Heat removal and recovery in biomass pyrolysis

Abstract
Pyrolysis methods and apparatuses that allow effective heat removal, for example when necessary to achieve a desired throughput or process a desired type of biomass, are disclosed. According to representative methods, the use of a quench medium (e.g., water), either as a primary or a secondary type of heat removal, allows greater control of process temperatures, particularly in the reheater where char, as a solid byproduct of pyrolysis, is combusted. Quench medium may be distributed to one or more locations within the reheater vessel, such as above and/or within a dense phase bed of fluidized particles of a solid heat carrier (e.g., sand) to better control heat removal.
Description
FIELD OF THE INVENTION

The present invention relates to pyrolysis methods and apparatuses in which a solid heat carrier (e.g., sand) is separated from the pyrolysis reactor effluent and cooled with a quench medium (e.g., water) to improve temperature control. Cooling with quench medium may occur in or above a fluidized bed of the heat carrier, in which solid char byproduct is combusted to provide some or all of the heat needed to drive the pyrolysis.


DESCRIPTION OF RELATED ART

Environmental concerns over fossil fuel greenhouse gas emissions have led to an increasing emphasis on renewable energy sources. Wood and other forms of biomass including agricultural and forestry residues are examples of some of the main types of renewable feedstocks being considered for the production of liquid fuels. Energy from biomass based on energy crops such as short rotation forestry, for example, can contribute significantly towards the objectives of the Kyoto Agreement in reducing greenhouse gas (GHG) emissions.


Pyrolysis is considered a promising route for obtaining liquid fuels, including transportation fuel and heating oil, from biomass feedstocks. Pyrolysis refers to thermal decomposition in the substantial absence of oxygen (or in the presence of significantly less oxygen than required for complete combustion). Initial attempts to obtain useful oils from biomass pyrolysis yielded predominantly an equilibrium product slate (i.e., the products of “slow pyrolysis”). In addition to the desired liquid product, roughly equal proportions of non-reactive solids (char and ash) and non-condensable gases were obtained as unwanted byproducts. More recently, however, significantly improved yields of primary, non-equilibrium liquids and gases (including valuable chemicals, chemical intermediates, petrochemicals, and fuels) have been obtained from carbonaceous feedstocks through fast (rapid or flash) pyrolysis at the expense of undesirable, slow pyrolysis products.


Fast pyrolysis refers generally to technologies involving rapid heat transfer to the biomass feedstock, which is maintained at a relatively high temperature for a very short time. The temperature of the primary pyrolysis products is then rapidly reduced before chemical equilibrium is achieved. The fast cooling therefore prevents the valuable reaction intermediates, formed by depolymerization and fragmentation of the biomass building blocks, namely cellulose, hemicellulose, and lignin, from degrading to non-reactive, low-value final products. A number of fast pyrolysis processes are described in U.S. Pat. No. 5,961,786; Canadian Patent Application 536, 549; and by Bridgwater, A. V., “Biomass Fast Pyrolysis,” Review paper BIBLID: 0354-9836, 8 (2004), 2, 21-49. Fast pyrolysis processes include Rapid Thermal Processing (RTP), in which an inert or catalytic solid particulate is used to carry and transfer heat to the feedstock. RTP has been commercialized and operated with very favorable yields (55-80% by weight, depending on the biomass feedstock) of raw pyrolysis oil.


Pyrolysis processes such as RTP therefore rely on rapid heat transfer from the solid heat carrier, generally in particulate form, to the pyrolysis reactor. The combustion of char, a solid byproduct of pyrolysis, represents an important source of the significant heat requirement for driving the pyrolysis reaction. Effective heat integration between, and recovery from, the pyrolysis reaction and combustion (or reheater) sections represents a significant objective in terms of improving the overall economics of pyrolysis, under the operating constraints and capacity of the equipment, for a given feedstock. As a result, there is an ongoing need in the art for pyrolysis methods with added flexibility in terms of managing the substantial heat of combustion, its transfer to the pyrolysis reaction mixture, and its recovery for use in other applications.


SUMMARY OF THE INVENTION

The present invention is associated with the discovery of pyrolysis methods and apparatuses that allow effective heat removal, for example when necessary to achieve a desired throughput. Depending on the pyrolysis feed used, the processing capacity may become constrained, not by the size of the equipment, but by the ability to remove heat from the overall system, as required to operate within design temperatures. While some heat removal schemes, such as passing the recycled heat carrier (e.g., sand) through a cooler, may be effective in certain circumstances, they may not be applicable to all pyrolysis systems in terms of meeting cost and performance objectives. The methods and apparatuses described herein, involving the use of a quench medium, represent generally less expensive alternatives for providing needed heat removal. The quench medium may be used effectively alone or in combination with other types of cooling, for example a sand cooler.


The quench medium may therefore act as either a primary or secondary type of heat removal, allowing greater control of process temperatures, and particularly in the reheater where char, as a solid byproduct of pyrolysis, is combusted. Associated with this heat removal is added operational flexibility in terms of biomass feedstock type and processing capacity, which are often constrained by a maximum operating temperature rather than equipment size. In a particular of pyrolysis operation, a quench medium is distributed to one or more locations within the reheater vessel, thereby cooling this vessel if a sand cooler is either not used (e.g., in view of cost considerations) or otherwise removes excess heat to an insufficient extent. Often, the reheater vessel is operated with a fluidized bed of particles of the solid heat carrier, through which an oxygen-containing combustion medium is passed, in order to combust the char and generate some or all of the heat required for the pyrolysis. The fluidized bed comprises a dense phase bed below a dilute phase of the particles of the solid heat carrier.


A quench medium may be sprayed, for example, on the top of a heat carrier such as sand, residing in the reheater as a fluidized particle bed. Heat is thereby removed, for example, by conversion of water, as a quench medium, to steam. The consumption of heat advantageously reduces the overall temperature of the reheater and/or allows the pyrolysis unit to operate at a target capacity. Distributors may be located in various positions to introduce the quench medium at multiple points, for example within the dense phase bed and/or in the dilute phase, above the dense phase. Dilute phase introduction of the quench medium helps prevent dense phase bed disruptions due to sudden volume expansion (e.g., of water upon being converted to steam) in the presence of a relatively high density of solid particles. Such disruptions may detrimentally lead to increased solid particle entrainment and losses. Dense phase introduction (e.g., directly into a middle section of the dense phase bed), on the other hand, provides direct cooling of the solid particles. Such cooling is effective if introduction is carried out with sufficient control, and at a quench medium flow rate, that avoids significant disruptions of the dense phase bed. In some cases, quench medium may be introduced both into, and above, the dense phase bed, and even at multiple locations within and above the bed.


