solar collector is in fluid communication via the at least one working fluid with the at least heat pump via at least one first valve; at least one liquid desiccant generator/heat exchanger combination designed to receive and utilize the at least one working fluid, wherein the at least one liquid desiccant generator/heat exchanger combination is in thermal communication, or fluid communication, via the working fluid with the at least one solar collector; at least one condenser designed to receive and utilize the at least one working fluid, wherein the at least one condenser is in fluid communication via the at least one working fluid with the at least one heat pump via at least one second valve, and wherein the at least one condenser is in thermal communication, or fluid communication, via the working fluid with the at least one liquid desiccant generator/heat exchanger combination; at least one fluid accumulator designed to receive and utilize the at least one working fluid, wherein the at least one fluid accumulator is in fluid communication via the at least one working fluid with the at least one condenser via at least one third valve; at least one geothermal heat sink/heat exchanger combination designed to receive and utilize the at least one working fluid, wherein the at least one geothermal heat sink/heat exchanger combination is in thermal communication, or fluid communication, via the at least one working fluid with the at least one condenser, and wherein the at least one geothermal heat sink/heat exchanger combination is in thermal communication, or fluid communication, via the at least one working fluid with the at least one fluid accumulator via at least one third valve; and at least one evaporator designed to receive and utilize the at least one working fluid, wherein the at least one evaporator is in thermal communication, or fluid communication, via the at least one working fluid with the at least one geothermal heat sink/heat exchanger combination via at least one fourth valve, and wherein the at least one evaporator is in fluid communication via the at least one working fluid with the at least one heat pump.


In still another embodiment, the present invention relates to a heat pump system comprising: at least one working fluid; an upper loop comprising: at least one pump; at least one solar collector; at least one turbine; and at least one condenser, wherein the at least one pump, the at least one solar collector, the at least one turbine and the at least one condenser are all designed to receive and utilize the at least one working fluid and are all in fluid communication via the at least one working fluid and together form the upper loop; and a lower loop comprising: at least one heat pump; at least one condenser; at least one evaporator, wherein the at least one heat pump, the at least one condenser and the at least one evaporator are all designed to receive and utilize the at least one working fluid and are all in fluid communication via the at least one working fluid and together form the lower loop, and wherein the bottom loop is in fluid communication with the top loop via at least two valves.


In still another embodiment, the present invention relates to a heat pump system comprising: at least one working fluid; at least two photovoltaic cells; at least one heat pump; at least one absorption chiller; at least one process heat unit; at least one hot water device; at least one condenser; and at least one evaporator, wherein the at least two photovoltaic cells, the at least one heat pump, the at least one absorption chiller, the at least one process heat unit, the at least one hot water device, the at least one condenser and the at least one evaporator are all designed to receive and utilize the at least one working fluid and are all in fluid communication, or thermal communication, via the at least one working fluid, or a combination of the at least one working fluid and at least heat exchanger, and wherein the heat pump system has a by-pass circuit designed to permit the control of the heat pump system when no cooling is needed.


In still another embodiment, the present invention relates to a heat pump system comprising: at least one working fluid; at least one photovoltaic cell; at least one heat pump; at least one hot water device; and at least one condenser, wherein the at least one photovoltaic cell, the at least one heat pump, the at least one hot water device and the at least one condenser are all designed to receive and utilize the at least one working fluid and are all in fluid communication, or thermal communication, via the at least one working fluid, or a combination of the at least one working fluid and at least heat exchanger, and wherein the heat pump system has a by-pass circuit designed to permit the by-pass of the at least one hat water device.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A through 1D are illustrations of various embodiments of an integrated solar collector and heat pump system in accordance with the present invention;



FIG. 2 is an illustration of one embodiment of an integrated solar collector and heat pump having a supplemental fluid accumulator in accordance with the present invention;



FIG. 3 is an illustration of one embodiment of an integrated solar collector and heat pump having multiple thermal sinks in accordance with the present invention;



FIG. 4 is an illustration of one embodiment of an integrated solar collector and heat pump operating as a radiant cooler in accordance with the present invention;



FIG. 5 is an illustration of one embodiment of an integrated solar collector switchable as a thermal source or sink, and heat pump in accordance with the present invention;



FIG. 6 is an illustration of one embodiment of an integrated solar collector and heat pump with an integrated desiccant dehumidifier in accordance with the present invention;



FIG. 7 is an illustration of one embodiment of an integrated solar collector and heat pump with an integrated power generating expander in accordance with the present invention;



FIG. 8 is an illustration of one embodiment of an integrated solar collector and heat pump having multiple thermal sinks and an integrated photovoltaic cell in accordance with the present invention; and



FIG. 9 is an illustration of one embodiment of an integrated solar collector and heat pump configured as a domestic hot water system in accordance with the present invention.





DETAILED DESCRIPTION OF THE INVENTION

The present invention generally relates to highly integrated solar collector with a heat pump. In all embodiments, the present invention utilizes the same working fluid within the primary solar collector as the heat pump.


As used herein, the term “non-linear”, as used herein, includes any surface of a solar receiver whose surface shape is described by a set of nonlinear equations. As used herein, the term “microchannel”, as used herein, includes channel dimensions of less than 2 millimeter. As used herein, the term “reflector”, as used herein, includes a surface or surface coating that reflects greater than 50% of at least one portion of the incoming light spectrum, which includes the portions of visible, infrared, and ultraviolet.


As used herein, the term “in thermal continuity” or “thermal communication” includes the direct connection between the heat source and the heat sink whether or not a thermal interface material is used. As used herein, the term “multipass”, “multi-pass”, or “multiple passes” includes a fluid flow into at least one portion of a heat exchanger and out of at least one other portion of a heat exchanger wherein the at least one portion of the heat exchanger and the at least one other portion of a heat exchanger can either be thermally isolated from each other or in thermal continuity with each other.


As used herein, the term “fluid inlet” or “fluid inlet header” includes the portion of a heat exchanger where the fluid flows into the heat exchanger. As used herein, the term “fluid discharge” includes the portion of a heat exchanger where the fluid exits the heat exchanger. As used herein, the term “boiler” includes a heat exchanger transferring thermal energy into a working fluid wherein the working fluid is comprised of at least 5% vapor phase. As used herein, the term “superheater” includes a heat exchanger transferring thermal energy into a working fluid wherein the heat exchanger is used to convert saturated steam into dry steam.


In one embodiment, the present invention generally relates to a heat pump system having an integral solar collector that utilizes one working fluid in common between the two elements. Here, as well as elsewhere in the specification and claims, individual numerical values and/or individual range limits can be combined to form non-disclosed ranges.


The heat transfer fluid within the embodiments is, in one embodiment, a supercritical fluid as a means to reduce the pressure drop within the heat exchanger. The supercritical fluid includes fluids selected from the group of organic refrigerants (e.g., R134, R245, pentane, butane), gases (e.g., CO2, H2O, He2), or any suitable combination of two or more thereof. In another embodiment, the supercritical fluid is devoid of hydrogen as a means to virtually eliminate hydrogen reduction or hydrogen embrittlement on the heat exchanger coatings or substrate respectively. By devoid of hydrogen, it is meant that the supercritical fluid has less than about 5 weight percent hydrogen (be it either free, or bound, hydrogen, or the combination of both), less than about 2.5 weight percent hydrogen, less than about 1 weight percent hydrogen, less than about 0.5 weight percent hydrogen, less than about 0.1 weight percent hydrogen, or even zero weight percent hydrogen.


In still another embodiment, the supercritical fluid has a disassociation rate less than 0.5 percent at the operating temperature in which the heat exchanger operates. In still yet another embodiment, the heat transfer fluid is a working fluid wherein the combined energy produced (i.e., both thermal, and electrical) displaces the maximum amount of dollar value associated with the displaced energy produced within all of the integrated components including thermodynamic cycle operable within a power generating cycle, vapor compression cycle, heat pump cycle, absorption heat pump cycle, or thermochemical heat pump cycle.


All of the embodiments can be further comprised of a control system operable to regulate the mass flow rate of the working fluid into the solar receiver, with the ability to regulate the mass flow rate independently for each pass by incorporating a fluid tank having variable fluid levels optionally interspersed between at least one pass and the other. One method of control includes a working fluid inventory management system. The control system regulates the mass flow rate through methods known in the art including variable speed pump, variable volume valve, bypass valves, and fluid accumulators. The control system is further comprised of at least one temperature sensor for fluid discharge temperature and at least one temperature sensor for ambient air temperature or condenser discharge temperature.


Exemplary embodiments of the present invention will now be discussed with reference to the attached Figures. Such embodiments are merely exemplary in nature and not to be construed as limiting the scope of the present invention in any manner. The depiction of heat exchangers predominantly as microchannel heat exchangers having linear porting is merely exemplary in nature and can be replaced with any suitably shaped heat exchanger containing microchannels with dimensions or porting greater than defined by microchannel practice. The depiction of solar collectors predominantly as flat panel non-tracking solar absorbers with integral microchannel heat exchangers is merely exemplary in nature and can be replaced with tracking collectors of 1-axis or 2-axis type, vacuum evacuated tubes or panels, switchable configuration between solar absorber or solar radiator mode, low concentration fixed collector, or high concentration tracking collectors.


