The present invention relates to pyrolysis methods and apparatuses in which a solid heat carrier (e.g., sand) is separated from the pyrolysis reactor effluent and cooled with a quench medium (e.g., water) to improve temperature control. Cooling with quench medium may occur in or above a fluidized bed of the heat carrier, in which solid char byproduct is combusted to provide some or all of the heat needed to drive the pyrolysis.
Environmental concerns over fossil fuel greenhouse gas emissions have led to an increasing emphasis on renewable energy sources. Wood and other forms of biomass including agricultural and forestry residues are examples of some of the main types of renewable feedstocks being considered for the production of liquid fuels. Energy from biomass based on energy crops such as short rotation forestry, for example, can contribute significantly towards the objectives of the Kyoto Agreement in reducing greenhouse gas (GHG) emissions.
Pyrolysis is considered a promising route for obtaining liquid fuels, including transportation fuel and heating oil, from biomass feedstocks. Pyrolysis refers to thermal decomposition in the substantial absence of oxygen (or in the presence of significantly less oxygen than required for complete combustion). Initial attempts to obtain useful oils from biomass pyrolysis yielded predominantly an equilibrium product slate (i.e., the products of “slow pyrolysis”). In addition to the desired liquid product, roughly equal proportions of non-reactive solids (char and ash) and non-condensible gases were obtained as unwanted byproducts. More recently, however, significantly improved yields of primary, non-equilibrium liquids and gases (including valuable chemicals, chemical intermediates, petrochemicals, and fuels) have been obtained from carbonaceous feedstocks through fast (rapid or flash) pyrolysis at the expense of undesirable, slow pyrolysis products.
Fast pyrolysis refers generally to technologies involving rapid heat transfer to the biomass feedstock, which is maintained at a relatively high temperature for a very short time. The temperature of the primary pyrolysis products is then rapidly reduced before chemical equilibrium is achieved. The fast cooling therefore prevents the valuable reaction intermediates, formed by depolymerization and fragmentation of the biomass building blocks, namely cellulose, hemicellulose, and lignin, from degrading to non-reactive, low-value final products. A number of fast pyrolysis processes are described in U.S. Pat. No. 5,961,786; Canadian Patent Application 536,549; and by Bridgwater, A. V., “Biomass Fast Pyrolysis,” Review paper BIBLID: 0354-9836, 8 (2004), 2, 21-49. Fast pyrolysis processes include Rapid Thermal Processing (RTP), in which an inert or catalytic solid particulate is used to carry and transfer heat to the feedstock. RTP has been commercialized and operated with very favorable yields (55-80% by weight, depending on the biomass feedstock) of raw pyrolysis oil.
Pyrolysis processes such as RTP therefore rely on rapid heat transfer from the solid heat carrier, generally in particulate form, to the pyrolysis reactor. The combustion of char, a solid byproduct of pyrolysis, represents an important source of the significant heat requirement for driving the pyrolysis reaction. Effective heat integration between, and recovery from, the pyrolysis reaction and combustion (or reheater) sections represents a significant objective in terms of improving the overall economics of pyrolysis, under the operating constraints and capacity of the equipment, for a given feedstock. As a result, there is an ongoing need in the art for pyrolysis methods with added flexibility in terms of managing the substantial heat of combustion, its transfer to the pyrolysis reaction mixture, and its recovery for use in other applications.
The present invention is associated with the discovery of pyrolysis methods and apparatuses that allow effective heat removal, for example when necessary to achieve a desired throughput. Depending on the pyrolysis feed used, the processing capacity may become constrained, not by the size of the equipment, but by the ability to remove heat from the overall system, as required to operate within design temperatures. While some heat removal schemes, such as passing the recycled heat carrier (e.g., sand) through a cooler, may be effective in certain circumstances, they may not be applicable to all pyrolysis systems in terms of meeting cost and performance objectives. The methods and apparatuses described herein, involving the use of a quench medium, represent generally less expensive alternatives for providing needed heat removal. The quench medium may be used effectively alone or in combination with other types of cooling, for example a sand cooler.
The quench medium may therefore act as either a primary or secondary type of heat removal, allowing greater control of process temperatures, and particularly in the reheater where char, as a solid byproduct of pyrolysis, is combusted. Associated with this heat removal is added operational flexibility in terms of biomass feedstock type and processing capacity, which are often constrained by a maximum operating temperature rather than equipment size. In a particular of pyrolysis operation, a quench medium is distributed to one or more locations within the reheater vessel, thereby cooling this vessel if a sand cooler is either not used (e.g., in view of cost considerations) or otherwise removes excess heat to an insufficient extent. Often, the reheater vessel is operated with a fluidized bed of particles of the solid heat carrier, through which an oxygen-containing combustion medium is passed, in order to combust the char and generate some or all of the heat required for the pyrolysis. The fluidized bed comprises a dense phase bed below a dilute phase of the particles of the solid heat carrier.
A quench medium may be sprayed, for example, on the top of a heat carrier such as sand, residing in the reheater as a fluidized particle bed. Heat is thereby removed, for example, by conversion of water, as a quench medium, to steam. The consumption of heat advantageously reduces the overall temperature of the reheater and/or allows the pyrolysis unit to operate at a target capacity. Distributors may be located in various positions to introduce the quench medium at multiple points, for example within the dense phase bed and/or in the dilute phase, above the dense phase. Dilute phase introduction of the quench medium helps prevent dense phase bed disruptions due to sudden volume expansion (e.g., of water upon being converted to steam) in the presence of a relatively high density of solid particles. Such disruptions may detrimentally lead to increased solid particle entrainment and losses. Dense phase introduction (e.g., directly into a middle section of the dense phase bed), on the other hand, provides direct cooling of the solid particles. Such cooling is effective if introduction is carried out with sufficient control, and at a quench medium flow rate, that avoids significant disruptions of the dense phase bed. In some cases, quench medium may be introduced both into, and above, the dense phase bed, and even at multiple locations within and above the bed.
Embodiments of the invention are therefore directed to pyrolysis methods comprising combining biomass and a solid heat carrier (e.g., solid particulate that has been heated in a reheater and recycled) to provide a pyrolysis reaction mixture, for example in a Rapid Thermal Processing (RTP) pyrolysis unit. The reaction mixture may, for example, be formed upon mixing the biomass and solid heat carrier at the bottom of, or below, an upflow pyrolysis reactor. The mixture is then subjected to pyrolysis conditions, including a rapid increase in the temperature of the biomass to a pyrolysis temperature and a relatively short residence time at this temperature, to provide a pyrolysis effluent. The appropriate conditions are normally achieved using an oxygen-depleted (or oxygen-free) transport gas that lifts the pyrolysis reaction mixture through an upflow pyrolysis reactor. Following pyrolysis, the pyrolysis effluent is separated (e.g., using a cyclone separator) into (1) a solids-enriched fraction comprising both solid char and a recycled portion of the solid heat carrier and (2) a solids-depleted fraction comprising pyrolysis products. Pyrolysis products include, following cooling, (1) liquid pyrolysis products that are condensed, such as raw pyrolysis oil and valuable chemicals, as well as (2) non-condensable gases such as H2, CO, CO2, methane, and ethane. The solids-enriched fraction is then contacted with an oxygen-containing combustion medium (e.g., air or nitrogen-enriched air) to combust at least a portion of the solid char and reheat the recycled portion of the heat carrier, which in turn transfers heat to the pyrolysis reaction mixture. As discussed above, the solids-enriched fraction is also contacted, for example in a reheater containing a fluidized bed of the heat carrier, with a quench medium to reduce or limit the temperature in the reheater or otherwise the temperature of the recycled portion of the solid heat carrier.
Further embodiments of the invention are directed to apparatuses for pyrolysis of a biomass feedstock. Representative apparatuses comprise an upflow, entrained bed pyrolysis reactor that may include, for example, a tubular reaction zone. The apparatuses also comprise a cyclone separator having (1) an inlet in communication with an upper section (e.g., a pyrolysis effluent outlet) of the reactor (2) a solids-enriched fraction outlet in communication with a reheater, and (3) a solids-depleted fraction outlet in communication with a pyrolysis product condensation section. The apparatuses further comprise a quench liquid distribution system in communication with the reheater, for the introduction of quench medium and consequently the removal of heat from within this vessel.
Yet further embodiments of the invention are directed to a reheater for combusting solid char that is separated from a pyrolysis effluent. Combustion occurs in the presence of a solid heat carrier that is recycled to the pyrolysis reactor. The reheater comprises one or more points of quench medium introduction. In the case of multiple points of introduction, these will generally be positioned at different axial lengths along the reheater. Points of introduction may also include distributors of the quench medium, as well as control systems for regulating the flow of the quench medium, for example, in response to a measured temperature either in the dense phase bed or dilute phase of the solid heat carrier.
These and other embodiments and aspects relating to the present invention are apparent from the following Detailed Description.