Embodiments of the invention are therefore directed to pyrolysis methods comprising combining biomass and a solid heat carrier (e.g., solid particulate that has been heated in a reheater and recycled) to provide a pyrolysis reaction mixture, for example in a Rapid Thermal Processing (RTP) pyrolysis unit. The reaction mixture may, for example, be formed upon mixing the biomass and solid heat carrier at the bottom of, or below, an upflow pyrolysis reactor. The mixture is then subjected to pyrolysis conditions, including a rapid increase in the temperature of the biomass to a pyrolysis temperature and a relatively short residence time at this temperature, to provide a pyrolysis effluent. The appropriate conditions are normally achieved using an oxygen-depleted (or oxygen-free) transport gas that lifts the pyrolysis reaction mixture through an upflow pyrolysis reactor. Following pyrolysis, the pyrolysis effluent is separated (e.g., using a cyclone separator) into (1) a solids-enriched fraction comprising both solid char and a recycled portion of the solid heat carrier and (2) a solids-depleted fraction comprising pyrolysis products. Pyrolysis products include, following cooling, (1) liquid pyrolysis products that are condensed, such as raw pyrolysis oil and valuable chemicals, as well as (2) non-condensable gases such as H2, CO, CO2, methane, and ethane. The solids-enriched fraction is then contacted with an oxygen-containing combustion medium (e.g., air or nitrogen-enriched air) to combust at least a portion of the solid char and reheat the recycled portion of the heat carrier, which in turn transfers heat to the pyrolysis reaction mixture. As discussed above, the solids-enriched fraction is also contacted, for example in a reheater containing a fluidized bed of the heat carrier, with a quench medium to reduce or limit the temperature in the reheater or otherwise the temperature of the recycled portion of the solid heat carrier.


Further embodiments of the invention are directed to apparatuses for pyrolysis of a biomass feedstock. Representative apparatuses comprise an upflow, entrained bed pyrolysis reactor that may include, for example, a tubular reaction zone. The apparatuses also comprise a cyclone separator having (1) an inlet in communication with an upper section (e.g., a pyrolysis effluent outlet) of the reactor (2) a solids-enriched fraction outlet in communication with a reheater, and (3) a solids-depleted fraction outlet in communication with a pyrolysis product condensation section. The apparatuses further comprise a quench liquid distribution system in communication with the reheater, for the introduction of quench medium and consequently the removal of heat from within this vessel.


Yet further embodiments of the invention are directed to a reheater for combusting solid char that is separated from a pyrolysis effluent. Combustion occurs in the presence of a solid heat carrier that is recycled to the pyrolysis reactor. The reheater comprises one or more points of quench medium introduction. In the case of multiple points of introduction, these will generally be positioned at different axial lengths along the reheater. Points of introduction may also include distributors of the quench medium, as well as control systems for regulating the flow of the quench medium, for example, in response to a measured temperature either in the dense phase bed or dilute phase of the solid heat carrier.


These and other embodiments and aspects relating to the present invention are apparent from the following Detailed Description.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts a representative pyrolysis process including a reactor and reheater.



FIG. 2 is a close-up view of quench medium entering a reheater both within a dense phase bed of solid heat carrier, as well as in a dilute phase above the dense phase bed.





The features referred to in FIGS. 1 and 2 are not necessarily drawn to scale and should be understood to present an illustration of the invention and/or principles involved. Some features depicted have been enlarged or distorted relative to others, in order to facilitate explanation and understanding. Pyrolysis methods and apparatuses, as described herein, will have configurations, components, and operating parameters determined, in part, by the intended application and also the environment in which they are used.


DETAILED DESCRIPTION

According to representative embodiments of the invention, the biomass subjected to pyrolysis in an oxygen depleted environment, for example using Rapid Thermal Processing (RTP), can be any plant material, or mixture of plant materials, including a hardwood (e.g., whitewood), a softwood, or a hardwood or softwood hark. Energy crops, or otherwise agricultural residues (e.g., logging residues) or other types of plant wastes or plant-derived wastes, may also be used as plant materials. Specific exemplary plant materials include corn fiber, corn stover, and sugar cane bagasse, in addition to “on-purpose” energy crops such as switchgrass, miscanthus, and algae. Short rotation forestry products, as energy crops, include alder, ash, southern beech, birch, eucalyptus, poplar, willow, paper mulberry, Australian blackwood, sycamore, and varieties of paulownia elongate. Other examples of suitable biomass include organic waste materials, such as waste paper and construction, demolition, and municipal wastes.


A representative pyrolysis method is illustrated in FIG. 1. According to this embodiment, biomass 10 is combined with solid heat carrier 12, which has been heated in reheater 100 and recycled. Biomass 10 is generally subjected to one or more pretreatment steps (not shown), including particle size adjustment and drying, prior to being combined with solid heat carrier 12. Representative average particle sizes for biomass 10 are typically from about 1 mm to about 10 mm. Upon being combined with solid heat carrier 12, biomass 10 becomes rapidly heated, for example in a mixing zone 14 located at or near a lower section (e.g., the bottom) of pyrolysis reactor 200 that contains an elongated (e.g., tubular) reaction zone 16. The relative quantity of solid heat carrier 12 may be adjusted as needed to achieve a desired rate of temperature increase of biomass 10. For example, weight ratios of the solid carrier 12 to biomass 10 from about 10:1 to about 500:1 are normally used to achieve a temperature increase of 1000° C./sec (1800° F./sec) or more.


The combination of biomass 10 and solid heat carrier 2 therefore forms a hot pyrolysis reaction mixture, having a temperature generally from about 300° C. (572° F.) to about 1100° C. (2012° F.), and often from about 400° C. (752° F.) to about 700° C. (1292° F.). The temperature of the pyrolysis reaction mixture is maintained over its relatively short duration in reaction zone 16, prior to the pyrolysis effluent 24 being separated. A typical pyrolysis reactor operates with the flow of the pyrolysis reaction mixture in the upward direction (e.g., in an upflow, entrained bed pyrolysis reactor), through reaction zone 16, such that pyrolysis conditions are maintained in this zone for the conversion of biomass 10. Upward flow is achieved using transport gas 13 containing little or no oxygen, for example containing some or all of non-condensable gases 18 obtained after condensing liquid pyrolysis product(s) 20 from a solids-depleted fraction 22, comprising a mixture of gaseous and liquid pyrolysis products. These non-condensable gases 18 normally contain H2, CO, CO2, methane, and/or ethane. Some oxygen may enter the pyrolysis reaction mixture, however, from reheater 100, where char is combusted in the presence of oxygen-containing combustion medium 28, as discussed in greater detail below.


Transport gas 13 is therefore fed to pyrolysis reactor 200 at a flow rate sufficient to attain a gas superficial velocity through mixing zone 14 and reaction zone 16 that entrains the majority, and usually substantially all, solid components of the pyrolysis reaction mixture. Representative gas superficial velocities are greater than 1 meter per second, and often greater than 2 meters per second. The transport gas 13 is shown in FIG. 1 entering a lower section of mixing zone 14 of reactor 200. The superficial velocity of this gas in reaction zone 16 is also sufficient to obtain a short residence time of the pyrolysis reaction mixture in this zone, typically less than about 2 seconds. As discussed above, rapid heating and a short duration at the reaction temperature prevent formation of the less desirable equilibrium products in favor of the more desirable non-equilibrium products. Solid heat carriers, suitable for transferring substantial quantities of heat for rapid heating of biomass 10 include inorganic particulate materials having an average particle size typically from about 25 microns to about 1 mm. Representative solid heat carriers are therefore inorganic refractory metal oxides such as alumina, silica, and mixtures thereof. Sand is a preferred solid heat carrier.