The depiction of a heat pump as a vapor compressor device is merely exemplary and can such a heat pump could be replaced with an absorption heat pump. The compressor type can include a positive displacement device, a gerotor, a ramjet, a screw, and a scroll. Furthermore, and importantly, the heat pump can be a turbo pump, a positive displacement pump where the selection of the device to increase the working fluid pressure and operate as a mass flow regulator is determined by the density at the inlet pressure and discharge outlet. In one embodiment, the incoming working fluid has a density greater than about 50 kg per m3, or greater than about 100 kg per m3, or even greater than about 300 kg per m3.


The depiction of valves as standard mass flow regulators is merely exemplary in nature and any such valves can independently be substituted with one or more variable flow devices, expansion valves, turbo-expanders, two-way or three-way valves. The depiction of methods to remove heat from the working fluid as a condenser is merely exemplary in nature as a thermal sink and can be substituted by any device having a temperature lower than the working fluid temperature including absorption heat pump desorber/generator, process boilers, process superheater, and domestic hot water.


The depiction of desiccant dehumidifier as liquid desiccant dehumidifier is merely exemplary and can be substituted with an adsorption solid desiccant dehumidifier and/or high surface area hydrophilic powders. The depiction of geothermal as thermal source can be low depth subsurface, moderate depth geothermal wells, or high depth geothermal sources such as obtained from oil wells. The depiction of expander as turbine is merely exemplary as a method to reduce the pressure of the working fluid enables the generation of mechanical or electrical energy and can be substituted with turbo-expander, positive displacement device, a gerotor or geroller, a ramjet, screw, or scroll device. The depiction of photovoltaic cell as single concentration device can be substituted with a thin film, low concentration device, Fresnel lens, and high concentration devices. With regard to FIGS. 1 through 9, like reference numerals refer to like parts.


Turning to FIGS. 1A through 1D, FIGS. 1A through 1D represent sequential flow diagrams of one embodiment, and various modifications thereto, of a heat pump with integral solar collector in accordance with the present invention. In the embodiments of FIGS. 1A through 1D heat pump solar collector comprises heat pump 10 in fluid communication with a solar collector 20 with a temperature sensor 32 measuring the discharge temperature of the working fluid from heat pump 10. Another temperature sensor 30 measures the discharge temperature of the working fluid as it leaves solar collector 20 and prior to the fluid entering a thermal sink 40 which is in fluid communication with solar collector 20. Another temperature sensor 31 measures the discharge temperature after leaving thermal sink 40. A pressure sensor 50 measures the discharge pressure from heat pump 10, though the actual placement of pressure sensor 50 can be anywhere downstream of heat pump 10 discharge and upstream of a pressure-reducing device including, for example, an expansion valve or turbo expander.


One exemplary method of control is to vary the discharge pressure of heat pump 10 such that the temperature of the working fluid being discharged after the solar collector, which enables the heat pump energy input to be minimized where heat pump 10 concurrently achieves the desired working fluid mass flow requirement and discharge temperature prior to the solar collector. The discharge pressure downstream of heat pump 10 is a function of the solar flux on solar collector 20 as a method of minimizing the operating costs of the heat pump with integral solar collector as the heat pump requires mechanical and/or electrical energy. The heat of compression resulting from heat pump 10 provides a high coefficient of performance temperature gain (i.e., lift) that is subsequently increased further by solar collector 20. The control system decreases the pressure gain to ensure that thermal sink 40 both achieves the required heat transfer and discharge temperature such that heat pump 10, when solar collector 20 provides the majority of the heat source into the working fluid, operates predominantly as a mass flow regulator resulting in a reduced operating cost of heat pump 10. Another advantage of this embodiment is the elimination of a heat exchanger to transfer thermal energy captured from solar collector 20 into the working fluid, and also eliminating a secondary heat transfer fluid within solar collector 20. In one embodiment, the working fluid is a fluid that has virtually no (e.g., less than about 1.0 percent, less than about 0.5 percent, and even less than about 0.05 percent) thermal degradation resulting particularly from solar collector stagnation. One exemplary working fluid includes carbon dioxide, with one embodiment employing a heat pump discharge pressure greater than the supercritical pressure of carbon dioxide. Additional working fluids include refrigerants, water, and gases.


In another embodiment, carbon dioxide with a discharge pressure greater than it's supercritical pressure is utilized in conjunction with solar collector 20 being a microchannel device to achieve superior heat transfer with low pressure drops. Another important design advantage is the selection of a heat pump 10 that either operates oil free, thus eliminating the potential of hydraulic oil from disassociating (i.e., breaking down) within, or due to, solar collector 20. Alternatively heat pump 10 can utilize an electrostatic collector to collect any lubricant utilized within heat pump 10, with one exemplary being ionic liquids. An ionic liquid has the further advantage of having essentially no vapor pressure in combination of having electrostatic attraction as a method of limiting heat pump 10 lubricant from entering solar collector 20. FIGS. 1A through 1D illustrate four alternative configurations such that “A” is the inlet of the working fluid into heat pump 10, and “B” is the discharge of the working fluid downstream of thermal sink 40. The first configuration, FIG. 1A, depicts an expander 60 downstream of thermal sink 40 as a method of recovering at least a portion of the mechanical/electrical energy expended during in order to obtain the heat pump compression. This configuration would be typical for domestic hot water, air conditioning, refrigeration, industrial processes including processes currently serviced by traditional combustion powered boilers, furnaces, dryers, etc. Expander 60's discharge pressure is regulated by using feedback on the measured pressure by pressure sensor 50 and discharge temperature as measured by temperature sensor 33. It is further anticipated that an external combustor can be downstream of solar collector 20 and upstream of thermal sink 40 as a method to further increase the working fluid temperature. This configuration is especially desired for industrial or power generation processes that involve heating of air (i.e., less dense than working fluid thus requiring significantly larger heat exchangers) as a method of superheating the working fluid to the desired operating temperature of thermal sink 40. In the embodiment where the present invention utilizes the same working fluid for the heat pump as the solar collector in the case of instances where temperatures exceed about 350° C., only certain types of working fluids can be utilized. Suitable working fluids in this instance include, but are not limited to, ammonia, carbon dioxide and water. Water, although an possible choice, is less desirable due to the discontinuous thermophysical properties as water transitions to steam.


In FIG. 1B another configuration replaces the expander with an expansion valve 90 where the expansion valve as known in the art can operate as a variable controlled device, open/close switch, and modulated to be a pulsing device to enhance heat transfer properties. Expansion valve 90's discharge pressure is regulated using feedback on the measured pressure by pressure sensor 52 and discharge temperature as measured by temperature sensor 34. This configuration, though not as efficient as that of FIG. 1A. has a lower capital cost thus being implemented when the system scale or financial return on investment doesn't justify the additional expense of an energy recovery expander 60. The working fluid downstream of the expansion valve provides cooling through an evaporator 80 thus operating as an air conditioner, chiller, refrigerator, or freezer which is dependent on the discharge temperature as measured by temperature sensor 34.


In FIG. 1C still another configuration is illustrated where a closed loop is utilized, such that the heat pump effectively operates as a mass flow regulator whereby the pressure gain between heat pump 10 inlet is a nominal amount solely to overcome pressure losses associated with the working fluid passing through the entire circulation loop including solar collector 20. In FIG. 1D still another configuration is illustrated where a system further comprises a fluid accumulator 130 and a control valve 95 as a method to buffer the inventory of working fluid within the circulation loop. Fluid accumulator 130 in its simplest form operates as a temporary storage of working fluid when the operating pressure within the circulation loop is within 10 psi of the maximum operating pressure of any individual component. In one embodiment, the present invention incorporates a control system to open and close the one or more valves of the system of FIG. 1D. In still another embodiment, the portion of FIG. 1D composed of fluid accumulator 130 and control valve 95 can be utilized in conjunction with any one of the embodiments of FIGS. 1A through 1C.


Turning to FIG. 2, FIG. 2 is a sequential flow diagram of one embodiment of a heat pump with integral solar collector in accordance with the present invention. In the embodiment of FIG. 2, the system further comprises a fluid accumulator 130 configured predominantly as an emergency working fluid inventory storage vehicle where an open/close valve 90 enables a partial stream of the working fluid, which is now at the higher pressure as measured by pressure sensor 50 having a temperature as measured by temperature sensor 31. The working fluid passes through a condenser 70 in order to increase the density of the working fluid prior to entering fluid accumulator 130. In one embodiment, condenser 70 is located within fluid accumulator 130, thus enabling the condenser (effectively a heat exchanger) to operate as an evaporator/heater. The control system would switch the condenser from cooling to heating mode once the heat pump discharge pressure (i.e., working fluid pressure downstream of the heat pump discharge) drops to an amount lower than the maximum operating pressure minus an anti-cycling threshold. The control system would then subsequently open valve 90 once the working fluid within fluid accumulator 130 exceeds the target set point as measured by temperature sensor 30.