The features referred to in
According to representative embodiments of the invention, the biomass subjected to pyrolysis in an oxygen depleted environment, for example using Rapid Thermal Processing (RTP), can be any plant material, or mixture of plant materials, including a hardwood (e.g., whitewood), a softwood, or a hardwood or softwood bark. Energy crops, or otherwise agricultural residues (e.g., logging residues) or other types of plant wastes or plant-derived wastes, may also be used as plant materials. Specific exemplary plant materials include corn fiber, corn stover, and sugar cane bagasse, in addition to “on-purpose” energy crops such as switchgrass, miscanthus, and algae. Short rotation forestry products, as energy crops, include alder, ash, southern beech, birch, eucalyptus, poplar, willow, paper mulberry, Australian blackwood, sycamore, and varieties of paulownia elongate. Other examples of suitable biomass include organic waste materials, such as waste paper and construction, demolition, and municipal wastes.
A representative pyrolysis method is illustrated in
The combination of biomass 10 and solid heat carrier 12 therefore forms a hot pyrolysis reaction mixture, having a temperature generally from about 300° C. (572° F.) to about 1100° C. (2012° F.), and often from about 400° C. (752° F.) to about 700° C. (1292° F.). The temperature of the pyrolysis reaction mixture is maintained over its relatively short duration in reaction zone 16, prior to the pyrolysis effluent 24 being separated. A typical pyrolysis reactor operates with the flow of the pyrolysis reaction mixture in the upward direction (e.g., in an upflow, entrained bed pyrolysis reactor), through reaction zone 16, such that pyrolysis conditions are maintained in this zone for the conversion of biomass 10. Upward flow is achieved using transport gas 13 containing little or no oxygen, for example containing some or all of non-condensable gases 18 obtained after condensing liquid pyrolysis product(s) 20 from a solids-depleted fraction 22, comprising a mixture of gaseous and liquid pyrolysis products. These non-condensable gases 18 normally contain H2, CO, CO2, methane, and/or ethane. Some oxygen may enter the pyrolysis reaction mixture, however, from reheater 100, where char is combusted in the presence of oxygen-containing combustion medium 28, as discussed in greater detail below.
Transport gas 13 is therefore fed to pyrolysis reactor 200 at a flow rate sufficient to attain a gas superficial velocity through mixing zone 14 and reaction zone 16 that entrains the majority, and usually substantially all, solid components of the pyrolysis reaction mixture. Representative gas superficial velocities are greater than 1 meter per second, and often greater than 2 meters per second. The transport gas 13 is shown in
The pyrolysis reaction mixture is subjected to pyrolysis conditions, including a temperature, and a residence time at which the temperature is maintained, as discussed above. Pyrolysis effluent 24 comprising the solid pyrolysis byproduct char, the solid heat carrier, and the pyrolysis products, is removed from an upper section of pyrolysis reactor 200, such as the top of reaction zone 16 (e.g., a tubular reaction zone) of this reactor 200. Pyrolysis products, comprising both non-condensable and condensable components of pyrolysis effluent 24, may be recovered after separation of solids, including char and heat carrier. Cooling, to promote condensation, and possibly further separation steps are used to provide one or more liquid pyrolysis product(s). A particular liquid pyrolysis product of interest is raw pyrolysis oil, which generally contains 30-35% by weight of oxygen in the form of organic oxygenates such as hydroxyaldehydes, hydroxyketones, sugars, carboxylic acids, and phenolic oligomers as well as dissolved water. For this reason, although a pourable and transportable liquid fuel, the raw pyrolysis oil has only about 55-60% of the energy content of crude oil-based fuel oils. Representative values of the energy content are in the range from about 19.0 MJ/liter (69,800 BTU/gal) to about 25.0 MJ/liter (91,800 BTU/gal). Moreover, this raw product is often corrosive and exhibits chemical instability due to the presence of highly unsaturated compounds such as olefins (including diolefins) and alkenylaromatics.
Hydroprocessing of this pyrolysis oil is therefore beneficial in terms of reducing its oxygen content and increasing its stability, thereby rendering the hydroprocessed product more suitable for blending in fuels, such as gasoline, meeting all applicable specifications. Hydroprocessing involves contacting the pyrolysis oil with hydrogen and in the presence of a suitable catalyst, generally under conditions sufficient to convert a large proportion of the organic oxygen in the raw pyrolysis oil to CO, CO2 and water that are easily removed. The term “pyrolysis oil,” as it applies to a feedstock to the hydroprocessing step, refers to the raw pyrolysis oil obtained directly from pyrolysis (e.g., RTP) or otherwise refers to this raw pyrolysis oil after having undergone pretreatment such as filtration to remove solids and/or ion exchange to remove soluble metals, prior to the hydroprocessing step.
As illustrated in the embodiment of
Solids-depleted fraction 22 may be cooled, for example using cooler 400 to condense liquid pyrolysis products such as raw pyrolysis oil and optionally, following additional separation/purification steps, valuable chemicals including carboxylic acids, phenolics, and ketones. As illustrated in
Rapid cooling of solids-depleted fraction 22 is generally desired to limit the extent of pyrolysis reactions occurring beyond the relatively short residence time in reaction zone 16. Cooling may be achieved using direct or indirect heat exchange, or both types of heat exchange in combination. An example of a combination of heat exchange types involves the use of a quench tower in which a condensed liquid pyrolysis product is cooled indirectly, recycled to the top of the tower, and contacted counter-currently with the hot, rising vapor of solids-depleted fraction 22. As discussed above, solids-depleted fraction 22 comprises gaseous and liquid pyrolysis products, including raw pyrolysis oil that is recovered in downstream processing. Accordingly, cyclone 300 has (i) an inlet in communication with an upper section of pyrolysis reactor 200, in addition to (ii) a solids-enriched fraction outlet in communication with reheater 100 and (iii) a solids-depleted fraction outlet in communication with a pyrolysis product condensation section. Namely, the cyclone inlet may correspond to the conduit for pyrolysis effluent 24, the solids-enriched fraction outlet may correspond to the conduit for solids-enriched fraction 26, and the solids-depleted fraction outlet may correspond to the conduit for solids-depleted fraction 22. A representative pyrolysis product condensation section may correspond to cooler 400 and separator 500.
As illustrated in the representative embodiment of
Aspects of the invention relate to the use of a quench medium for improving the overall management of heat in pyrolysis systems. For example, heat removal from the solid carrier, and heat transfer to the quench medium, may be achieved by direct heat exchange between the quench medium and the solid carrier. Advantageously, the temperature of the recycled portion of the solid heat carrier, which is passed to reheater 100 as described above, is limited (e.g., to a maximum design temperature) by direct contact between this solid heat carrier and quench medium 44 in reheater 100. In some cases, this limitation of the combustion temperature can allow an increase in the operating capacity of the overall pyrolysis system. A preferred quench medium is water or an aqueous solution having a pH that may be suited to the construction material of the reheater or otherwise may have the capability to neutralize rising combustion gases. In some cases, for example, the use of dilute caustic solution, having in pH in the range from about 8 to about 12, can effectively neutralize acidic components present in the combustion gases. Preferably, quench medium 44 is introduced to reheater 100 through distributor 46.