The pyrolysis reaction mixture is subjected to pyrolysis conditions, including a temperature, and a residence time at which the temperature is maintained, as discussed above. Pyrolysis effluent 24 comprising the solid pyrolysis byproduct char, the solid heat carrier, and the pyrolysis products, is removed from an upper section of pyrolysis reactor 200, such as the top of reaction zone 16 (e.g., a tubular reaction zone) of this reactor 200. Pyrolysis products, comprising both non-condensable and condensable components of pyrolysis effluent 24, may be recovered after separation of solids, including char and heat carrier. Cooling, to promote condensation, and possibly further separation steps are used to provide one or more liquid pyrolysis product(s). A particular liquid pyrolysis product of interest is raw pyrolysis oil, which generally contains 30-35% by weight of oxygen in the form of organic oxygenates such as hydroxyaldehydes, hydroxyketones, sugars, carboxylic acids, and phenolic oligomers as well as dissolved water. For this reason, although a pourable and transportable liquid fuel, the raw pyrolysis oil has only about 55-60% of the energy content of crude oil-based fuel oils. Representative values of the energy content are in the range from about 19.0 MJ/liter (69,800 BTU/gal) to about 25.0 MJ/liter (91,800 BTU/gal). Moreover, this raw product is often corrosive and exhibits chemical instability due to the presence of highly unsaturated compounds such as olefins (including diolefins) and alkenylaromatics.


Hydroprocessing of this pyrolysis oil is therefore beneficial in terms of reducing its oxygen content and increasing its stability, thereby rendering the hydroprocessed product more suitable for blending in fuels, such as gasoline, meeting all applicable specifications. Hydroprocessing involves contacting the pyrolysis oil with hydrogen and in the presence of a suitable catalyst, generally under conditions sufficient to convert a large proportion of the organic oxygen in the raw pyrolysis oil to CO, CO2 and water that are easily removed. The term “pyrolysis oil,” as it applies to a feedstock to the hydroprocessing step, refers to the raw pyrolysis oil obtained directly from pyrolysis (e.g., RTP) or otherwise refers to this raw pyrolysis oil after having undergone pretreatment such as filtration to remove solids and/or ion exchange to remove soluble metals, prior to the hydroprocessing step.


As illustrated in the embodiment of FIG. 1, pyrolysis effluent 24, exiting the upper section of pyrolysis reactor 200, is separated using cyclone 300 into solids-enriched and solids-depleted fractions 26, 22. These fractions are enriched and depleted, respectively, in their solids content, for example measured in weight percent, relative to pyrolysis effluent 24. Solids-enriched fraction 26 comprises a substantial proportion (e.g., greater than about 90% by weight) of the solid char and solid heat carrier contained in pyrolysis effluent 24. In addition to char, solids-enriched fraction also generally contains other low value byproducts of pyrolysis, such as coke and heavy tars. According to alternative embodiments, multiple stages of solids separation (e.g., using two or more cyclones) may be used to improve separation efficiency, thereby generating multiple solids-enriched fractions, some or all of which enter reheater 100. In any event, the portion of solid heat carrier contained in pyrolysis effluent and entering reheater 100, whether in one or more solids-enriched fractions, is namely a recycled portion. This recycled portion, in addition to the solid char exiting cyclone 300 and possibly other solids separators, enter reheater 100 used to combust the char and reheat the solid heat carrier for further use in transferring heat to biomass 10.


Solids-depleted fraction 22 may be cooled, for example using cooler 400 to condense liquid pyrolysis products such as raw pyrolysis oil and optionally, following additional separation/purification steps, valuable chemicals including carboxylic acids, phenolics, and ketones. As illustrated in FIG. 1, cooled pyrolysis product 42 is passed to separator 500 which may be a single-stage flash separator to separate non-condensable gases 18 from liquid pyrolysis product(s) 20. Otherwise, multiple stages of vapor-liquid equilibrium contacting may be achieved using suitable contacting devices such as contacting trays or solid packing materials.


Rapid cooling of solids-depleted fraction 22 is generally desired to limit the extent of pyrolysis reactions occurring beyond the relatively short residence time in reaction zone 16. Cooling may be achieved using direct or indirect heat exchange, or both types of heat exchange in combination. An example of a combination of heat exchange types involves the use of a quench tower in which a condensed liquid pyrolysis product is cooled indirectly, recycled to the top of the tower, and contacted counter-currently with the hot, rising vapor of solids-depleted fraction 22. As discussed above, solids-depleted fraction 22 comprises gaseous and liquid pyrolysis products, including raw pyrolysis oil that is recovered in downstream processing. Accordingly, cyclone 300 has (i) an inlet in communication with an upper section of pyrolysis reactor 200, in addition to (ii) a solids-enriched fraction outlet in communication with reheater 100 and (iii) a solids-depleted fraction outlet in communication with a pyrolysis product condensation section. Namely, the cyclone inlet may correspond to the conduit for pyrolysis effluent 24, the solids-enriched fraction outlet may correspond to the conduit for solids-enriched fraction 26, and the solids-depleted fraction outlet may correspond to the conduit for solids-depleted fraction 22. A representative pyrolysis product condensation section may correspond to cooler 400 and separator 500.


As illustrated in the representative embodiment of FIG. 1, solids-enriched fraction 26 exiting cyclone 300 (possibly in combination with one or more additional solids-enriched fractions) is contacted with an oxygen-containing combustion medium 28 in reheater 100 to combust at least a portion of the solid char entering this vessel with solids-enriched fraction 26. A representative oxygen-containing combustion medium is air. Nitrogen-enriched air may be used to limit the adiabatic temperature rise of the combustion, if desired. The combustion heat effectively reheats the recycled portion of the solid carrier. The heated solid carrier is, in turn, used for the continuous transfer of heat to the pyrolysis reaction mixture, in order to drive the pyrolysis reaction. As discussed above, reheater 100 generally operates as a fluidized bed of solid particles, with the oxygen-containing combustion medium serving as a fluidization medium, in a manner similar in operation to a catalyst regenerator of a fluid catalytic cracking (FCC) process, used in crude oil refining. Combustion generates flue gas 32 exiting reheater 100, and, according to some embodiments, flue gas 32 may be passed to a solids separator such as cyclone 300 to remove entrained solids. The fluidized bed comprises dense phase bed 30 (e.g., a bubbless, bubbling, slugging, turbulent, or fast fluidized bed) of the solid heat carrier in a lower section of reheater 100, below a dilute phase 40 of these particles, in an upper section of reheater 100. One or more cyclones may also be internal to reheater 100, for performing the desired separation of entrained solid particles and return to dense phase bed 30.


Aspects of the invention relate to the use of a quench medium for improving the overall management of heat in pyrolysis systems. For example, heat removal from the solid carrier, and heat transfer to the quench medium, may be achieved by direct heat exchange between the quench medium and the solid carrier. Advantageously, the temperature of the recycled portion of the solid heat carrier, which is passed to reheater 100 as described above, is limited (e.g., to a maximum design temperature) by direct contact between this solid heat carrier and quench medium 44 in reheater 100. In some cases, this limitation of the combustion temperature can allow an increase in the operating capacity of the overall pyrolysis system. A preferred quench medium is water or an aqueous solution having a pH that may be suited to the construction material of the reheater or otherwise may have the capability to neutralize rising combustion gases. In some cases, for example, the use of dilute caustic solution, having in pH in the range from about 8 to about 12, can effectively neutralize acidic components present in the combustion gases. Preferably, quench medium 44 is introduced to reheater 100 through distributor 46.