Turning to FIG. 3, FIG. 3 is a sequential flow diagram of one embodiment of a heat pump with integral solar collector in accordance with the present invention. In the embodiment of FIG. 3 heat pump solar collector depicts one scenario having parallel circuits and multiple thermal sinks. Heat pump 10, as noted earlier, can operate as mass flow regulator (i.e., booster pump), more traditional vapor compressor, or more traditional turbo pump. A control system operates the valves as a method of controlling the mass flow within each parallel circuit. The top circuit is controlled by valve 90 to enable the working fluid to pass through solar collector 20. The invention contemplates and encompasses solar collector 20 operating either as a solar absorber or solar radiator thus providing the ability to provide “free” heating or cooling respectively by leveraging the high surface area. The working fluid downstream of the solar collector transfers thermal energy via a heat exchanger 80, which can be manufactured using a wide range of materials (e.g., conductive polymers, aluminum, stainless steel, etc.) and designed using methods known in the art (e.g., microchannel, shell and tube, plate, etc.), into thermal sink 41. The working fluid downstream of heat exchanger 82 mixes with working fluid that passes through valve 91, thus effectively operating as a solar collector bypass valve, and sequentially passes through a second thermal sink 40 that has a lower target set point than thermal sink 41. Another thermal sink 42 as illustrated in FIG. 3 removes more thermal energy from the working fluid, though the working fluid temperature will be at a lower temperature than the two aforementioned thermal sinks 41 and 40. Valve 92 enables working fluid to enter fluid accumulator 130. The full working features as noted in FIG. 2 are not repeated visually for the purpose of brevity.


Turning to FIG. 4, FIG. 4 is a sequential flow diagram of one embodiment of a heat pump with integral solar collector in accordance with the present invention. In the embodiment of FIG. 4 heat pump solar collector operates as a radiant cooler. A heat pump 10 increases the operating pressure as measured by the pressure sensor 50 of the working fluid which also has its temperature increased due to heat of compression as measured by temperature sensor 30. A secondary heat transfer fluid, such as domestic hot water is circulated by a pump 72 through a heat exchanger 80 to remove thermal energy of the working fluid through a thermal sink 40. This serves the purpose of providing the first stage of cooling prior to reaching solar collector 20 configured in the radiant cooling mode. The inlet temperature into solar collector 20 is measured by temperature sensor 31 and the discharge temperature is measured by temperature sensor 32. Solar collector 20 when operating as a radiant cooler dissipates black body radiation to the sky and therefore effectively operates as a pre-cooler/sub-cooler to the working fluid prior to reaching expansion valve 91. The now expanded working fluid provides cooling that absorbs thermal energy from a thermal source in thermal communication with evaporator 80. Heat pump 10 inlet pressure and temperature are measured respectively by pressure sensor 51 and temperature sensor 33. An alternate configuration for thermal sink 40 is accomplished using an air condenser that contains one or more condenser fans instead of a secondary heat transfer fluid.


Turning to FIG. 5, FIG. 5 is a sequential flow diagram of one embodiment of a heat pump with integral solar collector in accordance with the present invention. In the embodiment of FIG. 5 heat pump solar collector depicts another configuration for switching solar collector 20 between a thermal sink 40 and thermal source mode. In this configuration, the solar collector is optionally under vacuum while operating in thermal source mode and has ambient air flowing over solar collector 20's surface area. The working fluid then subsequently passes through thermal sink 40. Two two-way valves 111 and 110 are depicted to switch fluid flow direction such that the heat pump can operate in air conditioning or heating mode, known in the art as a reversible heat pump. Heat pump 10 has common evaporator 80 and expansion valve 91 (alternatively expander) and condenser (which is depicted as either thermal sink 40 or solar collector 20).


Turning to FIG. 6, FIG. 6 is a sequential flow diagram of one embodiment of a heat pump with integral solar collector in accordance with the present invention. In the embodiment of FIG. 6, heat pump 10 and solar collector 20 are depicted as further comprising a liquid desiccant generator 120 and a geothermal 140 as a thermal sink. It is understood that the heat pump with integral solar collector can operate with either the liquid desiccant generator 120 or geothermal 140 heat sink, as well as the shown combination. Heat pump 10 increases the operating pressure of the working fluid in part by utilizing a controllable valve 90 to provide back pressure upstream of solar collector 20 while also serving as a mass flow control (i.e., working fluid pump). Solar collector 20 increases the working fluid temperature of the portion of the working fluid being transported through the collector as determined by the control system and regulated with valve 90. The operation in FIG. 6 depicts heat pump 10 operating as an air conditioning or refrigeration device to provide the sensible cooling while liquid desiccant generator 120 provides latent cooling. The goal is thus to provide cooling therefore a significant portion of the working fluid is desired to bypass, by regulating control valve 91, solar collector 20 while the solar collector boosts the working fluid temperature through heat exchanger 82 as required to regenerate the liquid desiccant solution. The working fluid having been transported through the parallel circuit is combined upstream of condenser 70 where the working fluid temperature approaches the ambient temperature. It is understood that condenser 70 can be selected from the range of known condensers including wet, air, evaporative, etc. FIG. 6 also depicts a working fluid mass management control system though represented for brevity by a control valve 93 to enable working fluid to enter or leave fluid accumulator 130 as noted in earlier embodiments. The working fluid can then be optionally sub-cooled through a heat exchanger 82 in thermal communication with a shallow depth (i.e., surface as known in the geothermal heat pump application, as compared to deep well geothermal for power generation) geothermal 140 that serves as a thermal sink upstream of expansion valve 92. Expansion valve 92 decreases the pressure achieving rapid cooling of the working fluid that subsequently absorbs heat through evaporator 80.


Turning to FIG. 7, FIG. 7 is a sequential flow diagram of one embodiment of a heat pump with integral solar collector in accordance with the present invention. In the embodiment of FIG. 7 heat pump solar collector depicts an integral power generating cycle with an air conditioning/refrigeration thermodynamic cycle where both systems operate on the same working fluid. Beginning the cycle downstream of heat pump 10, heat pump 10 increases the working fluid pressure to the same low side pressure of the power generating cycle (which is downstream of valve 91 and condenser 70). The working fluid downstream of heat pump 10 then passes through condenser 71 to condense the working fluid prior to reaching pump 160 as a method of limiting cavitation. Pump 160 subsequently raises the working fluid, which is now at a significantly higher density, to the power generating high side pressure. The high pressure working fluid, which has increased the working fluid temperature by the heat of compression, now passes through solar collector 20 to vaporize and optionally to superheat the fluid as a means of increasing the enthalpy and thermodynamic efficiency of the power generating cycle. The now superheated working fluid enters turbine 150 inlet in order to produce shaft work (i.e., mechanical energy) that can further be transformed into electricity or hydraulic energy. As known in the art, the working fluid enters condenser 70 in order to reduce the pumping energy requirements to return the relatively cool working fluid to the high side pressure. It is understood that the turbine can be any expander device, as the pump can also include a turbo-pump or positive displacement devices. The control system regulates in real time the mass flow of the working fluid that will further be expanded in order to match the air conditioning/refrigeration demands with thermal energy being transferred through evaporator 80. It is further understood that pump 160, heat pump 10, and turbine 150 can operate at partial loads through means as known in the art.


Turning to FIG. 8, FIG. 8 is a sequential flow diagram of one embodiment of a heat pump with integral solar collector in accordance with the present invention. In the embodiment of FIG. 8 heat pump solar collector depicts a hybrid solar thermal and photovoltaic configuration. The precise objective of the integrated heat pump and photovoltaic cell system is to operate with the control system pressure and temperature control such that the working fluid transforms from a liquid/supercritical to a vapor/superheated fluid within the backside of photovoltaic cell 200. The operating pressure is dynamically modulated such that the temperature at state point #2 is less than lesser of the maximum junction temperature of PV cell 200 or desired operating temperature. The working fluid subsequently passes through solar collector 220 to ensure that the working fluid doesn't create cavitation in heat pump 10. The now high pressure working fluid also at the elevated temperature due to heat of compression is at sufficiently high temperatures to drive a range of thermal sinks. These thermal sinks include single, double or triple effect absorption chillers 230. Subsequently the working fluid passes through thermal sinks requiring sequentially lower operating temperatures such as process heat 240 and then domestic hot water 250. The control system will enable the working fluid to pass through condenser 70 in the event the working fluid temperature remains higher than the ambient or wet bulb temperature, which would be obtained by activating the condenser fans/motors. The working fluid now transfers thermal energy by absorbing energy through evaporator 80 and now returning to the backside of the PV cell 200 where thermal energy is transferred into the working fluid through the embedded microchannel heat exchanger 210.