According to the quench liquid distribution and control system depicted in the particular embodiment of
Overall, aspects of the invention are directed to pyrolysis methods with improved heat control, and especially reheaters for combusting solid char, separated from a pyrolysis effluent, in the presence of a solid heat carrier that is recycled to the pyrolysis reactor to transfer heat and drive the pyrolysis. Advantageously, the reheater comprises one or more points of quench medium introduction along its axial length, optionally together with quench medium distributors and control systems as described above. Those having skill in the art, with the knowledge gained from the present disclosure, will recognize that various changes could be made in these pyrolysis methods without departing from the scope of the present invention. Mechanisms used to explain theoretical or observed phenomena or results, shall be interpreted as illustrative only and not limiting in any way the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
1252072 | Abbot | Jan 1918 | A |
2205757 | Wheat | Jun 1940 | A |
2318555 | Ruthruff | May 1943 | A |
2326525 | Diwoky | Aug 1943 | A |
2328202 | Doerner | Aug 1943 | A |
2380098 | Doerner | Jul 1945 | A |
2492948 | Berger | Jan 1950 | A |
2566353 | Mills | Sep 1951 | A |
2696979 | Berge | Dec 1954 | A |
2884303 | Metrailer | Apr 1959 | A |
3130007 | Breck | Apr 1964 | A |
3309356 | Esterer | Mar 1967 | A |
3313726 | Campbell et al. | Apr 1967 | A |
3444048 | Schmeling | May 1969 | A |
3445549 | Hakulin | May 1969 | A |
3467502 | Davis | Sep 1969 | A |
3589313 | Smith | Jun 1971 | A |
3694346 | Blaser et al. | Sep 1972 | A |
3696022 | Hutchings | Oct 1972 | A |
3760870 | Guetlhuber | Sep 1973 | A |
3776533 | Vlnaty | Dec 1973 | A |
3814176 | Seth | Jun 1974 | A |
3853498 | Bailie | Dec 1974 | A |
3876533 | Myers | Apr 1975 | A |
3890111 | Knudsen | Jun 1975 | A |
3907661 | Gwyn et al. | Sep 1975 | A |
3925024 | Hollingsworth et al. | Dec 1975 | A |
3927996 | Knudsen et al. | Dec 1975 | A |
3959420 | Geddes et al. | May 1976 | A |
4003829 | Burger et al. | Jan 1977 | A |
4032305 | Squires | Jun 1977 | A |
4039290 | Inada et al. | Aug 1977 | A |
4052265 | Kemp | Oct 1977 | A |
4064018 | Choi | Dec 1977 | A |
4064043 | Kollman | Dec 1977 | A |
4085030 | Green et al. | Apr 1978 | A |
4101414 | Kim et al. | Jul 1978 | A |
4102773 | Green et al. | Jul 1978 | A |
4103902 | Steiner et al. | Aug 1978 | A |
4138020 | Steiner et al. | Feb 1979 | A |
4145274 | Green et al. | Mar 1979 | A |
4153514 | Garrett et al. | May 1979 | A |
4157245 | Mitchell et al. | Jun 1979 | A |
4159682 | Fitch | Jul 1979 | A |
4204915 | Kurata et al. | May 1980 | A |
4219537 | Steiner | Aug 1980 | A |
4225415 | Mirza et al. | Sep 1980 | A |
4233119 | Meyers et al. | Nov 1980 | A |
4245693 | Cheng | Jan 1981 | A |
4258005 | Ito | Mar 1981 | A |
4272402 | Mayes | Jun 1981 | A |
4279207 | Wormser | Jul 1981 | A |
4280879 | Taciuk | Jul 1981 | A |
4284616 | Solbakken et al. | Aug 1981 | A |
4298453 | Schoennagel et al. | Nov 1981 | A |
4300009 | Haag et al. | Nov 1981 | A |
4301771 | Jukkola et al. | Nov 1981 | A |
4306619 | Trojani | Dec 1981 | A |
4308411 | Frankiewicz | Dec 1981 | A |
4311670 | Nieminen et al. | Jan 1982 | A |
4317703 | Bowen et al. | Mar 1982 | A |
4321096 | Dobbin | Mar 1982 | A |
4324637 | Durai-Swamy | Apr 1982 | A |
4324641 | Durai-Swamy | Apr 1982 | A |
4324642 | Durai-Swamy | Apr 1982 | A |
4324644 | Durai-Swamy | Apr 1982 | A |
4325327 | Kantesaria et al. | Apr 1982 | A |
4334893 | Lang | Jun 1982 | A |
4336128 | Tamm | Jun 1982 | A |
4341598 | Green | Jul 1982 | A |
4344373 | Ishii et al. | Aug 1982 | A |
4344770 | Capener et al. | Aug 1982 | A |
4364796 | Ishii et al. | Dec 1982 | A |
4373994 | Lee | Feb 1983 | A |
4415434 | Hargreaves et al. | Nov 1983 | A |
4422927 | Kowalczyk | Dec 1983 | A |
4434726 | Jones | Mar 1984 | A |
4443229 | Sageman et al. | Apr 1984 | A |
4456504 | Spars et al. | Jun 1984 | A |
4470254 | Chen | Sep 1984 | A |
4482451 | Kemp | Nov 1984 | A |
4495056 | Venardos et al. | Jan 1985 | A |
4504379 | Stuntz et al. | Mar 1985 | A |
4537571 | Buxel et al. | Aug 1985 | A |
4548615 | Longchamp et al. | Oct 1985 | A |
4552203 | Chrysostome et al. | Nov 1985 | A |
4574743 | Claus | Mar 1986 | A |
4584064 | Ciais et al. | Apr 1986 | A |
4584947 | Chittick | Apr 1986 | A |
4595567 | Hedrick | Jun 1986 | A |
4615870 | Armstrong et al. | Oct 1986 | A |
4617693 | Meyer et al. | Oct 1986 | A |
4645568 | Kurps et al. | Feb 1987 | A |
4668243 | Schulz | May 1987 | A |
4678860 | Kuester | Jul 1987 | A |
4684375 | Morin et al. | Aug 1987 | A |
4710357 | Cetinkaya et al. | Dec 1987 | A |
4714109 | Tsao | Dec 1987 | A |
4732091 | Gould | Mar 1988 | A |
4823712 | Wormer | Apr 1989 | A |
4828581 | Feldmann et al. | May 1989 | A |
4849091 | Cabrera et al. | Jul 1989 | A |
4880473 | Scott et al. | Nov 1989 | A |
4881592 | Cetinkaya | Nov 1989 | A |
4891459 | Knight et al. | Jan 1990 | A |
4897178 | Best et al. | Jan 1990 | A |
4931171 | Piotter | Jun 1990 | A |
4940007 | Hiltunen et al. | Jul 1990 | A |
4942269 | Chum et al. | Jul 1990 | A |
4968325 | Black | Nov 1990 | A |
4983278 | Cha et al. | Jan 1991 | A |
4987178 | Shibata et al. | Jan 1991 | A |
4988430 | Sechrist et al. | Jan 1991 | A |
4992605 | Craig et al. | Feb 1991 | A |
5009770 | Miller et al. | Apr 1991 | A |
5011592 | Owen et al. | Apr 1991 | A |
5018458 | McIntyre et al. | May 1991 | A |
5041209 | Cha et al. | Aug 1991 | A |
5059404 | Mansour et al. | Oct 1991 | A |
5066627 | Owen | Nov 1991 | A |
5077252 | Owen et al. | Dec 1991 | A |
5093085 | Engstrom et al. | Mar 1992 | A |
5136117 | Paisley et al. | Aug 1992 | A |
5151392 | Fettis | Sep 1992 | A |
5212129 | Lomas | May 1993 | A |
5225044 | Breu | Jul 1993 | A |
5227566 | Cottrell | Jul 1993 | A |
5236688 | Watanabe et al. | Aug 1993 | A |
5239946 | Garcia-mallol | Aug 1993 | A |
5243922 | Rehmat et al. | Sep 1993 | A |
5281727 | Carver et al. | Jan 1994 | A |
5306481 | Mansour et al. | Apr 1994 | A |
5326919 | Paisley et al. | Jul 1994 | A |
5343939 | Cetinkaya | Sep 1994 | A |
5365889 | Tang | Nov 1994 | A |
5371212 | Moens | Dec 1994 | A |
5376340 | Bayer et al. | Dec 1994 | A |
5380916 | Rao | Jan 1995 | A |
5395455 | Scott et al. | Mar 1995 | A |
5402548 | Adair et al. | Apr 1995 | A |
5407674 | Gabetta et al. | Apr 1995 | A |
5423891 | Taylor | Jun 1995 | A |
5426807 | Grimsley et al. | Jun 1995 | A |
5478736 | Nair | Dec 1995 | A |
5494653 | Paisley | Feb 1996 | A |
5520722 | Hershkowitz et al. | May 1996 | A |
5536488 | Mansour et al. | Jul 1996 | A |
5578092 | Collin | Nov 1996 | A |
5584985 | Lomas | Dec 1996 | A |
5605551 | Scott et al. | Feb 1997 | A |
5637192 | Mansour et al. | Jun 1997 | A |
5654448 | Pandey et al. | Aug 1997 | A |
5662050 | Angelo et al. | Sep 1997 | A |
5703299 | Carleton et al. | Dec 1997 | A |
5713977 | Kobayashi | Feb 1998 | A |
5725738 | Brioni et al. | Mar 1998 | A |
5728271 | Piskorz et al. | Mar 1998 | A |
5744333 | Cociancich et al. | Apr 1998 | A |
5788784 | Koppenhoefer et al. | Aug 1998 | A |
5792340 | Freel et al. | Aug 1998 | A |
5853548 | Piskorz et al. | Dec 1998 | A |
5879079 | Hohmann et al. | Mar 1999 | A |
5879642 | Trimble et al. | Mar 1999 | A |
5879650 | Kaul et al. | Mar 1999 | A |
5904838 | Kalnes et al. | May 1999 | A |