FIG. 2 illustrates, in greater detail, a particular embodiment of contacting the quench medium with the solids-enriched fraction recovered from the pyrolysis effluent. According to this embodiment, a quench liquid distribution and control system is in communication with the reheater. In particular, FIG. 2 shows portions of quench medium 44a, 44b being introduced to reheater 100 at two separate points (to which conduits for quench medium portions 44a, 44b lead) along its axial length. In general, therefore, the quench medium may be introduced at one or more positions along the axial length of the reheater and/or at one or more radial positions at a given axial length. Also, the quench medium may be introduced through one or more distributors at the one or more positions of introduction. According to the embodiment depicted in FIG. 2, a portion of quench medium 44b is introduced to reheater 100 above dense phase bed 30 of solid particulate comprising a recycled portion of the solid heat carrier, as described above. This portion of the quench medium is directed downwardly toward the surface of dense phase bed 30, but disruption of the bed is relatively minor, as vaporization of the quench medium occurs primarily in dilute phase 40. Also shown in FIG. 2 is another portion of quench medium 44a, introduced within dense phase bed 30 of the solid heat carrier, through distributor 46. Disruption of dense phase bed 30 is increased, but direct heat transfer is also increased, relative to the case of introduction of the portion of quench medium 44b into dilute phase 40. Introduction of quench medium into both dense phase bed 30 and dilute phase 40, for example at differing rates and/or at differing times, therefore allows alternative types of control (e.g., coarse control and fine control, respectively) of heat removal. According to further embodiments the methods described herein may further comprise flowing at least a portion of the solid heat carrier through a heat exchanger (not shown) such as a sand cooler, thereby adding another type of heat removal control.


According to the quench liquid distribution and control system depicted in the particular embodiment of FIG. 2, flows of portions of the quench medium 44a, 44b, introduced within and above dense phase bed 30, are controlled in response to temperatures measured within and above dense phase bed 30, respectively. Therefore, temperature elements TE in dense phase bed 30 and dilute phase 40, communicate through temperature transmitters TT and temperature indicator controllers TIC to temperature control valves TV. These valves, in response to the measured temperatures, adjust their variable percentage openings, as needed to provide sufficient flows of portions of quench medium 44a, 44b, in order to control the temperatures measured at temperature elements TE. Therefore, in response to a measured temperature in reheater 100 that is beyond a set point temperature, for example, due to an increase in flow rate, or a change in type, of biomass 10, the appropriate TIC(s) send signal(s) to the corresponding temperature control valve(s), which respond by increasing quench medium flow rate to reheater 100, optionally through one or more distributors 46. Accordingly, the quench liquid distribution and control systems described herein can effectively provide the greater operational flexibility needed in pyrolysis operations, in which increased capacity and/or the processing of variable biomass types is desired. A particular quench liquid distribution and control system is therefore represented by the combination of TE, TT, TIC, and TV, controlling the quench medium introduction at a given point.


Overall, aspects of the invention are directed to pyrolysis methods with improved heat control, and especially reheaters for combusting solid char, separated from a pyrolysis effluent, in the presence of a solid heat carrier that is recycled to the pyrolysis reactor to transfer heat and drive the pyrolysis. Advantageously, the reheater comprises one or more points of quench medium introduction along its axial length, optionally together with quench medium distributors and control systems as described above. Those having skill in the art, with the knowledge gained from the present disclosure, will recognize that various changes could be made in these pyrolysis methods without departing from the scope of the present invention. Mechanisms used to explain theoretical or observed phenomena or results, shall be interpreted as illustrative only and not limiting in any way the scope of the appended claims.

Claims
  • 1. An apparatus for pyrolysis of a biomass feedstock, comprising: i) a pyrolysis reactor;ii) a solid-gas cyclone separator in fluid communication with the pyrolysis reactor;iii) a reheater having a lower section and an upper section, the lower section configured to contain a dense phase bed of heat carrier particles, the upper section configured to contain a dilute phase of heat carrier particles, said reheater in fluid communication with the cyclone separator;iv) a quench liquid distribution system, comprising: a) a first quench liquid distributor in the lower section, the first quench liquid distributor positioned to be disposed within the dense phase bed; andb) a second quench liquid distributor in the upper section; andv) a reheater temperature control system that providesi) coarse control of heat removal from the reheater by adjusting a flow rate of a first quench stream through the first quench liquid distributor; andii) fine control of heat removal from the reheater by adjusting a flow rate of a second quench stream through the second quench liquid distributor.
  • 2. The apparatus of claim 1, wherein the reheater temperature control system is further configured to limit entrainment and loss of solids present in the dense phase bed.
  • 3. The apparatus of claim 2, wherein the reheater temperature control system is configured to adjust the flow rate of the first quench stream and/or the flow rate of the second quench stream in response to a temperature measurement made in the lower section.
  • 4. The apparatus of claim 3, wherein the reheater temperature control system is further configured to adjust the flow rate of the first quench stream and/or the flow rate of the second quench stream in response to a temperature measurement made in the upper section.
  • 5. The apparatus of claim 4, wherein the reheater temperature control system comprises a plurality of temperature sensors, at least a first temperature sensor of the plurality of temperature sensors positioned in the lower section and at least a second temperature sensor of the plurality of temperature sensors positioned in the upper section.
  • 6. The apparatus of claim 1, wherein the reheater temperature control system is configured to adjust the flow rate of the first quench stream and/or the flow rate of the second quench stream in response to a temperature measurement made in the upper section.
  • 7. The apparatus of claim 1, further comprising at least a third quench liquid distributor.
  • 8. The apparatus of claim 1, further comprising a reheater inlet port that is in fluid communication with the cyclone separator.
  • 9. The apparatus of claim 8, wherein the reheater inlet port is positioned in the lower section.
  • 10. The apparatus of claim 1, wherein the pyrolysis reactor is an entrained upflow reactor.
  • 11. The apparatus of claim 10, further comprising an inlet to the cyclone separator that is in fluid communication with an upper portion of the pyrolysis reactor.
  • 12. The apparatus of claim 1, further comprising: a pyrolysis product condensation section, comprising a cooler and a gas liquid separator, in fluid communication with the cyclone separator.
  • 13. The apparatus of claim 12, wherein the pyrolysis product condensation section is in fluid communication with a solids-depleted fraction outlet of the cyclone separator.
  • 14. The apparatus of claim 1, wherein the dense phase bed is fluidized.
  • 15. The apparatus of claim 1, wherein the reheater temperature control system comprises at least one temperature sensor, at least one temperature transmitter, at least one temperature controller and at least one control valve.
  • 16. The apparatus of claim 15, wherein the reheater temperature control system comprises at least two temperature sensors.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 13/031,701, filed Feb. 22, 2011, which is incorporated herein by reference in its entirety.