Turning to FIG. 9, FIG. 9 is a sequential flow diagram of one embodiment of a heat pump with integral solar collector in accordance with the present invention. In the embodiment of FIG. 9 heat pump solar collector depicts a domestic hot water heat pump utilizing the same working fluid within the entire system. This embodiment anticipates the utilization of traditional working fluids where a maximum temperature limit must be maintained to ensure no thermal disassociation or break down occurs. The method of control includes a dynamic control system that ensures the operating temperature of the working fluid downstream of solar collector 220, which is, in one embodiment, a microchannel heat exchanger, is less than the maximum working fluid temperature and also to ensure that the working fluid is a vapor prior to entering heat pump 10. The control system ideally has the means to control the discharge pressure, the mass flow rate, and bypass valves including a variable diverter valve 260 having variable positions to modulate the transferring of heat from the working fluid into the domestic hot water system 250. The working fluid subsequently enters the condenser 70 where the condenser motors and fans are controlled in order to maximize energy transfer from the solar collector to the domestic hot water as a function of the solar flux, ambient temperature, domestic hot water consumption, and/or domestic hot water storage tank temperature.


It is understood in this invention that a combination of scenarios can be assembled through the use of fluid valves and/or switches such that any of the alternate configurations can be in parallel enabling the solar collector to support a wide range of thermal sinks.


Although the invention has been described in detail with particular reference to certain embodiments detailed herein, other embodiments can achieve the same results. Variations and modifications of the present invention will be obvious to those skilled in the art and the present invention is intended to cover in the appended claims all such modifications and equivalents.

Claims
  • 1. A heat pump system comprising: at least one working fluid;at least one heat pump having an inlet and an outlet designed to receive and utilize the at least one working fluid;at least one solar collector having an inlet and an outlet designed to receive and utilize the at least one working fluid, wherein the inlet of the at least one solar collector is in fluid communication via the at least one working fluid with the outlet of the at least one heat pump;at least one working fluid inventory storage system in fluid communication with both the at least one heat pump and the at least one solar collector, wherein the at least one working fluid inventory storage system is designed to work in a bi-directional manner, and wherein the at least one working fluid inventory storage system comprises: at least one bi-directional expansion valve in fluid communication with both the outlet of the at least one heat pump and the inlet of the at least one solar collector via the at least one working fluid;at least one bi-directional condenser in fluid communication with the at least one bi-directional expansion valve via the at least one working fluid; andat least one bi-directional fluid accumulator in fluid communication with the at least one bi-directional condenser via the at least one working fluid;a first temperature sensor in fluid communication with the at least one working fluid, the first temperature sensor disposed downstream from the at least one heat pump and upstream of the at least one solar collector;a second temperature sensor in fluid communication with the at least one working fluid, the second temperature sensor located downstream of the at least one solar collector;a third temperature sensor in fluid communication with the at least one working fluid, the third temperature sensor disposed between the at least one bi-directional expansion valve and the at least one bi-directional fluid accumulator; anda first pressure sensor in fluid communication with the at least one working fluid, the first pressure sensor disposed between the at least one bi-directional expansion valve and the at least one bi-directional fluid condenser.
  • 2. A heat pump system comprising: at least one working fluid;at least one heat pump designed to receive and utilize the at least one working fluid;at least one thermal sink designed to receive and utilize the at least one working fluid, wherein the at least one thermal sink is in fluid communication via the at least one working fluid with the at least one heat pump via a first two-way valve, and wherein the first two-way valve is disposed downstream from the at least one heat pump;at least one solar collector designed to receive and utilize the at least one working fluid, wherein the at least one solar collector is in fluid communication via the at least one working fluid with the at least one thermal sink, and wherein the at least one solar collection is in fluid communication via the at least one working fluid with the at least one heat pump via the first two-way valve; andat least one evaporator designed to receive and utilize the at least one working fluid, wherein the at least one evaporator is in fluid communication via the at least one working fluid with both the at least one thermal sink and the at least one solar collector via a second two-way valve and at least one valve, wherein: the second two-way valve and the at least one valve are disposed between the at least one evaporator and the at least one thermal sink,the second two-way valve and the at least one valve are further disposed between the at least one evaporator and the at least one solar collector, andthe at least one evaporator is in fluid communication via the at least one working fluid with the at least one heat pump.
  • 3. A heat pump system comprising: at least one working fluid;at least one heat pump designed to receive and utilize the at least one working fluid;at least one solar collector designed to receive and utilize the at least one working fluid, wherein the at least one solar collector is in fluid communication via the at least one working fluid with the at least one heat pump;a first valve disposed downstream from the at least one heat pump and upstream of the at least one solar collector;at least one liquid desiccant generator/heat exchanger combination designed to receive and utilize the at least one working fluid, wherein the at least one liquid desiccant generator/heat exchanger combination is in thermal communication, or fluid communication, via the working fluid with the at least one solar collector;at least one condenser designed to receive and utilize the at least one working fluid, wherein the at least one condenser is in fluid communication via the at least one working fluid with the at least one heat pump, and wherein the at least one condenser is in thermal communication, or fluid communication, via the working fluid with the at least one liquid desiccant generator/heat exchanger combination;a second valve disposed between the at least one condenser and the at least one heat pump;at least one fluid accumulator designed to receive and utilize the at least one working fluid, wherein the at least one fluid accumulator is in fluid communication via the at least one working fluid with the at least one condenser;a third valve disposed between the at least one fluid accumulator and the at least one condenser;at least one geothermal heat sink/heat exchanger combination designed to receive and utilize the at least one working fluid, wherein the at least one geothermal heat sink/heat exchanger combination is in thermal communication, or fluid communication, via the at least one working fluid with the at least one condenser, and wherein the at least one geothermal heat sink/heat exchanger combination is in thermal communication, or fluid communication, with the at least one fluid accumulator via the at least one working fluid, and wherein the third valve is disposed between the at least one fluid accumulator and the at least one geothermal heat sink/heat exchanger; andat least one evaporator designed to receive and utilize the at least one working fluid, wherein the at least one evaporator is in thermal communication, or fluid communication, via the at least one working fluid with the at least one geothermal heat sink/heat exchanger combination via a fourth valve, and wherein the at least one evaporator is in fluid communication via the at least one working fluid with the at least one heat pump.
  • 4. A heat pump system comprising: at least one working fluid;an upper loop comprising: at least one pump;at least one solar collector;at least one turbine; andat least one condenser,wherein the at least one pump, the at least one solar collector, the at least one turbine and the at least one condenser are all designed to receive and utilize the at least one working fluid and are all in fluid communication via the at least one working fluid and together form the upper loop; anda lower loop comprising: at least one heat pump;at least one condenser;at least one evaporator,wherein the at least one heat pump, the at least one condenser and the at least one evaporator are all designed to receive and utilize the at least one working fluid and are all in fluid communication via the at least one working fluid and together form the lower loop, andwherein the bottom loop is in fluid communication with the top loop via at least two valves.
  • 5. A heat pump system comprising: at least one working fluid;an evaporator configured to receive the at least one working fluid;at least one photovoltaic cell disposed downstream from the evaporator and in thermal communication with the evaporator via a heat exchanger;at least one heat pump disposed downstream from the at least one photovoltaic cell;at least one hot water device disposed downstream from the at least one heat pump;at least one condenser disposed downstream from the at least one hot water device;a first valve disposed downstream from the at least one condenser and upstream of the evaporator; anda by-pass circuit designed to permit the at least one working fluid to by-pass of the at least one hot water device.
  • 6. The heat pump system of claim 5, wherein the at least one photovoltaic cells comprises at least two photovoltaic cells.
RELATED APPLICATION DATA