5915311 | Muller et al. | Jun 1999 | A |
5961786 | Freel et al. | Oct 1999 | A |
5969165 | Liu | Oct 1999 | A |
6002025 | Page et al. | Dec 1999 | A |
6011187 | Horizoe et al. | Jan 2000 | A |
6033555 | Chen et al. | Mar 2000 | A |
6106702 | Sohn et al. | Aug 2000 | A |
6113862 | Jorgensen et al. | Sep 2000 | A |
6123833 | Sechrist | Sep 2000 | A |
6133499 | Horizoe et al. | Oct 2000 | A |
6149765 | Mansour et al. | Nov 2000 | A |
6190542 | Comolli et al. | Feb 2001 | B1 |
6193837 | Agblevor et al. | Feb 2001 | B1 |
6237541 | Alliston et al. | May 2001 | B1 |
6339182 | Munson et al. | Jan 2002 | B1 |
6398921 | Moraski | Jun 2002 | B1 |
6452024 | Bui-Khac et al. | Sep 2002 | B1 |
6455015 | Kilroy | Sep 2002 | B1 |
6485841 | Freel et al. | Nov 2002 | B1 |
6497199 | Yamada et al. | Dec 2002 | B2 |
6547957 | Sudhakar et al. | Apr 2003 | B1 |
6555649 | Giroux et al. | Apr 2003 | B2 |
6656342 | Smith et al. | Dec 2003 | B2 |
6660157 | Que et al. | Dec 2003 | B2 |
6676828 | Galiasso et al. | Jan 2004 | B1 |
6680137 | Paisley et al. | Jan 2004 | B2 |
6743746 | Prilutsky et al. | Jun 2004 | B1 |
6759562 | Gartside et al. | Jul 2004 | B2 |
6776607 | Nahas et al. | Aug 2004 | B2 |
6808390 | Fung | Oct 2004 | B1 |
6814940 | Hiltunen et al. | Nov 2004 | B1 |
6844420 | Freel et al. | Jan 2005 | B1 |
6875341 | Bunger et al. | Apr 2005 | B1 |
6960325 | Kao et al. | Nov 2005 | B2 |
6962676 | Hyppaenen | Nov 2005 | B1 |
6988453 | Cole et al. | Jan 2006 | B2 |
7004999 | Johnson et al. | Feb 2006 | B2 |
7022741 | Jiang et al. | Apr 2006 | B2 |
7026262 | Palmas et al. | Apr 2006 | B1 |
7202389 | Brem | Apr 2007 | B1 |
7214252 | Krumm et al. | May 2007 | B1 |
7226954 | Tavasoli et al. | Jun 2007 | B2 |
7240639 | Hyppaenen et al. | Jul 2007 | B2 |
7247233 | Hedrick et al. | Jul 2007 | B1 |
7262331 | van de Beld et al. | Aug 2007 | B2 |
7263934 | Copeland et al. | Sep 2007 | B2 |
7285186 | Tokarz | Oct 2007 | B2 |
7319168 | Sanada | Jan 2008 | B2 |
7473349 | Keckler et al. | Jan 2009 | B2 |
7476774 | Umansky et al. | Jan 2009 | B2 |
7479217 | Pinault et al. | Jan 2009 | B2 |
7491317 | Meier et al. | Feb 2009 | B2 |
7563345 | Tokarz | Jul 2009 | B2 |
7572362 | Freel et al. | Aug 2009 | B2 |
7572365 | Freel et al. | Aug 2009 | B2 |
7578927 | Marker et al. | Aug 2009 | B2 |
7625432 | Gouman et al. | Dec 2009 | B2 |
7811340 | Bayle et al. | Oct 2010 | B2 |
7897124 | Gunnerman et al. | Mar 2011 | B2 |
7905990 | Freel | Mar 2011 | B2 |
7943014 | Berruti et al. | May 2011 | B2 |
7956224 | Elliott et al. | Jun 2011 | B2 |
7960598 | Spilker et al. | Jun 2011 | B2 |
7982075 | Marker et al. | Jul 2011 | B2 |
7998315 | Bridgwater et al. | Aug 2011 | B2 |
7998455 | Abbas et al. | Aug 2011 | B2 |
7999142 | Kalnes et al. | Aug 2011 | B2 |
7999143 | Marker et al. | Aug 2011 | B2 |
8043391 | Dinjus et al. | Oct 2011 | B2 |
8057641 | Bartek et al. | Nov 2011 | B2 |
8097090 | Freel et al. | Jan 2012 | B2 |
8097216 | Beech et al. | Jan 2012 | B2 |
8147766 | Spilker et al. | Apr 2012 | B2 |
8153850 | Hall et al. | Apr 2012 | B2 |
8202332 | Agblevor | Jun 2012 | B2 |
8207385 | O'Connor et al. | Jun 2012 | B2 |
8217211 | Agrawal et al. | Jul 2012 | B2 |
8277643 | Huber et al. | Oct 2012 | B2 |
8288600 | Bartek et al. | Oct 2012 | B2 |
8304592 | Luebke | Nov 2012 | B2 |
8314275 | Brandvold | Nov 2012 | B2 |
8329967 | Brandvold et al. | Dec 2012 | B2 |
8404910 | Kocal et al. | Mar 2013 | B2 |
8499702 | Palmas et al. | Aug 2013 | B2 |
8519203 | Marinangeli et al. | Aug 2013 | B2 |
8519205 | Frey et al. | Aug 2013 | B2 |
8524087 | Frey et al. | Sep 2013 | B2 |
8575408 | Marker et al. | Nov 2013 | B2 |
8715490 | Brandvold et al. | May 2014 | B2 |
8726443 | Freel et al. | May 2014 | B2 |
9044727 | Kulprathipanja | Jun 2015 | B2 |
20020014033 | Langer et al. | Feb 2002 | A1 |
20020100711 | Freel et al. | Aug 2002 | A1 |
20020146358 | Smith et al. | Oct 2002 | A1 |
20030010024 | Maganas et al. | Jan 2003 | A1 |
20030047437 | Stankevitch | Mar 2003 | A1 |
20030049854 | Rhodes | Mar 2003 | A1 |
20030202912 | Myohanen et al. | Oct 2003 | A1 |
20040069682 | Freel et al. | Apr 2004 | A1 |
20040182003 | Bayle et al. | Sep 2004 | A1 |
20040200204 | Dries et al. | Oct 2004 | A1 |
20050167337 | Bunger et al. | Aug 2005 | A1 |
20050209328 | Allgcod et al. | Sep 2005 | A1 |
20060010714 | Carin et al. | Jan 2006 | A1 |
20060016723 | Tang et al. | Jan 2006 | A1 |
20060070362 | Dewitz et al. | Apr 2006 | A1 |
20060074254 | Zhang et al. | Apr 2006 | A1 |
20060101665 | Carin et al. | May 2006 | A1 |
20060112639 | Nick | Jun 2006 | A1 |
20060163053 | Ershag | Jul 2006 | A1 |
20060180060 | Crafton et al. | Aug 2006 | A1 |
20060185245 | Serio | Aug 2006 | A1 |
20060201024 | Carin et al. | Sep 2006 | A1 |
20060254081 | Carin et al. | Nov 2006 | A1 |
20060264684 | Petri et al. | Nov 2006 | A1 |
20070000809 | Tzong-bin et al. | Jan 2007 | A1 |
20070010588 | Pearson | Jan 2007 | A1 |
20070141222 | Binder et al. | Jun 2007 | A1 |
20070205139 | Kulprathipanja et al. | Sep 2007 | A1 |
20070272538 | Satchell | Nov 2007 | A1 |
20080006519 | Badger | Jan 2008 | A1 |
20080006520 | Badger | Jan 2008 | A1 |
20080029437 | Umansky et al. | Feb 2008 | A1 |
20080035526 | Hedrick et al. | Feb 2008 | A1 |
20080035528 | Marker | Feb 2008 | A1 |
20080050792 | Zmierczak et al. | Feb 2008 | A1 |
20080051619 | Kulprathipanja et al. | Feb 2008 | A1 |
20080081006 | Myers et al. | Apr 2008 | A1 |
20080086937 | Hazlebeck et al. | Apr 2008 | A1 |
20080161615 | Chapus et al. | Jul 2008 | A1 |
20080171649 | Jan et al. | Jul 2008 | A1 |
20080185112 | Argyropoulos | Aug 2008 | A1 |
20080189979 | Carin et al. | Aug 2008 | A1 |
20080193345 | Lott et al. | Aug 2008 | A1 |
20080194896 | Brown et al. | Aug 2008 | A1 |
20080199821 | Nyberg et al. | Aug 2008 | A1 |
20080230440 | Graham et al. | Sep 2008 | A1 |
20080236043 | Dinjus et al. | Oct 2008 | A1 |
20080264771 | Dam-Johansen et al. | Oct 2008 | A1 |
20080274017 | Boykin et al. | Nov 2008 | A1 |
20080274022 | Boykin et al. | Nov 2008 | A1 |
20080282606 | Plaza et al. | Nov 2008 | A1 |
20080312476 | McCall | Dec 2008 | A1 |
20080318763 | Anderson | Dec 2008 | A1 |
20090008292 | Keusenkothen et al. | Jan 2009 | A1 |
20090008296 | Sappok et al. | Jan 2009 | A1 |
20090077867 | Marker et al. | Mar 2009 | A1 |
20090077868 | Brady et al. | Mar 2009 | A1 |
20090078557 | Tokarz | Mar 2009 | A1 |
20090078611 | Marker et al. | Mar 2009 | A1 |
20090082603 | Kalnes et al. | Mar 2009 | A1 |
20090082604 | Agrawal et al. | Mar 2009 | A1 |
20090084666 | Agrawal et al. | Apr 2009 | A1 |
20090090046 | O'Connor et al. | Apr 2009 | A1 |
20090090058 | Dam-Johansen et al. | Apr 2009 | A1 |
20090113787 | Elliott et al. | May 2009 | A1 |
20090139851 | Freel | Jun 2009 | A1 |
20090165378 | Agblevor | Jul 2009 | A1 |
20090183424 | Gorbell et al. | Jul 2009 | A1 |
20090188127 | Gorbell et al. | Jul 2009 | A1 |
20090188158 | Morgan | Jul 2009 | A1 |
20090193709 | Marker et al. | Aug 2009 | A1 |
20090208402 | Rossi | Aug 2009 | A1 |
20090227823 | Huber et al. | Sep 2009 | A1 |
20090242377 | Honkola et al. | Oct 2009 | A1 |
20090253947 | Brandvold et al. | Oct 2009 | A1 |
20090253948 | McCall et al. | Oct 2009 | A1 |
20090255144 | Gorbell et al. | Oct 2009 | A1 |
20090259076 | Simmons et al. | Oct 2009 | A1 |
20090259082 | Deluga et al. | Oct 2009 | A1 |