US Referenced Citations (430)
Number Name Date Kind
1252072 Abbot Jan 1918 A
2205757 Wheat Jun 1940 A
2318555 Ruthruff May 1943 A
2326525 Diwoky Aug 1943 A
2328202 Doerner Aug 1943 A
2380098 Doerner Jul 1945 A
2492948 Berger Jan 1950 A
2566353 Mills Sep 1951 A
2696979 Berge Dec 1954 A
2884303 William Apr 1959 A
3130007 Breck Apr 1964 A
3309356 Esterer Mar 1967 A
3313726 Campbell et al. Apr 1967 A
3444048 Schmeling et al. May 1969 A
3445549 Hakulin May 1969 A
3467502 Davis Sep 1969 A
3589313 Smith et al. Jun 1971 A
3617037 Foch Nov 1971 A
3694346 Blaser et al. Sep 1972 A
3696022 Hutchings Oct 1972 A
3760870 Guetlhuber Sep 1973 A
3776533 Vlnaty Dec 1973 A
3814176 Seth Jun 1974 A
3853498 Bailie Dec 1974 A
3876533 Myers Apr 1975 A
3890111 Knudsen Jun 1975 A
3907661 Gwyn et al. Sep 1975 A
3925024 Hollingsworth et al. Dec 1975 A
3927996 Knudsen et al. Dec 1975 A
3959420 Geddes et al. May 1976 A
4003829 Burger et al. Jan 1977 A
4021193 Waters May 1977 A
4032305 Squires Jun 1977 A
4039290 Inada et al. Aug 1977 A
4052265 Kemp Oct 1977 A
4064018 Choi Dec 1977 A
4064043 Kollman Dec 1977 A
4085030 Green et al. Apr 1978 A
4101414 Kim et al. Jul 1978 A
4102773 Green et al. Jul 1978 A
4103902 Steiner et al. Aug 1978 A
4138020 Steiner et al. Feb 1979 A
4145274 Green et al. Mar 1979 A
4153514 Garrett et al. May 1979 A
4157245 Mitchell et al. Jun 1979 A
4159682 Fitch Jul 1979 A
4165717 Reh et al. Aug 1979 A
4204915 Kurata et al. May 1980 A
4210492 Roberts Jul 1980 A
4219537 Steiner Aug 1980 A
4225415 Mirza et al. Sep 1980 A
4233119 Meyers et al. Nov 1980 A
4245693 Cheng Jan 1981 A
4258005 Ito et al. Mar 1981 A
4272402 Mayes Jun 1981 A
4279207 Wormser Jul 1981 A
4280879 Taciuk Jul 1981 A
4284616 Solbakken et al. Aug 1981 A
4298453 Schoennagel et al. Nov 1981 A
4300009 Haag et al. Nov 1981 A
4301771 Jukkola et al. Nov 1981 A
4306619 Trojani Dec 1981 A
4308411 Frankiewicz Dec 1981 A
4311670 Nieminen et al. Jan 1982 A
4312702 Tomlinson, II Jan 1982 A
4317703 Bowen et al. Mar 1982 A
4321096 Dobbin Mar 1982 A
4324637 Durai-Swamy Apr 1982 A
4324641 Durai-Swamy Apr 1982 A
4324642 Durai-Swamy Apr 1982 A
4324644 Durai-Swamy Apr 1982 A
4325327 Kantesaria et al. Apr 1982 A
4334893 Lang Jun 1982 A
4336128 Tamm Jun 1982 A
4341598 Green Jul 1982 A
4344770 Capener et al. Aug 1982 A
4364796 Ishii et al. Dec 1982 A
4373994 Lee Feb 1983 A
4415434 Hargreaves et al. Nov 1983 A
4422927 Kowalczyk Dec 1983 A
4434726 Jones Mar 1984 A
4443229 Sageman et al. Apr 1984 A
4456504 Spars et al. Jun 1984 A
4470254 Chen et al. Sep 1984 A
4482451 Kemp Nov 1984 A
4495056 Venardos et al. Jan 1985 A
4504379 Stuntz et al. Mar 1985 A
4524752 Beresford Jun 1985 A
4537571 Buxel et al. Aug 1985 A
4548615 Longchamb et al. Oct 1985 A
4552203 Chrysostome et al. Nov 1985 A
4574743 Claus Mar 1986 A
4584064 Ciais et al. Apr 1986 A
4584947 Chittick Apr 1986 A
4595567 Hedrick Jun 1986 A
4597771 Cheng Jul 1986 A
4615870 Armstrong et al. Oct 1986 A
4617693 Meyer et al. Oct 1986 A
4645568 Kurps et al. Feb 1987 A
4668243 Schulz May 1987 A
4678860 Kuester Jul 1987 A
4684375 Morin et al. Aug 1987 A
4710357 Cetinkaya et al. Dec 1987 A
4714109 Tsao Dec 1987 A
4732091 Gould Mar 1988 A
4796546 Herstad et al. Jan 1989 A
4823712 Wormer Apr 1989 A
4828581 Feldmann et al. May 1989 A
4849091 Cabrera et al. Jul 1989 A
4880473 Scott et al. Nov 1989 A
4881592 Cetinkaya Nov 1989 A
4891459 Knight et al. Jan 1990 A
4897178 Best et al. Jan 1990 A
4931171 Piotter Jun 1990 A
4940007 Hiltunen et al. Jul 1990 A
4942269 Chum et al. Jul 1990 A
4968325 Black et al. Nov 1990 A
4983278 Cha et al. Jan 1991 A
4987178 Shibata et al. Jan 1991 A
4988430 Sechrist et al. Jan 1991 A
4992605 Craig et al. Feb 1991 A
5009770 Miller et al. Apr 1991 A
5011592 Owen et al. Apr 1991 A
5016435 Brannstrom May 1991 A
5018458 Mcintyre et al. May 1991 A
5041209 Cha et al. Aug 1991 A
5059404 Mansour et al. Oct 1991 A
5066627 Owen et al. Nov 1991 A
5077252 Owen et al. Dec 1991 A
5093085 Engstrom et al. Mar 1992 A
5136117 Paisley et al. Aug 1992 A
5151392 Fettis et al. Sep 1992 A
5212129 Lomas May 1993 A
5225044 Breu Jul 1993 A
5227566 Cottrell et al. Jul 1993 A
5236688 Watanabe et al. Aug 1993 A
5239946 Garcia-Mallol Aug 1993 A
5243922 Rehmat et al. Sep 1993 A
5281727 Carver et al. Jan 1994 A
5306481 Mansour et al. Apr 1994 A
5326919 Paisley et al. Jul 1994 A
5343939 Cetinkaya Sep 1994 A
5365889 Tang Nov 1994 A
5371212 Moens Dec 1994 A
5376340 Bayer et al. Dec 1994 A
5380916 Rao Jan 1995 A
5395455 Scott et al. Mar 1995 A
5402548 Adair et al. Apr 1995 A
5407674 Gabetta et al. Apr 1995 A
5423891 Taylor Jun 1995 A
5426807 Grimsley et al. Jun 1995 A
5478736 Nair Dec 1995 A
5494653 Paisley Feb 1996 A
5520722 Hershkowitz et al. May 1996 A
5536488 Mansour et al. Jul 1996 A
5554347 Busson et al. Sep 1996 A
5578092 Collin Nov 1996 A
5584985 Lomas Dec 1996 A
5605551 Scott et al. Feb 1997 A
5637192 Mansour et al. Jul 1997 A
5654448 Pandey et al. Aug 1997 A
5662050 Angelo, II et al. Sep 1997 A
5686049 Bonifay et al. Nov 1997 A
5703299 Carleton et al. Dec 1997 A
5713977 Kobayashi Feb 1998 A
5725738 Brioni et al. Mar 1998 A
5728271 Piskorz et al. Mar 1998 A
5744333 Cociancich et al. Apr 1998 A
5788784 Koppenhoefer et al. Aug 1998 A
5792340 Freel et al. Aug 1998 A
5853548 Piskorz et al. Dec 1998 A
5879079 Hohmann et al. Mar 1999 A