This patent application claims priority to U.S. Provisional Patent Application No. 61/231,238, filed on Aug. 4, 2009 entitled “Heat Pump with Integral Solar Collector,” the entirety of which is hereby incorporated by reference herein.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2010/044476 8/4/2010 WO 00 6/18/2012
Publishing Document Publishing Date Country Kind
WO2011/017476 2/10/2011 WO A
US Referenced Citations (405)
Number Name Date Kind
2575478 Wilson Nov 1951 A
2634375 Guimbal Apr 1953 A
2691280 Albert Oct 1954 A
3095274 Crawford Jun 1963 A
3105748 Stahl Oct 1963 A
3237403 Feher Mar 1966 A
3277955 Heller Oct 1966 A
3401277 Larson Sep 1968 A
3622767 Koepcke Nov 1971 A
3630022 Jubb Dec 1971 A
3736745 Karig Jun 1973 A
3772879 Engdahl Nov 1973 A
3791137 Jubb Feb 1974 A
3830062 Morgan et al. Aug 1974 A
3939328 Davis Feb 1976 A
3971211 Wethe Jul 1976 A
3982379 Gilli Sep 1976 A
3998058 Park Dec 1976 A
4009575 Hartman, Jr. Mar 1977 A
4015962 Tompkins Apr 1977 A
4029255 Heiser Jun 1977 A
4030312 Wallin Jun 1977 A
4049407 Bottum Sep 1977 A
4070870 Bahel et al. Jan 1978 A
4099381 Rappoport Jul 1978 A
4119140 Cates Oct 1978 A
4150547 Hobson Apr 1979 A
4152901 Munters May 1979 A
4164848 Gilli Aug 1979 A
4164849 Mangus Aug 1979 A
4170435 Swearingen Oct 1979 A
4182960 Reuyl Jan 1980 A
4183220 Shaw Jan 1980 A
4198827 Terry et al. Apr 1980 A
4208882 Lopes Jun 1980 A
4221185 Scholes Sep 1980 A
4233085 Roderick Nov 1980 A
4236869 Laurello Dec 1980 A
4245476 Shaw Jan 1981 A
4248049 Briley Feb 1981 A
4257232 Bell Mar 1981 A
4287430 Guido Sep 1981 A
4336692 Ecker Jun 1982 A
4347711 Noe Sep 1982 A
4347714 Kinsell Sep 1982 A
4372125 Dickenson Feb 1983 A
4384568 Palmatier May 1983 A
4391101 Labbe Jul 1983 A
4420947 Yoshino Dec 1983 A
4428190 Bronicki Jan 1984 A
4433554 Rojey Feb 1984 A
4439687 Wood Mar 1984 A
4439994 Briley Apr 1984 A
4448033 Briccetti May 1984 A
4450363 Russell May 1984 A
4455836 Binstock Jun 1984 A
4467609 Loomis Aug 1984 A
4467621 O'Brien Aug 1984 A
4471622 Kuwahara Sep 1984 A
4475353 Lazare Oct 1984 A
4489562 Snyder Dec 1984 A
4489563 Kalina Dec 1984 A
4498289 Osgerby Feb 1985 A
4516403 Tanaka May 1985 A
4538960 Iino et al. Sep 1985 A
4549401 Spliethoff Oct 1985 A
4555905 Endou Dec 1985 A
4558228 Larjola Dec 1985 A
4573321 Knaebel Mar 1986 A
4578953 Krieger Apr 1986 A
4589255 Martens May 1986 A
4636578 Feinberg Jan 1987 A
4674297 Vobach Jun 1987 A
4694189 Haraguchi Sep 1987 A
4697981 Brown et al. Oct 1987 A
4700543 Krieger Oct 1987 A
4730977 Haaser Mar 1988 A
4756162 Dayan Jul 1988 A
4765143 Crawford Aug 1988 A
4773212 Griffin Sep 1988 A
4798056 Franklin Jan 1989 A
4813242 Wicks Mar 1989 A
4821514 Schmidt Apr 1989 A
4867633 Gravelle Sep 1989 A
4892459 Guelich Jan 1990 A
4986071 Voss Jan 1991 A
4993483 Harris Feb 1991 A
5000003 Wicks Mar 1991 A
5050375 Dickinson Sep 1991 A
5080047 Williams et al. Jan 1992 A
5083425 Hendriks et al. Jan 1992 A
5098194 Kuo Mar 1992 A
5102295 Pope Apr 1992 A
5104284 Hustak, Jr. Apr 1992 A
5164020 Wagner Nov 1992 A
5176321 Doherty Jan 1993 A
5203159 Koizumi Apr 1993 A
5228310 Vandenberg Jul 1993 A
5291960 Brandenburg Mar 1994 A
5320482 Palmer et al. Jun 1994 A
5335510 Rockenfeller Aug 1994 A
5358378 Holscher Oct 1994 A
5360057 Rockenfeller Nov 1994 A
5392606 Labinov Feb 1995 A
5440882 Kalina Aug 1995 A
5444972 Moore Aug 1995 A
5488828 Brossard Feb 1996 A
5490386 Keller Feb 1996 A
5503222 Dunne Apr 1996 A
5531073 Bronicki Jul 1996 A
5538564 Kaschmitter Jul 1996 A
5542203 Luoma Aug 1996 A
5570578 Saujet Nov 1996 A
5588298 Kalina Dec 1996 A
5600967 Meckler Feb 1997 A
5634340 Grennan Jun 1997 A
5647221 Garris, Jr. Jul 1997 A
5649426 Kalina Jul 1997 A
5676382 Dahlheimer Oct 1997 A
5680753 Hollinger Oct 1997 A
5738164 Hildebrand Apr 1998 A
5754613 Hashiguchi May 1998 A
5771700 Cochran Jun 1998 A
5789822 Calistrat Aug 1998 A
5813215 Weisser Sep 1998 A
5833876 Schnur Nov 1998 A
5862666 Liu Jan 1999 A
5873260 Linhardt Feb 1999 A
5874039 Edelson Feb 1999 A
5894836 Wu Apr 1999 A
5899067 Hageman May 1999 A
5903060 Norton May 1999 A
5918460 Connell Jul 1999 A
5941238 Tracy Aug 1999 A
5943869 Cheng Aug 1999 A
5946931 Lomax Sep 1999 A
5973050 Johnson Oct 1999 A
6037683 Lulay Mar 2000 A
6041604 Nicodemus Mar 2000 A
6058930 Shingleton May 2000 A
6062815 Holt May 2000 A
6065280 Ranasinghe May 2000 A
6066797 Toyomura May 2000 A
6070405 Jerye Jun 2000 A
6082110 Rosenblatt Jul 2000 A
6105368 Hansen Aug 2000 A
6112547 Spauschus Sep 2000 A
6129507 Ganelin Oct 2000 A
6158237 Riffat Dec 2000 A
6164655 Bothien Dec 2000 A
6202782 Hatanaka Mar 2001 B1
6223846 Schechter May 2001 B1
6233938 Nicodemus May 2001 B1
6233955 Egara May 2001 B1
6282900 Bell Sep 2001 B1
6282917 Mongan Sep 2001 B1
6295818 Ansley Oct 2001 B1
6299690 Mongeon Oct 2001 B1
6341781 Matz Jan 2002 B1
6374630 Jones Apr 2002 B1
6393851 Wightman May 2002 B1
6432320 Bonsignore Aug 2002 B1
6434955 Ng Aug 2002 B1
6442951 Maeda Sep 2002 B1
6446425 Lawlor Sep 2002 B1
6446465 Dubar Sep 2002 B1
6463730 Keller Oct 2002 B1
6484490 Olsen Nov 2002 B1
6539720 Rouse et al. Apr 2003 B2
6539728 Korin Apr 2003 B2
6571548 Bronicki Jun 2003 B1
6581384 Benson Jun 2003 B1
6598397 Hanna Jul 2003 B2
6644062 Hays Nov 2003 B1
6657849 Andresakis Dec 2003 B1
6668554 Brown Dec 2003 B1
6684625 Kline Feb 2004 B2
6695974 Withers Feb 2004 B2
6715294 Anderson Apr 2004 B2
6734585 Tornquist May 2004 B2
6735948 Kalina May 2004 B1
6739142 Korin May 2004 B2
6751959 McClanahan Jun 2004 B1
6769256 Kalina Aug 2004 B1
6799892 Leuthold Oct 2004 B2
6808179 Bhattacharyya Oct 2004 B1
6810335 Lysaght Oct 2004 B2
6817185 Coney Nov 2004 B2
6857268 Stinger Feb 2005 B2
6910334 Kalina Jun 2005 B2
6918254 Baker Jul 2005 B2
6921518 Johnston Jul 2005 B2
6941757 Kalina Sep 2005 B2
6960839 Zimron Nov 2005 B2
6960840 Willis Nov 2005 B2
6962054 Linney Nov 2005 B1
6964168 Pierson Nov 2005 B1
6968690 Kalina Nov 2005 B2
6986251 Radcliff Jan 2006 B2
7013205 Hafner Mar 2006 B1
7021060 Kalina Apr 2006 B1
7022294 Johnston Apr 2006 B2
7033533 Lewis-Aburn Apr 2006 B2
7033553 Johnston et al. Apr 2006 B2
7036315 Kang May 2006 B2
7041272 Keefer May 2006 B2
7047744 Robertson May 2006 B1
7048782 Couch May 2006 B1
7062913 Christensen Jun 2006 B2
7096665 Stinger Aug 2006 B2
7096679 Manole Aug 2006 B2
7124587 Linney Oct 2006 B1
7174715 Armitage Feb 2007 B2
7194863 Ganev Mar 2007 B2
7197876 Kalina Apr 2007 B1
7200996 Cogswell Apr 2007 B2
7234314 Wiggs Jun 2007 B1
7249588 Russell Jul 2007 B2
7278267 Yamada Oct 2007 B2
7279800 Bassett Oct 2007 B2
7287381 Pierson Oct 2007 B1
7305829 Mirolli Dec 2007 B2
7313926 Gurin Jan 2008 B2
7340894 Miyahara et al. Mar 2008 B2
7340897 Zimron Mar 2008 B2
7406830 Valentian Aug 2008 B2
7416137 Hagen et al. Aug 2008 B2
7453242 Ichinose Nov 2008 B2
7458217 Kalina Dec 2008 B2
7458218 Kalina Dec 2008 B2
7464551 Althaus et al. Dec 2008 B2
7469542 Kalina Dec 2008 B2
7516619 Pelletier Apr 2009 B2
7600394 Kalina Oct 2009 B2
7621133 Tomlinson Nov 2009 B2
7654354 Otterstrom Feb 2010 B1
7665291 Anand Feb 2010 B2
7665304 Sundel Feb 2010 B2
7685821 Kalina Mar 2010 B2
7730713 Nakano Jun 2010 B2
7735335 Uno Jun 2010 B2
7770376 Brostmeyer Aug 2010 B1
7775758 Legare Aug 2010 B2
7827791 Pierson Nov 2010 B2
7838470 Shaw Nov 2010 B2
7841179 Kalina Nov 2010 B2
7841306 Myers Nov 2010 B2
7854587 Ito Dec 2010 B2
7866157 Ernst Jan 2011 B2
7900450 Gurin Mar 2011 B2