20090274600 | Jain et al. | Nov 2009 | A1 |
20090283442 | McCall et al. | Nov 2009 | A1 |
20090287029 | Anumakonda et al. | Nov 2009 | A1 |
20090293344 | O'Brien et al. | Dec 2009 | A1 |
20090293359 | Simmons et al. | Dec 2009 | A1 |
20090294324 | Brandvold et al. | Dec 2009 | A1 |
20090301930 | Brandvold et al. | Dec 2009 | A1 |
20090308787 | O'Connor et al. | Dec 2009 | A1 |
20090318737 | Luebke | Dec 2009 | A1 |
20090321311 | Marker et al. | Dec 2009 | A1 |
20100043634 | Shulfer et al. | Feb 2010 | A1 |
20100076238 | Brandvold et al. | Mar 2010 | A1 |
20100083566 | Fredriksen et al. | Apr 2010 | A1 |
20100083576 | Bunk et al. | Apr 2010 | A1 |
20100133144 | Kokayeff et al. | Jun 2010 | A1 |
20100147743 | MacArthur et al. | Jun 2010 | A1 |
20100148122 | Breton et al. | Jun 2010 | A1 |
20100151550 | Nunez et al. | Jun 2010 | A1 |
20100158767 | Mehlberg et al. | Jun 2010 | A1 |
20100162625 | Mills | Jul 2010 | A1 |
20100163395 | Henrich et al. | Jul 2010 | A1 |
20100180805 | Cheiky | Jul 2010 | A1 |
20100222620 | O'Connor et al. | Sep 2010 | A1 |
20100251614 | Ji | Oct 2010 | A1 |
20100266464 | Sipil et al. | Oct 2010 | A1 |
20100325954 | Tiwari et al. | Dec 2010 | A1 |
20110017443 | Collins | Jan 2011 | A1 |
20110067438 | Bernasconi | Mar 2011 | A1 |
20110068585 | Dube et al. | Mar 2011 | A1 |
20110110849 | Siemons | May 2011 | A1 |
20110113675 | Fujiyama et al. | May 2011 | A1 |
20110123407 | Freel | May 2011 | A1 |
20110132737 | Jadhav | Jun 2011 | A1 |
20110139597 | Lin | Jun 2011 | A1 |
20110146135 | Brandvold | Jun 2011 | A1 |
20110146140 | Brandvold et al. | Jun 2011 | A1 |
20110146141 | Frey et al. | Jun 2011 | A1 |
20110146145 | Brandvold et al. | Jun 2011 | A1 |
20110160505 | McCall | Jun 2011 | A1 |
20110182778 | Breton et al. | Jul 2011 | A1 |
20110201854 | Kocal et al. | Aug 2011 | A1 |
20110224471 | Wormsbecher et al. | Sep 2011 | A1 |
20110239530 | Marinangeli et al. | Oct 2011 | A1 |
20110253600 | Niccum | Oct 2011 | A1 |
20110258914 | Banasiak | Oct 2011 | A1 |
20110278149 | Hornung | Nov 2011 | A1 |
20110284359 | Sechrist et al. | Nov 2011 | A1 |
20120012039 | Palmas et al. | Jan 2012 | A1 |
20120017493 | Traynor et al. | Jan 2012 | A1 |
20120022171 | Frey | Jan 2012 | A1 |
20120023809 | Koch et al. | Feb 2012 | A1 |
20120047794 | Bartek et al. | Mar 2012 | A1 |
20120073185 | Jokela | Mar 2012 | A1 |
20120137939 | Kulprathipanja | Jun 2012 | A1 |
20120160741 | Gong et al. | Jun 2012 | A1 |
20120167454 | Brandvold et al. | Jul 2012 | A1 |
20120172622 | Kocal | Jul 2012 | A1 |
20120193581 | Goetsch | Aug 2012 | A1 |
20120205289 | Joshi | Aug 2012 | A1 |
20120214114 | Kim et al. | Aug 2012 | A1 |
20120216448 | Ramirez Corredores et al. | Aug 2012 | A1 |
20120279825 | Freel et al. | Nov 2012 | A1 |
20120317871 | Frey et al. | Dec 2012 | A1 |
20130029168 | Trewella et al. | Jan 2013 | A1 |
20130062184 | Kulprathipanja et al. | Mar 2013 | A1 |
20130067803 | Kalakkunnath et al. | Mar 2013 | A1 |
20130075072 | Kulprathipanja et al. | Mar 2013 | A1 |
20130078581 | Kulprathipanja et al. | Mar 2013 | A1 |
20130105356 | Dijs et al. | May 2013 | A1 |
20130109765 | Jiang et al. | May 2013 | A1 |
20130118059 | Lange et al. | May 2013 | A1 |
20130150637 | Borremans et al. | Jun 2013 | A1 |
20130152453 | Baird et al. | Jun 2013 | A1 |
20130152454 | Baird et al. | Jun 2013 | A1 |
20130152455 | Baird et al. | Jun 2013 | A1 |
20130195727 | Bull | Aug 2013 | A1 |
20130212930 | Naae et al. | Aug 2013 | A1 |
20130267743 | Brandvold et al. | Oct 2013 | A1 |
20130327626 | Daugaard et al. | Dec 2013 | A1 |
20140001026 | Baird et al. | Jan 2014 | A1 |
20140072480 | Jones et al. | Mar 2014 | A1 |
20140140895 | Davydov et al. | May 2014 | A1 |
20140142362 | Davydov et al. | May 2014 | A1 |
20140230725 | Holler | Aug 2014 | A1 |
Number | Date | Country |
---|---|---|
8304158 | Jul 1984 | BR |
8304794 | Apr 1985 | BR |
1312497 | Jan 1993 | CA |
2091373 | Sep 1997 | CA |
2299149 | Dec 2000 | CA |
2521829 | Mar 2006 | CA |
1377938 | Nov 2002 | CN |
1730177 | Feb 2006 | CN |
101045524 | Oct 2007 | CN |
101238197 | Aug 2008 | CN |
101294085 | Oct 2008 | CN |
101318622 | Dec 2008 | CN |
101353582 | Jan 2009 | CN |
101365770 | Feb 2009 | CN |
101381611 | Mar 2009 | CN |
101544901 | Sep 2009 | CN |
101550347 | Oct 2009 | CN |
100745349 | Jun 2010 | CN |
101993712 | Mar 2011 | CN |
105980 | Jan 1986 | EP |
578503 | Jan 1994 | EP |
676023 | Jul 1998 | EP |
718392 | Sep 1999 | EP |
787946 | Jun 2000 | EP |
1420058 | May 2004 | EP |
2325281 | May 2011 | EP |
117512 | Nov 2005 | FI |
879606 | Mar 1943 | FR |
1019133 | Feb 1966 | GB |
1300966 | Dec 1972 | GB |
58150793 | Sep 1983 | JP |
1277196 | Nov 1989 | JP |
11148625 | Jun 1999 | JP |
2001131560 | May 2001 | JP |
2007229548 | Sep 2007 | JP |
9903742-6 | Jan 2004 | SE |
8101713 | Jun 1981 | WO |
9111499 | Aug 1991 | WO |
9207842 | May 1992 | WO |
9218492 | Oct 1992 | WO |
9413827 | Jun 1994 | WO |
9744410 | Nov 1997 | WO |
0109243 | Feb 2001 | WO |
0183645 | Nov 2001 | WO |
20020049735 | Jun 2002 | WO |
2006071109 | Jul 2006 | WO |
2007017005 | Feb 2007 | WO |
2007045093 | Apr 2007 | WO |
2007050030 | May 2007 | WO |
2007112570 | Oct 2007 | WO |
2007128798 | Nov 2007 | WO |
2008009643 | Jan 2008 | WO |
2008020167 | Feb 2008 | WO |
2008092557 | Aug 2008 | WO |
2009019520 | Feb 2009 | WO |
2009047387 | Apr 2009 | WO |
2009047392 | Apr 2009 | WO |
2009067350 | May 2009 | WO |
2009099684 | Aug 2009 | WO |
2009118357 | Oct 2009 | WO |
2009118363 | Oct 2009 | WO |
2009126508 | Oct 2009 | WO |
2009131757 | Oct 2009 | WO |
2010002792 | Jan 2010 | WO |
2011146262 | Nov 2011 | WO |
2012009207 | Jan 2012 | WO |
2012012260 | Jan 2012 | WO |
2012062924 | May 2012 | WO |
2012078422 | Jun 2012 | WO |
2012088546 | Jun 2012 | WO |
2012115754 | Aug 2012 | WO |
2013043485 | Mar 2013 | WO |
2013090229 | Jun 2013 | WO |
2014031965 | Feb 2014 | WO |
2014210150 | Dec 2014 | WO |
Entry |
---|
Maiti, R.N. et al.; “Gas-liquid distributors for trickle-bed reactors: A review”; Source: Industrial and Engineering Chemistry Research, v. 46, n. 19, p. 6164-6182, Sep. 12, 2007. |
“The direct contact heat transfer performance of a spray nozzle, a notched through distributor, and two inch Pall rings”; Source: AlChE 1990 Spring National Meeting (Orlando 3/18-22-90) Preprint N. 37c 36P, Mar. 18, 1990. |
AccessScience Dictionary, “ebullating-bed reactor,” http://www.accessscience.com, last visited Jul. 15, 2014. |
Adam, J. “Catalytic conversion of biomass to produce higher quality liquid bio-fuels,” PhD Thesis, Department of Energy and Process Engineering, The Norwegian University of Science and Technology, Trondheim (2005). |
Adam, J. et al. “Pyrolysis of biomass in the presence of Al-MCM-41 type catalysts,” Fuel, 84 (2005) 1494-1502. |
Adjaye, John D. et al. “Catalytic conversion of a biomass-derived oil to fuels and chemicals I: Model compound studies and reaction pathways,” Biomass & Bioenergy, 8:3 (1995) 131-149. |
Adjaye, John D. et al. “Catalytic conversion of a biomass-derived oil to fuels and chemicals II: Chemical kinetics, parameter estimation and model predictions,” Biomass & Bioenergy, 8:4 (1995) 265-277. |
Adjaye, John D. et al. “Catalytic conversion of wood derived bio-oil to fuels and chemicals,” Studies in Surface Science and Catalysis, 73 (1992) 301-308. |