5879642 Trimble et al. Mar 1999 A
5879650 Kaul et al. Mar 1999 A
5904838 Kalnes et al. May 1999 A
5915311 Muller et al. Jun 1999 A
5961786 Freel et al. Oct 1999 A
5969165 Liu Oct 1999 A
6002025 Page et al. Dec 1999 A
6011187 Horizoe et al. Jan 2000 A
6033555 Chen et al. Mar 2000 A
6106702 Sohn et al. Aug 2000 A
6113862 Jorgensen et al. Sep 2000 A
6123833 Sechrist et al. Sep 2000 A
6133499 Horizoe et al. Oct 2000 A
6149765 Mansour et al. Nov 2000 A
6190542 Comolli et al. Feb 2001 B1
6193837 Agblevor et al. Feb 2001 B1
6237541 Alliston et al. May 2001 B1
6286443 Fujinami et al. Sep 2001 B1
6339182 Munson et al. Jan 2002 B1
6497199 Yamada et al. Jan 2002 B2
6390185 Proeschel May 2002 B1
6398921 Moraski Jun 2002 B1
6452024 Bui-Khac et al. Sep 2002 B1
6455015 Kilroy Sep 2002 B1
6485841 Freel et al. Nov 2002 B1
6547957 Sudhakar et al. Apr 2003 B1
6555649 Giroux et al. Apr 2003 B2
6656342 Smith et al. Dec 2003 B2
6660157 Que et al. Dec 2003 B2
6676828 Galiasso et al. Jan 2004 B1
6680031 Bisgrove Jan 2004 B2
6680137 Paisley et al. Jan 2004 B2
6743746 Prilutsky et al. Jun 2004 B1
6759562 Gartside et al. Jul 2004 B2
6768036 Lattner et al. Jul 2004 B2
6776607 Nahas et al. Aug 2004 B2
6808390 Fung Oct 2004 B1
6814940 Hiltunen et al. Nov 2004 B1
6844420 Freel et al. Jan 2005 B1
6875341 Bunger et al. Apr 2005 B1
6960325 Kao et al. Nov 2005 B2
6962676 Hyppaenen Nov 2005 B1
6988453 Cole et al. Jan 2006 B2
7004999 Johnson et al. Feb 2006 B2
7022741 Jiang et al. Apr 2006 B2
7026262 Palmas et al. Apr 2006 B1
7202389 Brem Apr 2007 B1
7214252 Krumm et al. May 2007 B1
7226954 Tavasoli et al. Jun 2007 B2
7240639 Hyppaenen et al. Jul 2007 B2
7247233 Hedrick et al. Jul 2007 B1
7262331 van de Beld et al. Aug 2007 B2
7263934 Copeland et al. Sep 2007 B2
7285186 Tokarz Oct 2007 B2
7319168 Sanada Jan 2008 B2
7473349 Keckler et al. Jan 2009 B2
7476774 Umansky et al. Jan 2009 B2
7479217 Pinault et al. Jan 2009 B2
7491317 Meier et al. Feb 2009 B2
7563345 Tokarz Jul 2009 B2
7572362 Freel Aug 2009 B2
7572365 Freel et al. Aug 2009 B2
7578927 Marker et al. Aug 2009 B2
7625432 Gouman et al. Dec 2009 B2
7811340 Bayle et al. Oct 2010 B2
7897124 Gunnerman et al. Mar 2011 B2
7905990 Freel Mar 2011 B2
7943014 Berruti et al. May 2011 B2
7956224 Elliott et al. Jun 2011 B2
7960598 Spilker et al. Jun 2011 B2
7982075 Marker et al. Jul 2011 B2
7998315 Bridgwater et al. Aug 2011 B2
7998455 Abbas et al. Aug 2011 B2
7999142 Kalnes et al. Aug 2011 B2
7999143 Marker et al. Aug 2011 B2
8043391 Dinjus et al. Oct 2011 B2
8057641 Bartek et al. Nov 2011 B2
8097090 Freel et al. Jan 2012 B2
8097216 Beech et al. Jan 2012 B2
8147766 Spilker et al. Apr 2012 B2
8153850 Hall et al. Apr 2012 B2
8202332 Agblevor Jun 2012 B2
8207385 O'Connor et al. Jun 2012 B2
8217211 Agrawal et al. Jul 2012 B2
8277643 Huber et al. Oct 2012 B2
8288600 Bartek et al. Oct 2012 B2
8304592 Luebke Nov 2012 B2
8314275 Brandvold Nov 2012 B2
8329967 Brandvold et al. Dec 2012 B2
8404910 Kocal et al. Mar 2013 B2
8499702 Palmas et al. Aug 2013 B2
8519203 Mahnangeli et al. Aug 2013 B2
8519205 Frey et al. Aug 2013 B2
8524087 Frey et al. Sep 2013 B2
8575408 Marker et al. Nov 2013 B2
8715490 Brandvold et al. May 2014 B2
8726443 Freel et al. May 2014 B2
8961743 Freel Feb 2015 B2
9044727 Kulprathipanja et al. Jun 2015 B2
9441887 Kulprathipanja Sep 2016 B2
20020014033 Langer et al. Feb 2002 A1
20020100711 Freel et al. Aug 2002 A1
20020146358 Smith et al. Oct 2002 A1
20030049854 Rhodes Mar 2003 A1
20030202912 Myohanen et al. Oct 2003 A1
20040069682 Freel et al. Apr 2004 A1
20040182003 Bayle et al. Sep 2004 A1
20040200204 Dries et al. Oct 2004 A1
20050167337 Bunger et al. Aug 2005 A1
20050209328 Allgcod et al. Sep 2005 A1
20060010714 Carin et al. Jan 2006 A1
20060016723 Tang et al. Jan 2006 A1
20060070362 Dewitz et al. Apr 2006 A1
20060074254 Zhang et al. Apr 2006 A1
20060101665 Carin et al. May 2006 A1
20060112639 Nick et al. Jun 2006 A1
20060130719 Morin et al. Jun 2006 A1
20060163053 Ershag Jul 2006 A1
20060180060 Crafton et al. Aug 2006 A1
20060185245 Serio et al. Aug 2006 A1
20060201024 Carin et al. Sep 2006 A1
20060254081 Carin et al. Nov 2006 A1
20060264684 Petri et al. Nov 2006 A1
20070000809 Lin et al. Jan 2007 A1
20070010588 Pearson Jan 2007 A1
20070141222 Binder et al. Jun 2007 A1
20070205139 Kulprathipanja et al. Sep 2007 A1
20070272538 Satchell Nov 2007 A1
20080006519 Badger Jan 2008 A1
20080006520 Badger Jan 2008 A1
20080029437 Umansky et al. Feb 2008 A1
20080035526 Hedrick et al. Feb 2008 A1
20080035528 Marker Feb 2008 A1
20080050792 Zmierczak et al. Feb 2008 A1
20080051619 Kulprathipanja et al. Feb 2008 A1
20080081006 Myers et al. Apr 2008 A1
20080086937 Hazlebeck et al. Apr 2008 A1
20080161615 Chapus et al. Jul 2008 A1
20080171649 Jan et al. Jul 2008 A1
20080185112 Argyropoulos Aug 2008 A1
20080189979 Carin et al. Aug 2008 A1
20080193345 Lott et al. Aug 2008 A1
20080194896 Brown et al. Aug 2008 A1
20080199821 Nyberg et al. Aug 2008 A1
20080230440 Graham et al. Sep 2008 A1
20080236043 Dinjus et al. Oct 2008 A1
20080264771 Dam-Johansen et al. Oct 2008 A1
20080274017 Boykin et al. Nov 2008 A1
20080274022 Boykin et al. Nov 2008 A1
20080282606 Plaza et al. Nov 2008 A1
20080312476 McCall Dec 2008 A1
20080318763 Anderson Dec 2008 A1
20090008292 Keusenkothen et al. Jan 2009 A1