7950230 Nishikawa May 2011 B2
7950243 Gurin May 2011 B2
7972529 Machado Jul 2011 B2
7997076 Ernst Aug 2011 B2
8096128 Held et al. Jan 2012 B2
8099198 Gurin Jan 2012 B2
8146360 Myers Apr 2012 B2
8281593 Held Oct 2012 B2
8419936 Berger et al. Apr 2013 B2
20010015061 Viteri et al. Aug 2001 A1
20010020444 Johnston Sep 2001 A1
20010030404 Liu Oct 2001 A1
20010030952 Roy Oct 2001 A1
20020029558 Tamaro Mar 2002 A1
20020066270 Rouse et al. Jun 2002 A1
20020078696 Korin Jun 2002 A1
20020078697 Lifson Jun 2002 A1
20020082747 Kramer Jun 2002 A1
20030000213 Christensen Jan 2003 A1
20030061823 Alden Apr 2003 A1
20030154718 Nayar Aug 2003 A1
20030182946 Sami Oct 2003 A1
20030213246 Coll et al. Nov 2003 A1
20030221438 Rane et al. Dec 2003 A1
20040011038 Stinger Jan 2004 A1
20040011039 Stinger et al. Jan 2004 A1
20040020185 Brouillette et al. Feb 2004 A1
20040020206 Sullivan et al. Feb 2004 A1
20040021182 Green et al. Feb 2004 A1
20040035117 Rosen Feb 2004 A1
20040083731 Lasker May 2004 A1
20040083732 Hanna et al. May 2004 A1
20040088992 Brasz et al. May 2004 A1
20040097388 Brask et al. May 2004 A1
20040105980 Sudarshan et al. Jun 2004 A1
20040107700 McClanahan et al. Jun 2004 A1
20040159110 Janssen Aug 2004 A1
20040211182 Gould Oct 2004 A1
20050022963 Garrabrant et al. Feb 2005 A1
20050056001 Frutschi Mar 2005 A1
20050096676 Gifford, III et al. May 2005 A1
20050109387 Marshall May 2005 A1
20050137777 Kolavennu et al. Jun 2005 A1
20050162018 Realmuto et al. Jul 2005 A1
20050167169 Gering et al. Aug 2005 A1
20050183421 Vaynberg et al. Aug 2005 A1
20050196676 Singh et al. Sep 2005 A1
20050198959 Schubert Sep 2005 A1
20050227187 Schilling Oct 2005 A1
20050252235 Critoph et al. Nov 2005 A1
20050257812 Wright et al. Nov 2005 A1
20060010868 Smith Jan 2006 A1
20060060333 Chordia et al. Mar 2006 A1
20060066113 Ebrahim et al. Mar 2006 A1
20060080960 Rajendran et al. Apr 2006 A1
20060112693 Sundel Jun 2006 A1
20060112702 Martin et al. Jun 2006 A1
20060182680 Keefer et al. Aug 2006 A1
20060211871 Dai et al. Sep 2006 A1
20060213218 Uno et al. Sep 2006 A1
20060225421 Yamanaka et al. Oct 2006 A1
20060225459 Meyer Oct 2006 A1
20060249020 Tonkovich et al. Nov 2006 A1
20060254281 Badeer et al. Nov 2006 A1
20070001766 Ripley et al. Jan 2007 A1
20070017192 Bednarek et al. Jan 2007 A1
20070019708 Shiflett et al. Jan 2007 A1
20070027038 Kamimura et al. Feb 2007 A1
20070056290 Dahm Mar 2007 A1
20070089449 Gurin Apr 2007 A1
20070108200 McKinzie, II May 2007 A1
20070119175 Ruggieri et al. May 2007 A1
20070130952 Copen Jun 2007 A1
20070151244 Gurin Jul 2007 A1
20070161095 Gurin Jul 2007 A1
20070163261 Strathman Jul 2007 A1
20070195152 Kawai et al. Aug 2007 A1
20070204620 Pronske et al. Sep 2007 A1
20070227472 Takeuchi et al. Oct 2007 A1
20070234722 Kalina Oct 2007 A1
20070245733 Pierson et al. Oct 2007 A1
20070246206 Gong et al. Oct 2007 A1
20080000225 Kalina Jan 2008 A1
20080006040 Peterson et al. Jan 2008 A1
20080010967 Griffin et al. Jan 2008 A1
20080023666 Gurin Jan 2008 A1
20080053095 Kalina Mar 2008 A1
20080066470 MacKnight Mar 2008 A1
20080135253 Vinegar et al. Jun 2008 A1
20080163625 O'Brien Jul 2008 A1
20080173450 Goldberg et al. Jul 2008 A1
20080211230 Gurin Sep 2008 A1
20080250789 Myers et al. Oct 2008 A1
20080252078 Myers Oct 2008 A1
20080282715 Aue et al. Nov 2008 A1
20090021251 Simon Jan 2009 A1
20090085709 Meinke Apr 2009 A1
20090107144 Moghtaderi et al. Apr 2009 A1
20090139234 Gurin Jun 2009 A1
20090139781 Straubel Jun 2009 A1
20090173337 Tamaura et al. Jul 2009 A1
20090173486 Copeland Jul 2009 A1
20090180903 Martin et al. Jul 2009 A1
20090205892 Jensen et al. Aug 2009 A1
20090211251 Petersen et al. Aug 2009 A1
20090211253 Radcliff et al. Aug 2009 A1
20090266075 Westmeier et al. Oct 2009 A1
20090293503 Vandor Dec 2009 A1
20100024421 Litwin Feb 2010 A1
20100077792 Gurin Apr 2010 A1
20100083662 Kalina Apr 2010 A1
20100102008 Hedberg Apr 2010 A1
20100122533 Kalina May 2010 A1
20100146949 Stobart et al. Jun 2010 A1
20100146973 Kalina Jun 2010 A1
20100156112 Held et al. Jun 2010 A1
20100162721 Welch et al. Jul 2010 A1
20100205962 Kalina Aug 2010 A1
20100218513 Vaisman et al. Sep 2010 A1
20100218930 Proeschel Sep 2010 A1
20100263380 Biederman et al. Oct 2010 A1
20100287934 Glynn et al. Nov 2010 A1
20100300093 Doty Dec 2010 A1
20100326076 Ast et al. Dec 2010 A1
20110027064 Pal et al. Feb 2011 A1
20110030404 Gurin Feb 2011 A1
20110048012 Ernst et al. Mar 2011 A1
20110061384 Held et al. Mar 2011 A1
20110061387 Held et al. Mar 2011 A1
20110088399 Briesch et al. Apr 2011 A1
20110179799 Allam et al. Jul 2011 A1
20110185729 Held Aug 2011 A1
20110192163 Kasuya Aug 2011 A1
20110203278 Kopecek et al. Aug 2011 A1
20110259010 Bronicki et al. Oct 2011 A1
20110299972 Morris et al. Dec 2011 A1
20110308253 Ritter Dec 2011 A1
20120047892 Held et al. Mar 2012 A1
20120067055 Held Mar 2012 A1
20120128463 Held May 2012 A1
20120131918 Held May 2012 A1
20120131919 Held May 2012 A1
20120131920 Held May 2012 A1
20120131921 Held May 2012 A1
20120159922 Gurin Jun 2012 A1
20120159956 Gurin Jun 2012 A1
20120174558 Gurin Jul 2012 A1
20120186219 Gurin Jul 2012 A1
20120247134 Gurin Oct 2012 A1
20120247455 Gurin et al. Oct 2012 A1
20120261090 Durmaz et al. Oct 2012 A1
20130019597 Kalina Jan 2013 A1
20130033037 Held et al. Feb 2013 A1
20130036736 Hart et al. Feb 2013 A1
20130113221 Held May 2013 A1
Foreign Referenced Citations (93)
Number Date Country
2794150 Nov 2011 CA
1165238 Nov 1997 CN
1432102 Jul 2003 CN
101614139 Dec 2009 CN
202055876 Nov 2011 CN
202544943 Nov 2012 CN
202718721 Feb 2013 CN
2632777 Feb 1977 DE
199906087 Aug 2000 DE
10052993 May 2002 DE
1977174 Oct 2008 EP
1998013 Dec 2008 EP
2419621 Feb 2012 EP
2446122 May 2012 EP
2478201 Jul 2012 EP
2500530 Sep 2012 EP
2550436 Jan 2013 EP
856985 Dec 1960 GB
2010974 Jul 1979 GB
2075608 Nov 1981 GB
58193051 Nov 1983 JP
60040707 Mar 1985 JP
61-152914 Jul 1986 JP
01-240705 Sep 1989 JP
05-321612 Dec 1993 JP
06-331225 Nov 1994 JP
08028805 Feb 1996 JP
09-100702 Apr 1997 JP
2641581 May 1997 JP
09-209716 Aug 1997 JP
2858750 Dec 1998 JP
H11270352 May 1999 JP
2000257407 Sep 2000 JP
2001-193419 Jul 2001 JP
2002-097965 Apr 2002 JP
2003529715 Oct 2003 JP
2004-239250 Aug 2004 JP
2004-332626 Nov 2004 JP
2005030727 Feb 2005 JP
2005-533972 Nov 2005 JP
2006037760 Feb 2006 JP
2006177266 Jul 2006 JP
2007-198200 Sep 2007 JP
4343738 Oct 2009 JP
2011-017268 Jan 2011 JP
100191080 Jun 1999 KR
10-2007-0086244 Aug 2007 KR
10-0766101 Oct 2007 KR
10-0844634 Jul 2008 KR
10-20100067927 Jun 2010 KR
1020110018769 Feb 2011 KR
1069914 Sep 2011 KR
1103549 Jan 2012 KR
10-2012-0058582 Jun 2012 KR
2012-0068670 Jun 2012 KR
2012-0128753 Jun 2012 KR
2012-0128753 Nov 2012 KR
2012-0128755 Nov 2012 KR
WO 9105145 Apr 1991 WO
9609500 Mar 1996 WO
0071944 Nov 2000 WO
WO 0144658 Jun 2001 WO
WO 2006060253 Jun 2006 WO
WO 2006137957 Dec 2006 WO
WO 2007056241 May 2007 WO
2007082103 Jul 2007 WO
WO 2007079245 Jul 2007 WO
WO 2007082103 Jul 2007 WO
WO 2007112090 Oct 2007 WO
WO 2008039725 Apr 2008 WO
2008101711 Aug 2008 WO
WO 2009045196 Apr 2009 WO
WO 2009058992 May 2009 WO
2010083198 Jul 2010 WO
WO 2010074173 Jul 2010 WO
WO 2010121255 Oct 2010 WO
WO 2010126980 Nov 2010 WO
WO 2010151560 Dec 2010 WO
2011017450 Feb 2011 WO
2011017599 Feb 2011 WO
WO 2011017476 Feb 2011 WO
WO 2011034984 Mar 2011 WO
WO 2011094294 Aug 2011 WO
WO 2011119650 Sep 2011 WO