Adjaye, John D. et al. “Production of hydrocarbons by the catalytic upgrading of a fast pyrolysis bio-oil,” Fuel Process Technol, 45:3 (1995) 161-183. |
Adjaye, John D. et al. “Upgrading of a wood-derived oil over various catalysts,” Biomass & Bioenergy, 7:1-6 (1994) 201-211. |
Aho, A. et al. “Catalytic pyrolysis of woody biomass in a fluidized bed reactor; Influence of zeolites structure, Science Direct,” Fuel, 87 (2008) 2493-2501. |
Antonakou, E, et al. “Evaluation of various types of Al-MCM-41 materials as catalysts in biomass pyrolysis for the production of bio-fuels and chemicals,” Fuel, 85 (2006) 2202-2212. |
Atutxa, A. et al. “Kinetic Description of the Catalytic Pyrolysis of Biomass in a Conical Spouted Bed Reactor,” Energy Fuels, 19:3 (2005) 765-774. |
Baker, E. G. et al. “Catalytic Upgrading of Biomass Pyrolysis Oils,” in Bridgwater, A. V. et al. (eds) Research in Thermochemical Biomass Conversion, Elsevier Science Publishers Ltd., Barking, England (1988) 883-895. |
Baldauf, W. et al. “Upgrading of flash pyrolysis oil and utilization in refineries,” Biomass & Bioenergy, 7 (1994) 237-244. |
Baumlin, “The continuous self stirred tank reactor: measurement of the cracking kinetics of biomass pyrolysis vapours,” Chemical Engineering Science, 60 (2005) 41-55. |
Berg, “Reactor Development for the Ultrapyrolysis Process,” The Canadian Journal of Chemical Engineering, 67 (1989) 96-101. |
Bielansky, P. et al. “Catalytic conversion of vegetable oils in a continuous FCC pilot plant,” Fuel Processing Technology, 92 (2011) 2305-2311. |
Bimbela, F. et al. “Hydrogen production by catalytic steam reforming of acetic acid, a model compound of biomass pyrolysis liquids,” J. Ana App. Pyrolysis, 79 (2007) 112-120. |
Bridgwater et al. (eds) Fast Pyrolysis of Biomass: A Handbook, Newbury Cpl Press, Great Britain (2002) 12-13. |
Bridgwater, A.V. “Principles and practices of biomass fast pyrolysis processes for liquids,” Journal of Analytical and Applied Pyrolysis, 51 (1999) 3-22. |
Bridgwater, Tony “Production of high grade fuels and chemicals from catalytic pyrolysis of biomass,” Catalysis Today, 29 (1996) 285-295. |
Bridgwater, Tony et al. “Transport fuels from biomass by thermal processing,” EU-China Workshop on Liquid Biofuels, Beijing, China (Nov. 4-5, 2004). |
Buchsbaum, A. et al. “The Challenge of the Biofuels Directive for a European Refinery,” OMW Refining and Marketing, ERTC 9th Annual Meeting, Prague, Czech Republic (Nov. 15-17, 2004). |
Carlson, T. et al. “Aromatic Production from Catalytic Fast Pyrolysis of Biomass-Derived Feedstocks,” Top Catal, 52 (2009) 241-242. |
Carlson., T. et al. “Green Gasoline by Catalytic Fast Pyrolysis of Solid Biomass Derived Compounds,” ChemSusChem, 1 (2008) 397-400. |
Cass et al. “Challenges in the Isolation of Taxanes from Taxus canadensis by Fast Pyrolysis,”J Analytical and Applied Pyrolysis 57 (2001) 275-285. |
Chantal, P. D. et al. “Production of Hydrocarbons from Aspen Poplar Pyrolytic Oils over H-ZSM5,” Applied Catalysis, 10 (1984) 317-332. |
Chen, N. Y. et al. “Fluidized Upgrading of Wood Pyrolysis Liquids and Related Compounds,” in Soltes, E. J. et al. (eds) Pyrolysis Oils from Biomass, ACS, Washington, DC (1988) 277-289. |
Chinsuwan, A. et al. “An experimental investigation of the effect of longitudinal fin orientation on heat transfer in membrane water wall tubes in a circulating ftuidized bed,” International Journal of Heat and Mass Transfer, 52:5-6 (2009) 1552-1560. |
Cornelissen, T. et al., “Flash co-pyrolysis of biomass with polylactic acid. Part 1: Influence on bio-oil yield and heating value,” Fuel 87 (2008) 1031-1041. |
Cousins, A. et al. “Development of a bench-scale high-pressure fluidized bed reactor and its sequential modification for studying diverse aspects of pyrolysis and gasification of coal and biomass,” Energy and Fuels, 22:4 (2008) 2491-2503. |
Cragg et al. “The Search for New Pharmaceutical Crops: Drug Discovery and Development at the National Cancer Institute,” in Janick. J. and Simon, J.E. (eds) New Crops, Wiley, New York (1993) 161-167. |
Czernik, S. et al. “Hydrogen from biomass-production by steam reforming of biomass pyrolysis oil,” Catalysis Today, 129 (2007) 265-168. |
Czernik, S. et al. “Hydrogren by Catalytic Steam Reforming of Liquid Byproducts from Biomass Thermoconversion Processes,” Ind. Eng. Chem. Res., 41 (2002) 4209-4215. |
Dahmen, “Rapid pyrolysis for the pretreatment of biomass and generation of bioslurry as intermediate fuel”, Chemie-lngenieur-Technik, 79:9 (2007) 1326-1327. Language: German (Abstract only; Machine translation of Abstract). |
Dandik, “Catalytic Conversion of Used Oil to Hydrocarbon Fuels in a Fractionating Pyrolysis Reactor,” Energy & Fuels, 12 (1998) 1148-1152. |
Daoust et al. “Canada Yew (Taxus canadensis Marsh.) and Taxanes: a Perfect Species for Field Production and Improvement through Genetic Selection,” Natural Resources Canada, Canadian Forest Service, Sainte-Fov, Quebec (2003). |
de Wild, P. et al. “Lignin valorisation for chemicals and (transportation) fuels via (catalytic) pyrolysis and hydrodeoxygenation,” Environ. Prog. Sustainable Energy, 28 (2009) 461-469. |
Demirbas, Ayhan “Fuel Conversional Aspects of Palm Oil and Sunflower Oil,” Energy Sources, 25 (2003) 457-466. |
Di Blasi, C. et al. “Effects of Potassium Hydroxide Impregnation of Wood Pyrolysis, American Chemical Society,” Energy & Fuels 23 (2009) 1045-1054. |
Ellioti, D. “Historical Developments in Hydroprocessing Bio-oils,” Energy & Fuels, 21 (2007) 1792-1815. |
Ensyn Technologies Inc. “Catalytic de-oxygenation of biomass-derived RTP vapors.” Prepared for ARUSIA, Agenzia Regionale Umbria per lo Sviluppe e L'Innovazione, Perugia, Italy (Mar. 1997). |
Filtration, Kirk-Othmer Encyclopedia of Chemical Technology 5th Edition. vol. 11., John Wiley & Sons, Inc., Feb. 2005. |
Gayubo, A. G. et al. “Deactivation of a HZSM-5 Zeolite Catalyst in the Transformation of the Aqueous Fraction of Biomass Pyrolysis Oil into Hydrocarbons,” Energy & Fuels, 18:6 (2004) 1640-1647. |
Gayubo, A. G. et al. “Undesired components in the transformation of biomass pyrolysis oil into hydrocarbons on an HZSM-5 zeolite catalyst,” J Chem Tech Biotech, 80 (2005) 1244-1251. |
Gevert, Börjie S. et al. “Upgrading of directly liquefied biomass to transportation fuels: catalytic cracking,” Biomass 14:3 (1987) 173-183. |
Goesele, W. et al., Filtration, Wiley-VCHVerlag GmbH & Co. KGaA, Weinheim, 10.1002/14356007.b02 10, 2005. |
Grange, P. et al. “Hydrotreatment of pyrolysis oils from biomass: reactivity of the various categories of oxygenated compounds and preliminary techno-economical study,” Catalysis Today, 29 (1996) 297-301. |
Hama, “Biodiesel-fuel production in a packed-bed reactor using lipase-producing Rhizopus oryzae cells immobilized within biomass support particles”, Biochemical Engineering Journal, 34 (2007) 273-278. |
Hoekstra, E. et al., “Fast Pyrolysis of Biomass in a Fluidized Bed Reactor: In Situ Filtering of the Vapors,” Ind. Eng. Chem. Res., 48:10 (2009) 4744-4756. |
Holton et al. “First Total Synthes s of Taxol. 2. Completion of the C and D Rings,” J Am Chem Soc, 116 (1994) 1599-1600. |
Horne, Patrick A. et al. “Catalytic coprocessing of biomass-derived pyrolysis vapours and methanol,” J. Analytical and Applied Pyrolysis, 34:1 (1995) 87-108. |