20090008296 Sappok et al. Jan 2009 A1
20090077867 Marker et al. Mar 2009 A1
20090077868 Brady et al. Mar 2009 A1
20090078557 Tokarz Mar 2009 A1
20090078611 Marker et al. Mar 2009 A1
20090082603 Kaines et al. Mar 2009 A1
20090082604 Agrawal et al. Mar 2009 A1
20090084666 Agrawal et al. Apr 2009 A1
20090090046 O'Connor et al. Apr 2009 A1
20090090058 Dam-Johansen et al. Apr 2009 A1
20090113787 Elliott et al. May 2009 A1
20090139851 Freel Jun 2009 A1
20090165378 Agblevor Jul 2009 A1
20090183424 Gorbell et al. Jul 2009 A1
20090188158 Morgan Jul 2009 A1
20090193709 Marker et al. Aug 2009 A1
20090208402 Rossi Aug 2009 A1
20090227823 Huber et al. Sep 2009 A1
20090242377 Honkola et al. Oct 2009 A1
20090250376 Brandvold et al. Oct 2009 A1
20090253947 Brandvold et al. Oct 2009 A1
20090253948 McCall et al. Oct 2009 A1
20090255144 Gorbell et al. Oct 2009 A1
20090259076 Simmons et al. Oct 2009 A1
20090259082 Deluga et al. Oct 2009 A1
20090274600 Jain et al. Nov 2009 A1
20090283442 McCall et al. Nov 2009 A1
20090287029 Anumakonda et al. Nov 2009 A1
20090293344 O'Brien et al. Dec 2009 A1
20090293359 Simmons et al. Dec 2009 A1
20090294324 Brandvold et al. Dec 2009 A1
20090301930 Brandvold et al. Dec 2009 A1
20090308787 O'Connor et al. Dec 2009 A1
20090318737 Luebke Dec 2009 A1
20090321311 Marker et al. Dec 2009 A1
20100043634 Shulfer et al. Feb 2010 A1
20100083566 Fredriksen et al. Apr 2010 A1
20100133144 Kokayeff et al. Jun 2010 A1
20100147743 MacArthur et al. Jun 2010 A1
20100151550 Nunez et al. Jun 2010 A1
20100158767 Mehlberg et al. Jun 2010 A1
20100148122 Breton et al. Jul 2010 A1
20100162625 Mills Jul 2010 A1
20100163395 Henrich et al. Jul 2010 A1
20100222620 O'Connor et al. Sep 2010 A1
20100266464 Sipila et al. Oct 2010 A1
20100325954 Tiwari et al. Dec 2010 A1
20110017443 Collins Jan 2011 A1
20110067438 Bernasconi Mar 2011 A1
20110068585 Dube et al. Mar 2011 A1
20110110849 Siemons May 2011 A1
20110113675 Fujiyama et al. May 2011 A1
20110123407 Freel May 2011 A1
20110132737 Jadhav Jun 2011 A1
20110139596 Bartek Jun 2011 A1
20110139597 Lin Jun 2011 A1
20110146135 Brandvold Jun 2011 A1
20110146140 Brandvold et al. Jun 2011 A1
20110146141 Frey et al. Jun 2011 A1
20110146145 Brandvold et al. Jun 2011 A1
20110160505 McCall Jun 2011 A1
20110182778 Breton et al. Jul 2011 A1
20110201854 Kocal et al. Aug 2011 A1
20110224471 Wormsbecher et al. Sep 2011 A1
20110239530 Marinangeli et al. Oct 2011 A1
20110253600 Niccum Oct 2011 A1
20110258914 Banasiak et al. Oct 2011 A1
20110278149 Hornung et al. Nov 2011 A1
20110284359 Sechrist et al. Nov 2011 A1
20120012039 Palmas et al. Jan 2012 A1
20120017493 Traynor et al. Jan 2012 A1
20120022171 Frey Jan 2012 A1
20120023809 Koch et al. Feb 2012 A1
20120047794 Bartek et al. Mar 2012 A1
20120073185 Jokela et al. Mar 2012 A1
20120137939 Kulprathipanja Jun 2012 A1
20120160741 Gong et al. Jun 2012 A1
20120167454 Brandvold et al. Jul 2012 A1
20120172622 Kocal Jul 2012 A1
20120193581 Goetsch et al. Aug 2012 A1
20120205289 Joshi Aug 2012 A1
20120214113 Kulprathipanja et al. Aug 2012 A1
20120214114 Kim et al. Aug 2012 A1
20120216448 Ramirez Coredores et al. Aug 2012 A1
20120279825 Freel et al. Nov 2012 A1
20120317871 Frey et al. Dec 2012 A1
20130029168 Trewella et al. Jan 2013 A1
20130062184 Kulprathipanja et al. Mar 2013 A1
20130067803 Kalakkunnath et al. Mar 2013 A1
20130075072 Kulprathipanja et al. Mar 2013 A1
20130078581 Kulprathipanja et al. Mar 2013 A1
20130212930 Naae et al. Mar 2013 A1
20130105356 Dijs et al. May 2013 A1
20130109765 Jiang et al. May 2013 A1
20130118059 Lange et al. May 2013 A1
20130150637 Borremans et al. Jun 2013 A1
20130152453 Baird et al. Jun 2013 A1
20130152454 Baird et al. Jun 2013 A1
20130152455 Baird et al. Jun 2013 A1
20130195727 Bull et al. Aug 2013 A1
20130267743 Brandvold et al. Oct 2013 A1
20140001026 Baird et al. Jan 2014 A1
20140140895 Davydov et al. May 2014 A1
20140142362 Davydov et al. May 2014 A1
20140230725 Holler et al. Aug 2014 A1
Foreign Referenced Citations (75)
Number Date Country
8304158 Jul 1984 BR
8304794 Apr 1985 BR
1312497 Jan 1993 CA
2091373 Sep 1997 CA
2299149 Dec 2000 CA
2521829 Mar 2006 CA
1377938 Nov 2002 CN
1730177 Feb 2006 CN
101045524 Oct 2007 CN
101238197 Aug 2008 CN
101294085 Oct 2008 CN
101318622 Dec 2008 CN
101353582 Jan 2009 CN
101365770 Feb 2009 CN
101381611 Mar 2009 CN
101544901 Sep 2009 CN
101550347 Oct 2009 CN
101745349 Jun 2010 CN
101993712 Mar 2011 CN
105980 Jan 1986 EP
578503 Jan 1994 EP
676023 Jul 1998 EP
718392 Sep 1999 EP
787946 Jun 2000 EP
1420058 May 2004 EP
2325281 May 2011 EP
117512 Nov 2005 FI
879606 Mar 1943 FR
1019133 Feb 1966 GB
1300966 Dec 1972 GB
58150793 Sep 1983 JP
1277196 Nov 1989 JP
11148625 Jun 1999 JP
2001131560 May 2001 JP
2007229548 Sep 2007 JP
9903742-6 Jan 2004 SE
8101713 Jun 1981 WO
199111499 Aug 1991 WO
199207842 May 1992 WO
199218492 Oct 1992 WO
199413827 Jun 1994 WO
1997044410 Nov 1997 WO
2001009243 Feb 2001 WO
200183645 Nov 2001 WO
200249735 Jun 2002 WO
2006071109 Jul 2006 WO
2007017005 Feb 2007 WO
2007045093 Apr 2007 WO
2007050030 May 2007 WO
2007112570 Oct 2007 WO
2007128798 Nov 2007 WO
2008009643 Jan 2008 WO
2008020167 Feb 2008 WO
2008092557 Aug 2008 WO
2009019520 Feb 2009 WO
2009047387 Apr 2009 WO
2009047392 Apr 2009 WO
2009067350 May 2009 WO
2009099684 Aug 2009 WO