WO 2012074905 Jun 2012 WO
WO 2012074907 Jun 2012 WO
WO 2012074911 Jun 2012 WO
WO 2012074940 Jun 2012 WO
WO 2013055391 Apr 2013 WO
WO 2013059687 Apr 2013 WO
WO 2013059695 Apr 2013 WO
WO 2013070249 May 2013 WO
WO 2013074907 May 2013 WO
Non-Patent Literature Citations (89)
Entry
CN Search Report for Application No. 201080035382.1, 2 pages.
CN Search Report for Application No. 201080050795.7, 2 pages.
PCT/US2011/062198—Extended European Search Report dated May 6, 2014, 9 pages.
PCT/US2011/062201—Extended European Search Report dated May 28, 2014, 8 pages.
PCT/US2013/055547—Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Jan. 24, 2014, 11 pages.
PCT/US2013/064470—Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Jan. 22, 2014, 10 pages.
PCT/US2013/064471—Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Jan. 24, 2014, 10 pages.
PCT/US2014/013154—International Search Report dated May 23, 2014, 4 pages.
PCT/US2014/013170—Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated May 9, 2014, 12 pages.
PCT/US2014/023026—Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Jul. 22, 2014, 11 pages.
PCT/US2014/023990—Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Jul. 17, 2014, 10 pages.
PCT/US2014/026173—Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Jul. 9, 2014, 10 pages.
Renz, Manfred, “The New Generation Kalina Cycle”, Contribution to the Conference: “Electricity Generation from Enhanced Geothermal Systems”, Sep. 14, 2006, Strasbourg, France, 18 pages.
Thorin, Eva, “Power Cycles with Ammonia-Water Mixtures as Working Fluid”, Doctoral Thesis, Department of Chemical Engineering and Technology Energy Processes, Royal Institute of Technology, Stockholm, Sweden, 2000, 66 pages.
PCT/US2010/044476—International Search Report and Written Opinion mailed Sep. 29, 2010.
PCT/US2010/044681—International Search Report and Written Opinion mailed Oct. 7, 2010.
Alpy, N., et al., “French Atomic Energy Commission views as regards SCO2 Cycle Development priorities and related R&D approach,” Presentation, Symposium on SCO2 Power Cycles, Apr. 29-30, 2009, Troy, NY, 20 pages.
Angelino, G., and Invernizzi, C.M., “Carbon Dioxide Power Cycles using Liquid Natural Gas as Heat Sink”, Applied Thermal Engineering Mar. 3, 2009, 43 pages.
Bryant, John C., Saari, Henry, and Zanganeh, Kourosh, “An Analysis and Comparison of the Simple and Recompression Supercritical CO2 Cycles” Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 8 pages.
Chapman, Daniel J., Arias, Diego A., “An Assessment of the Supercritical Carbon Dioxide Cycle for Use in a Solar Parabolic Trough Power Plant”, Presentation, Abengoa Solar, Apr. 29-30, 2009, Troy, NY, 20 pages.
Chapman, Daniel J., Arias, Diego A., “An Assessment of the Supercritical Carbon Dioxide Cycle for Use in a Solar Parabolic Trough Power Plant”, Paper, Abengoa Solar, Apr. 29-30, 2009, Troy, NY, 5 pages.
Chen, Yang, Lundqvist, P., Johansson, A., Platell, P., “A Comparative Study of the Carbon Dioxide Transcritical Power Cycle Compared with an Organic Rankine Cycle with R123 as Working Fluid in Waste Heat Recovery”, Science Direct, Applied Thermal Engineering, Jun. 12, 2006, 6 pages.
Chen, Yang, “Thermodynamic Cycles Using Carbon Dioxide as Working Fluid”, Doctoral Thesis, School of Industrial Engineering and Management, Stockholm, Oct. 2011, 150 pages., (3 parts).
Chordia, Lalit, “Optimizing Equipment for Supercritical Applications”, Thar Energy LLC, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 7 pages.
Combs, Osie V., “An Investigation of the Supercritical CO2 Cycle (Feher cycle) for Shipboard Application”, Massachusetts Institute of Technology, May 1977, 290 pages.
Di Bella, Francis A., “Gas Turbine Engine Exhaust Waste Heat Recovery Navy Shipboard Module Development”, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 8 pages.
Dostal, V., et al., A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors, Mar. 10, 2004, 326 pages., (7 parts).
Dostal, Vaclav and Kulhanek, Martin, “Research on the Supercritical Carbon Dioxide Cycles in the Czech Republic”, Czech Technical University in Prague, Symposium on SCO2 Power Cycles, Apr. 29-30, 2009, Troy, NY, 8 pages.
Dostal, Vaclav, and Dostal, Jan, “Supercritical CO2 Regeneration Bypass Cycle—Comparison to Traditional Layouts”, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 5 pages.
Eisemann, Kevin, and Fuller, Robert L., “Supercritical CO2 Brayton Cycle Design and System Start-up Options”, Barber Nichols, Inc., Paper, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 7 pages.
Eisemann, Kevin, and Fuller, Robert L., “Supercritical CO2 Brayton Cycle Design and System Start-up Options”, Presentation, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 11 pages.
Feher, E.G., et al., “Investigation of Supercritical (Feher) Cycle”, Astropower Laboratory, Missile & Space Systems Division, Oct. 1968, 152 pages.
Fuller, Robert L., and Eisemann, Kevin, “Centrifugal Compressor Off-Design Performance for Super-Critical CO2” , Barber Nichols, Inc. Presentation, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 20 pages .
Fuller, Robert L., and Eisemann, Kevin, “Centrifugal Compressor Off-Design Performance for Super-Critical CO2”, Paper, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 12 pages.
Gokhstein, D.P. and Verkhivker, G.P. “Use of Carbon Dioxide as a Heat Carrier and Working Substance in Atomic Power Stations”, Soviet Atomic Energy, Apr. 1969, vol. 26, Issue 4, pp. 430-432.
Gokhstein, D.P.; Taubman, E.I.; Konyaeva, G.P., “Thermodynamic Cycles of Carbon Dioxide Plant with an Additional Turbine After the Regenerator”, Energy Citations Database, Mar. 1973, 1 Page, Abstract only.
Hejzlar, P. et al., “Assessment of Gas Cooled Gas Reactor with Indirect Supercritical CO2 Cycle” Massachusetts Institute of Technology, Jan. 2006, 10 pages.
Hoffman, John R., and Feher, E.G., “150 kwe Supercritical Closed Cycle System”, Transactions of the ASME, Jan. 1971, pp. 70-80.
Jeong, Woo Seok, et al., “Performance of S-CO2 Brayton Cycle with Additive Gases for SFR Application”, Korea Advanced Institute of Science and Technology, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 5 pages.
Johnson, Gregory A., & McDowell, Michael, “Issues Associated with Coupling Supercritical CO2 Power Cycles to Nuclear, Solar and Fossil Fuel Heat Sources”, Hamilton Sundstrand, Energy Space & Defense-Rocketdyne, Apr. 29-30, 2009, Troy, NY, Presentation, 18 pages.
Kawakubo, Tomoki, “Unsteady Roto-Stator Interaction of a Radial-Inflow Turbine with Variable Nozzle Vanes”, ASME Turbo Expo 2010: Power for Land, Sea, and Air; vol. 7: Turbomachinery, Parts A, B, and C; Glasgow, UK, Jun. 14-18, 2010, Paper No. GT2010-23677, pp. 2075-2084, (1 page, Abstract only).
Kulhanek, Martin, “Thermodynamic Analysis and Comparison of S-CO2 Cycles”, Presentation, Czech Technical University in Prague, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 14 pages.
Kulhanek, Martin, “Thermodynamic Analysis and Comparison of S-CO2 Cycles”, Paper, Czech Technical University in Prague, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 7 pages.
Kulhanek, Martin., and Dostal, Vaclav, “Supercritical Carbon Dioxide Cycles Thermodynamic Analysis and Comparison”, Abstract, Faculty Conference held in Prague, Mar. 24, 2009, 13 pages.