Horne, Patrick A. et al. “Premium quality fuels and chemicals from the fluidised bed pyrolysis of biomass with zeolite catalyst upgrading,” Renewable Energy, 5:5-8 (1994) 810-812. |
Horne, Patrick A. et al. “The effect of zeolite ZSM-5 catalyst deactivation during the upgrading of biomass-derived pyrolysis vapours,” J Analytical and Applied Pyrolysis, 34:1 (1995) 65-85. |
Huang et al. “New Taxanes from Taxus brevifolia,” J of Natural Products, 49 (1986) 665-669. |
Huffman, D. R. et al., Ensyn Technologies Inc., “Thermo-Catalytic Cracking of Wood to Transportation Fuels,” DSS Contract No. 38SQ.23440-4-1429, Efficiency and Alternative Energy Technology Branch, Natural Resources Canada, Ottawa, Canada (1997). |
Huffman, D. R., Ensyn Technologies Inc., “Thermo-catalytic cracking of wood to transportation fuels using the RTP process,” DSS Contract No. 38SQ.23440-4-1429, Efficiency and Alternative Energy Technology Branch, Natural Resources Canada, Ottawa, Ontario (Jan. 1997). |
Hughes, J. et al. “Structural variations in natural F. OH and Cl apatites,” American Mineralogist, 74 (1989) 870-876. |
Huie, C. W. “A review of modern sample-preparation techniques for the extraction and analysis of medicinal plants,” Anal Bioanal Chem, 373 (2002) 23-30. |
International Search Report dated Feb. 22, 2013 for corresponding International Application No. PCT/US2012/68876. |
Ioannidou, “Investigating the potential for energy, fuel, materials and chemicals production from corn residues (cobs and stalks) by non-catalytic and catalytic pyrolysis in two reactor configurations,” Renewable and Sustainable Energy Reviews, 13 (2009) 750-762. |
Iojoiu, E. et al. “Hydrogen production by sequential cracking of biomass-derived pyrolysis oil over noble metal catalysts supported on ceria-zirconia,” Applied Catalysis A: General, 323 (2007) 147-161. |
Jackson, M. et al. “Screening heterogenous catalysts for the pyrolysis of lignin,” J. Anal. Appl. Pyrolysis, 85 (2009) 226-230. |
Junming et al. “Bio-oil upgrading by means of ethyl ester production in reactive distillation to remove water and to improve storage and fuel characteristics,” Biomass and Energy, 32 (2008) 1056-1061. |
Kalnes, Tom et al. “Feedstock Diversity in the Refining Industry,” UOP Report to NREL and DOE (2004). |
Khanal, “Biohydrogen Production in Continuous-Flow Reactor Using Mixed Microbial Culture,” Water Environment Research, 78:2 (2006) 110-117. |
Khimicheskaya Entsiklopediya. Pod red. N. S. Zefirov. Moskva, Nauchnoe Izdatelstvo “Bolshaya Rossyskaya Entsiklopediya”, 1995, p. 133-137,529-530. |
Kingston et al. “New Taxanes from Taxus brevifolia,” J of Natural Products, 45 (1982) 466-470. |
Lappas, A. A. et al. “Biomass pyrolysis in a circulating fluid bed reactor for the production of fuels and chemicals,” Fuel, 81 (2002) 2087-2095. |
Lappas, A.A. et al. “Production of Transportation Fuels from Biomass,” Workshop of Chemical Process Engineering Research Institute/Center for Research and Technology Hellas, Thermi-Thessaloniki, Greece (2004). |
Lappae. A.A. “Production of biofuels via co-processing in conventional refining process,” Catalysis Today, 145 2009 55-62. |
Mancosky, “The use of a controlled cavitation reactor for bio-diesel production,” (abstract only), AlChE Spring National Meeting 2007, Houston, Texas. |
Marker, Terry L., et al. “Opportunities for Biorenewables in Petroleum Refineries,” Proceedings of the 230th ACS National Meeting, Washington, DC, Paper No. 125, Fuel Division (Aug. 31, 2005) (abstract only). |
Marker, Terry L., et al., UOP, “Opportunities for Biorenewables in Oil Refineries,” Final Technical Report, U.S. Department of Energy Award No. DE-FG36-05G015085, Report No. DOEG015085Final 2005). |
Marquevich, “Hydrogen from Biomass: Steam Reforming of Model Compounds of Fast-Pyrolysis Oil,” Energy & Fuels, 13 (1999) 1160-1166. |
Masoumifard, N. et al. “Investigation of heat transfer between a horizontal tube and gas-solid ftuidized bed,” International Journal of Heat and Fluid Flow, 29:5 (2008) 1504-1511. |
McLaughlin et al. 19-Hydroxybaccatin III, 10-Deacetylcephalo-Mannine, and 10-Deacetyltaxol: New Anti-Tumor Taxanes from Taxus wallichiana, J of Natural Products, 44 (1981) 312-319. |
McNeil “Semisynthetic Taxol Goes on Market Amid Ongoing Quest for New Versions,” J of the National Cancer Institute, 87:15 (1995) 1106-1108. |
Meier, D. et al. “State of the art of applied fast pyrolysis of lignocellulosic materials—a review,” Bioresource Technology, 68: (1999) 71-77. |
Meier, D. et al., “Pyrolysis and Hydroplysis of Biomass and Lignins—Activities at the Institute of Wood Chemistry in Hamburg, Germany,” vol. 40, No. 2, Preprints of Papers Presented at the 209th ACS National Meeting, Anaheim, CA (Apr. 2-7, 1995). |
Mercader, F. et al. “Pyrolysis oil upgrading by high pressure thermal treatment,” Fuel, 89:10 (2010) 2829-2837. |
Miller et al. “Antileukemic Alkaloids from Taxus wallichiana Zucc,” J Org Chem, 46 981 469-1474. |
Mohan, D. et al. “Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review,” Energy Fuels, 20:3 (2006) 848-849. |
Newton “Taxol: A Case Study in Natural Products Chemistry,” Lecture Notes, University of Southern Maine, http./vww.usm.maine.edu/ (2009) 1-6. |
Nicolaou et al. “Total Synthesis of Taxol,” Nature, 367 (1994) 630-634. |
Nowakowski, D. et al. “Potassium catalysis in the pyrolysis behaviour of short rotation willow coppice,” Fuels, 86 (2007) 2389-2402. |
Ohman “Bed Agglomeration Characteristics during Fluidized Bed Combustion of Biomass Fuels,” Energy & Fuels, 14 (2000) 169-178. |
Okumura, Y. et al. “Pyrolysis and gasification experiments of biomass under elevated pressure condition,” Nihon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, vol. 73, No. 7, 2007, pp. 1434-1441. |
Olazar, M. et al. “Pyrolysis of Sawdust in a Conical Spouted-Bed Reactor with a HZSM-5 Catalyst,” AlChE Journal, 46:5 (2000) 1025-1033. |
Onay “Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixed-bed reactor,” Fuel Processing Technology, 88 (2007) 523-531. |
Onay, “Production of Bio-Oil from Biomass: Slow Pyrolysis of Rapeseed (Brassica napus L.) in a Fixed-Bed Reactor,” Energy Sources, 25 (2003) 879-892. |
Ong et al. “Pressurized hot water extraction of bioactive or marker compounds in botanicals and medicinal plant materials,” J Chromatography A, 1112 (2006) 92-102. |
Ooi, Y. S. et al. “Catalytic Cracking of Used Palm Oil and Palm Oil Fatty Acids Mixture for the Production of Liquid Fuel: Kinetic Modeling.” J Am Chem Soc, 18 (2004) 1555-1561. |
Otterstedt, J. E. et al. “Catalytic Cracking of Heavy Oils,” in Occelli, Mario L. (ed) Fluid Catalytic Cracking, Chapter 17, ACS, Washington, DC (1988) 266-278. |
Padmaja, K.V. et al. “Upgrading of Candelilla biocrude to hydrocarbon fuels by fluid catalytic cracking,” Biomass and Bioenergy, 33 (2009) 1664-1669. |
Pavia et al., Intro to Org Labo Techniques (1988) 3d ed. Saunders College Publishing, Washington p. 62-66, 541-587. |
PCT/US2012/055384 International Search Report, dated Mar. 28, 2013, and International Preliminary Report on Patentability, dated Mar. 25, 2014. |
Pecora, A.A.B. et al., “Heat transfer coefficient in a shallow ftuidized bed heat exchanger with a continuous ftow of solid particles,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, 28:3 (2006) 253-258. |