Ma, Zhiwen and Turchi, Craig S., “Advanced Supercritical Carbon Dioxide Power Cycle Configurations for Use in Concentrating Solar Power Systems”, National Renewable Energy Laboratory, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 4 pages.
Moisseytsev, Anton, and Sienicki, Jim, “Investigation of Alternative Layouts for the Supercritical Carbon Dioxide Brayton Cycle for a Sodium-Cooled Fast Reactor”, Supercritical CO2 Power Cycle Symposium, Troy, NY, Apr. 29, 2009, 26 pages.
Munoz De Escalona, Jose M., “The Potential of the Supercritical Carbon Dioxide Cycle in High Temperature Fuel Cell Hybrid Systems”, Paper, Thermal Power Group, University of Seville, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 6 pages.
Munoz De Escalona, Jose M., et al., “The Potential of the Supercritical Carbon Dioxide Cycle in High Temperature Fuel Cell Hybrid Systems”, Presentation, Thermal Power Group, University of Seville, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 19 pages.
Muto, Y., et al., “Application of Supercritical CO2 Gas Turbine for the Fossil Fired Thermal Plant”, Journal of Energy and Power Engineering, Sep. 30, 2010, vol. 4, No. 9, 9 pages.
Muto, Yasushi, and Kato, Yasuyoshi, “Optimal Cycle Scheme of Direct Cycle Supercritical CO2 Gas Turbine for Nuclear Power Generation Systems”, International Conference on Power Engineering-2007, Oct. 23-27, 2007, Hangzhou, China, pp. 86-87.
Noriega, Bahamonde J.S., “Design Method for s-CO2 Gas Turbine Power Plants”, Master of Science Thesis, Delft University of Technology, Oct. 2012, 122 pages., (3 parts).
Oh, Chang, et al., “Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving PBR Efficiency and Testing Material Compatibility”, Presentation, Nuclear Energy Research Initiative Report, Oct. 2004, 38 pages.
Oh, Chang; et al., “Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving VHTR Efficiency and Testing Material Compatibility”, Presentation, Nuclear Energy Research Initiative Report, Final Report, Mar. 2006, 97 pages.
Parma, Ed, et al., “Supercritical CO2 Direct Cycle Gas Fast Reactor (SC-GFR) Concept” Presentation for Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 40 pages.
Parma, Ed, et al., “Supercritical CO2 Direct Cycle Gas Fast Reactor (SC-GFR) Concept”, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 9 pages.
Parma, Edward J., et al., “Supercritical CO2 Direct Cycle Gas Fast Reactor (SC-GFR) Concept”, Presentation, Sandia National Laboratories, May 2011, 55 pages.
PCT/US2006/049623 (EPS-020PCT)—Written Opinion of ISA dated Jan. 4, 2008, 4 pages.
PCT/US2007/001120 (EPS-019PCT)—International Search Report dated Apr. 25, 2008, 7 pages.
PCT/US2007/079318 (EPS-021PCT)—International Preliminary Report on Patentability dated Jul. 7, 2008, 5 pages.
PCT/US2010/031614 (EPS-014)—International Search Report dated Jul. 12, 2010, 3 pages.
PCT/US2010/031614—(EPS-14)—International Preliminary Report on Patentability dated Oct. 27, 2011, 9 pages.
PCT/US2010/039559 (EPS-015)—International Preliminary Report on Patentability dated Jan. 12, 2012, 7 pages.
PCT/US2010/039559 (EPS-015)—Notification of Transmittal of the International Search Report and Written Opinion of the International Searching Authority, or the Declaration dated Sep. 1, 2010, 6 pages.
PCT/US2010/044681(EPS-016)—International Preliminary Report on Patentability dated Feb. 16, 2012, 9 pages.
PCT/US2010/049042 (EPS-008)—International Search Report and Written Opinion dated Nov. 17, 2010, 11 pages.
PCT/US2010/049042 (EPS-008)—International Preliminary Report on Patentability dated Mar. 29, 2012, 18 pages.
PCT/US2011/029486 (EPS-002)—International Preliminary Report on Patentability dated Sep. 25, 2012, 6 pages.
PCT/US2011/029486 (EPS-002)—International Search Report and Written Opinion dated Nov. 16, 2011, 9 pages.
PCT/US2011/062266 (EPS-069)—International Search Report and Written Opinion dated Jul. 9, 2012, 12 pages.
PCT/US2011/062198 (EPS-070)—International Search Report and Written Opinion dated Jul. 2, 2012, 9 pages.
PCT/US2011/062201 (EPS-071)—International Search Report and Written Opinion dated Jun. 26, 2012, 9 pages.
PCT/US2011/062204 (EPS-072)—International Search Report dated Nov. 1, 2012, 10 pages.
PCT/US2011/62207 (EPS-073)—International Search Report and Written Opinion dated Jun. 28, 2012, 7 pages.
PCT/US2012/000470 (EPS-124)—International Search Report dated Mar. 8, 2013, 10 pages.
PCT/US2012/061151 (EPS-125)—International Search Report and Written Opinion dated Feb. 25, 2013, 9 pages.
PCT/US2012/061159 (EPS-126)—International Search Report dated Mar. 2, 2013, 10 pages.
Persichilli, Michael, et al., “Supercritical CO2 Power Cycle Developments and Commercialization: Why sCO2 can Displace Steam” Echogen Power Systems LLC, Power-Gen India & Central Asia 2012, Apr. 19-21, 2012, New Delhi, India, 15 pages.
Saari, Henry, et al., “Supercritical CO2 Advanced Brayton Cycle Design”, Presentation, Carleton University, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 21 pages.
San Andres, Luis, “Start-Up Response of Fluid Film Lubricated Cryogenic Turbopumps (Preprint)”, AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cincinnati, OH, Jul. 8-11, 2007, 38 pages.
Sarkar, J., and Bhattacharyya, Souvik, “Optimization of Recompression S-CO2 Power Cycle with Reheating” Energy Conversion and Management 50 (May 17, 2009), pp. 1939-1945.
Tom, Samsun Kwok Sun, “The Feasibility of Using Supercritical Carbon Dioxide as a Coolant for the Candu Reactor”, The University of British Columbia, Jan. 1978, 156 pages.
VGB PowerTech Service GmbH, “CO2 Capture and Storage”, A VGB Report on the State of the Art, Aug. 25, 2004, 112 pages.
Vidhi, Rachana, et al., “Study of Supercritical Carbon Dioxide Power Cycle for Power Conversion from Low Grade Heat Sources”, Presentation, University of South Florida and Oak Ridge National Laboratory, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 17 pages.
Vidhi, Rachana, et al., “Study of Supercritical Carbon Dioxide Power Cycle for Power Conversion from Low Grade Heat Sources”, Paper, University of South Florida and Oak Ridge National Laboratory, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 8 pages.
Wright, Steven A., et al., “Modeling and Experimental Results for Condensing Supercritical CO2 Power Cycles”, Sandia Report, Jan. 2011, 47 pages.
Wright, Steven A., et al., “Supercritical CO2 Power Cycle Development Summary at Sandia National Laboratories”, May 24-25, 2011, (1 page, Abstract only).
Wright, Steven, “Mighty Mite”, Mechanical Engineering, Jan. 2012, pp. 41-43.
Yoon, Ho Joon, et al., “Preliminary Results of Optimal Pressure Ratio for Supercritical CO2 Brayton Cycle coupled with Small Modular Water Cooled Reactor”, Presentation, Korea Advanced Institute of Science and Technology and Khalifa University of Science, Technology and Research, Boulder, CO, May 25, 2011, 18 pages.
Yoon, Ho Joon, et al., “Preliminary Results of Optimal Pressure Ratio for Supercritical CO2 Brayton Cycle coupled with Small Modular Water Cooled Reactor”, Paper, Korea Advanced Institute of Science and Technology and Khalifa University of Science, Technology and Research, May 24-25, 2011, Boulder, CO, 7 pages.
Related Publications (1)
Number Date Country
20120247134 A1 Oct 2012 US
Provisional Applications (1)
Number Date Country
61231238 Aug 2009 US