Pecora, A.A.B., et al., “An analysis of process heat recovery in a gas-solid shallow fluidized bed,” Brazilian Journal of Chemical Engineering, 23:4 (2006) 497-506. |
Petrik, P.T. et al, “Heat exchange in condensation of R227 coolant on inclined tubes placed in a granular BED,” Journal of Engineering Physics and Thermophysics, 77:4 (2004) 758-761. |
Prasad Y. S. et al. “Catalytic conversion of canola oil to fuels and chemical feedstocks. Part II. Effect of co-feeding steam on the performance of HZSM-5 catalyst,” Can J Chem Eng, 64 (1986) 285-292. |
Prins, Wolter et al. “Progress in fast pyrolysis technology,” Topsoe Catalysis Forum 2010, Munkerupgaard, Denmark (Aug. 19-20, 2010). |
Radlein, D. et al. “Hydrocarbons from the Catalytic Pyrolysis of Biomass,” Energy & Fuels, 5 (1991) 760-763. |
Rao “Taxol and Related Taxanes. I. Taxanes of Taxus brevifolia Bark,” Pharm Res 10:4 (1993) 521-524. |
Rao et al. “A New Large-Scale Process for Taxol and Related Taxanes from Taxus brevifolia,” Pharm Res, 12:7 (1995) 1003-1010. |
Ravindranath, G., et al., “Heat transfer studies of bare tube bundles in gas-solid ftuidized bed”, 9th International Symposium on Fluid Control Measurement and Visualization 2007, Flucome 2007, vol. 3, 2007, pp. 1361-1369. |
Rodriguez, O.M.H. et al. “Heat recovery from hot solid particles in a shallow ftuidized bed,” Applied Thermal Engineering, 22:2 (2002) 145-160. |
Samolada, M. C. et al. “Production of a bio-gasoline by upgrading biomass flash pyrolysis liquids via hydrogen processing and catalytic cracking,” Fuel, 77:14 (1998) 1667-1674. |
Sang “Biofuel Production from Catalytic Cracking of Palm Oil,” Energy Sources, 25 (2003) 859-869. |
Scahill, J, et al. “Removal of Residual Char Fines from Pyrolysis Vapors by Hot Gas Filtration,” in Bridgwater, A. V. et al. (eds) Developments in Thermochemical Biomass Conversion, Springer Science+Business Media, Dordrecht (1997) 253-266. |
Scott, D. et al. Pretreatment of poplar wood for fast pyrolysis: rate of cation removal; Journal of Analytical and Applied Pyrolysis, 57 (2000) 169-176. |
Senilh et al. “Mise en Evidence de Nouveaux Analogues du Taxol Extraits de Taxus baccata,” J of Natural Products, 47 (1984) 131-137. (English Abstract included). |
Sharma, R. “Upgrading of pyrolytic lignin fraction of fast pyrolysis oil to hydrocarbon fuels over HZSM-5 in a dual reactor system,” Fuel Processing Technology, 35 (1993) 201-218. |
Sharma, R. K. et al. “Catalytic Upgrading of Pyrolysis Oil,” Energy & Fuels, 7 (1993) 306-314. |
Sharma, R. K. et al. “Upgrading of wood-derived bio-oil over HZSM-5,” Bioresource Technology, 35:1 (1991) 57-66. |
Smith R.M. “Extractions with superheated water,” J Chromatography A, 975 (2002) 31-46. |
Snader “Detection and Isolation,” in Suffness, M. (ed) Taxol-Science and Applications, CRC Press, Boca Raton, Florida (1995) 277-286. |
Srinivas, S.T. et al “Thermal and Catalytic Upgrading of a Biomass-Derived Oil in a Dual Reaction System,” Can. J. Chem. Eng., 78 (2009) 343-354. |
Stierle et al. “The Search for Taxol-Producing Microorganism Among the Endophytic Fungi of the Pacific Yew, Taxus brevifolia,” J of Natural Products, 58 (1995) 1315-1324. |
Stojanovic, B. et al. “Experimental investigation of thermal conductivity coefficient and heat exchange between ftuidized bed and inclined exchange surface,” Brazilian Journal of Chemical Engineering, 26:2 (2009) 343-352. |
Sukhbaatar, B. “Separation of Organic Acids and Lignin Fraction From Bio-Oil and Use of Lignin Fraction in Phenol-Formaldehyde Wood Adhesive Resin,” Master's Thesis, Mississippi State (2008). |
Twaiq, A. A. et al. “Performance of composite catalysts in palm oil cracking for the production of liquid fuels and chemicals,” Fuel Processing Technology, 85 (2004) 1283-1300. |
Twaiq, F. A. et al. “Liquid hydrocarbon fuels from palm oil by catalytic cracking over aluminosilicate mesoporous catalysts with various Si/Al ratios,” Microporous and Mesoporous Materials, 64 (2003) 95-107. |
Tyson, K. et al. “Biomass Oil Analysis: Research Needs and Recommendations,” National Renewable Energy Laboratory, Report No. NREL/TP-510-34796 (Jun. 2004). |
Valle, B. et al. “Integration of Thermal Treatment and Catalytic Transformation for Upgrading Biomass Pyrolysis Oil,” International Journal of Chemical Reactor Engineering, 5:1 (2007). |
Vasanova, L.K. “Characteristic features of heat transfer of tube bundles in a cross water-air ftow and a three-phase ftuidized bed,” Heat Transfer Research, 34:5-6 (2003) 414-420. |
Vitolo, S. et al. “Catalytic upgrading of pyrolytic oils over HZSM-5 zeolite: behaviour of the catalyst when used in repeated upgrading-regenerating cycles,” Fuel, 80 (2001) 17-26. |
Vitolo, S. et al. “Catalytic upgrading of pyrolytic oils to fuel over different zeolites,” Fuel, 78:10 (1999) 1147-1159. |
Wang, Xianhua et al., “The Influence of Microwave Drying on Biomass Pyrolysis,” Energy & Fuels 22 (2008) 67-74. |
VVesterhof, Roel J. M. et al., “Controlling the Water Content of Biomass Fast Pyrolysis Oil,” Ind. Eng. Chem. Res. 46 (2007) 9238-9247. |
Williams, Paul T. et al. “Characterisation of oils from the fluidised bed pyrolysis of biomass with zeolite catalyst upgrading,” Biomass and Bioenergy, 7:1-6 (1994) 223-236. |
Williams, Paul T. et al. “Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks,” Energy, 25:6 (2000) 493-513. |
Williams, Paul T. et al. “The influence of catalyst type on the composition of upgraded biomass pyrolysis oils,” J Analytical and Applied Pyrolysis, 31 (1995) 39-61. |
Yukimune et al. “Methyl Jasmonate-induced Overproduction of Paclitaxel and Baccatin III in Taxus Cell Suspension Cultures,” Nature Biotechnology 14 (1996) 1129-1132. |
Zhang et al. “Investigation on initial stage of rapid pyrolysis at high pressure using Taiheiyo coal in dense phase,” Fuel, 81:9 (2002) 1189-1197. |
Zhang, “Hydrodynamics of a Novel Biomass Autothermal Fast Pyrolysis Reactor: Flow Pattern and Pressure Drop,” Chern. Eng. Technol., 32:1 (2009) 27-37. |
Graham, R.G. et al. “Thermal and Catalytic Fast Pyrolysis of Lignin by Rapid Thermal Processing (RPT),” Seventh Canadian Bioenergy R&D Seminar, Skyline Hotel, Ottawa, Ontario, Canada, Apr. 24-26, 1989. |
Wisner, R. “Renewable Identification Numbers (RINs) and Government Biofuels Blending Mandates,” AgMRC Renewable Energy Newsletter (Apr. 2009), available at http://www.agmrc.org/renewable—energy/biofuelsbiorefining—general/renewable-identification-number-rins-and-government-biofuels-blending-mandates/. |
Qi et al. “Review of biomass pyrolysis oil properties and upgrading research,” Energy Conversion & Management, 48 (2007) 87-92. |
Office Action, U.S. Appl. No. 14/346,517, dated Sep. 25, 2015, available at www.uspto.gov. |
Yoo et al. “Thermo-mechanical extrusion pretreatment for conversion of soybean hulls to fermentable sugars,” Bioresource Technology, 102 (2011) 7583-7590. |
Search Report, Intellectual Property Office of Singapore, dated Jun. 4, 2015, for corresponding SG 11201403208Y. |
Written Opinion, Intellectual Property Office of Singapore, dated Jul. 31, 2015, for corresponding SG 11201403208Y. |
Supplemental European Search Report, dated Sep. 4, 2015, for corresponding EP 12858367.1. |
European Search Opinion, dated Sep. 11, 2015, for corresponding EP 12858367.1. |
Number | Date | Country | |
---|---|---|---|
20120214113 A1 | Aug 2012 | US |