2009118357 Oct 2009 WO
2009118363 Oct 2009 WO
2009126508 Oct 2009 WO
2009131757 Oct 2009 WO
2010002792 Jan 2010 WO
2011146262 Nov 2011 WO
2012009207 Jan 2012 WO
2012012260 Jan 2012 WO
2012062924 May 2012 WO
2012078422 Jun 2012 WO
2012088546 Jun 2012 WO
2012115754 Aug 2012 WO
2013043485 Mar 2013 WO
2013090229 Jun 2013 WO
2014031965 Feb 2014 WO
2014210150 Dec 2014 WO
Non-Patent Literature Citations (147)
Entry
AccessScience Dictionary, “ebullating-bed reactor,” http://www.accessscience.com, last visited Jul. 15, 2014.
Adam, J. “Catalytic conversion of biomass to produce higher quality liquid bio-fuels,” PhD Thesis, Department of Energy and Process Engineering, The Norwegian University of Science and Technology, Trondheim (2005).
Adam, J. et al. “Pyrolysis of biomass in the presence of Al-MCM-41 type catalysts,” Fuel, 84 (2005) 1494-1502.
Adjaye, John D. et al. “Catalytic conversion of a biomass-derived oil to fuels and chemicals I: Model compound studies and reaction pathways,” Biomass & Bioenergy, 8:3 (1995) 131-149.
Adjaye, John D. et al. “Catalytic conversion of a biomass-derived oil to fuels and chemicals II: Chemical kinetics, parameter estimation and model predictions,” Biomass & Bioenergy, 8:4 (1995) 265-277.
Adjaye, John D. et al. “Catalytic conversion of wood derived bio-oil to fuels and chemicals,” Studies in Surface Science and Catalysis, 73 (1992) 301-308.
Adjaye, John D. et al. “Production of hydrocarbons by the catalytic upgrading of a fast pyrolysis bio-oil,” Fuel Process Technol, 45:3 (1995) 161-183.
Adjaye, John D. et al. “Upgrading of a wood-derived oil over various catalysts,” Biomass & Bioenergy, 7:1-6 (1994) 201-211.
Aho, A. et al. “Catalytic pyrolysis of woody biomass in a fluidized bed reactor; Influence of zeolites structure, Science Direct,” Fuel, 87 (2008) 2493-2501.
Antonakou, E. et al. “Evaluation of various types of Al-MCM-41 materials as catalysts in biomass pyrolysis for the production of bio-fuels and chemicals,” Fuel, 85 (2006) 2202-2212.
Atutxa, A. et al. “Kinetic Description of the Catalytic Pyrolysis of Biomass in a Conical Spouted Bed Reactor,” Energy Fuels, 19:3 (2005) 765-774.
Baker, E. G. et al. “Catalytic Upgrading of Biomass Pyrolysis Oils,” in Bridgwater, A. V. et al. (eds) Research in Thermochemical Biomass Conversion, Elsevier Science Publishers Ltd., Barking, England (1988) 883-895.
Baldauf, W. et al. “Upgrading of flash pyrolysis oil and utilization in refineries,” Biomass & Bioenergy, 7 (1994) 237-244.
Baumlin, “The continuous self stirred tank reactor: measurement of the cracking kinetics of biomass pyrolysis vapours,” Chemical Engineering Science, 60 (2005) 41-55.
Berg, “Reactor Development for the Ultrapyrolysis Process,” The Canadian Journal of Chemical Engineering, 67 (1989) 96-101.
Bielansky, P. et al. “Catalytic conversion of vegetable oils in a continuous FCC pilot plant,” Fuel Processing Technology, 92 (2011) 2305-2311.
Bimbela, F. et al. “Hydrogen production by catalytic steam reforming of acetic acid, a model compound of biomass pyrolysis liquids,” J. Ana App. Pyrolysis, 79 (2007) 112-120.
Bridgwater et al. (eds) Fast Pyrolysis of Biomass: A Handbook, Newbury Cpl Press, Great Britain (2008) 1-13.
Bridgwater, A.V. “Principles and practices of biomass fast pyrolysis processes for liquids,” Journal of Analytical and Applied Pyrolysis, 51 (1999) 3-22.
Bridgwater, Tony “Production of high grade fuels and chemicals from catalytic pyrolysis of biomass,” Catalysis Today, 29 (1996) 285-295.
Bridgwater, Tony et al. “Transport fuels frombiomass by thermal processing,” EU—China Workshop on Liquid Biofuels, Beijing, China (Nov. 4-5, 2004).
Buchsbaum, A. et al. “The Challenge of the Biofuels Directive for a European Refinery,” OMW Refining and Marketing , ERTC 9th Annual Meeting, Prague, Czech Republic (Nov. 15-17, 2004).
Carlson, T. et al. “Aromatic Production from Catalytic Fast Pyrolysis of Biomass-Derived Feedstocks,” Top Catal, 52 (2009) 241-242.
Carlson., T. et al. “Green Gasoline by Catalytic Fast Pyrolysis of Solid Biomass Derived Compounds,” ChemSusChem, 1 (2008) 397-400.
Cass et al. “Challenges in the Isolation of Taxanes from Taxus canadensis by Fast Pyrolysis,” J Analytical and Applied Pyrolysis 57 (2001) 275-285.
Chantal, P. D. et al. “Production of Hydrocarbons from Aspen Poplar Pyrolytic Oils over H-ZSM5,” Applied Catalysis, 10 (1984) 317-332.
Chen, N. Y. et al. “Fluidized Upgrading of Wood Pyrolysis Liquids and Related Compounds,” in Soltes, E. J. et al. (eds) Pyrolysis Oils from Biomass, ACS, Washington, DC (1988) 277-289.
Chinsuwan, A. et al. “An experimental investigation of the effect of longitudinal fin orientation on heat transfer in membrane water wall tubes in a circulating fluidized bed,” International Journal of Heat and Mass Transfer, 52:5-6 (2009) 1552-1560.
Cornelissen, T. et al., “Flash co-pyrolysis of biomass with polylactic acid. Part 1: Influence on bio-oil yield and heating value,” Fuel 87 (2008) 1031-1041.
Cousins, A. et al. “Development of a bench-scale high-pressure fluidized bed reactor and its sequential modification for studying diverse aspects of pyrolysis and gasification of coal and biomass,” Energy and Fuels, 22:4 (2008) 2491-2503.
Cragg et al. “The Search for New Pharmaceutical Crops: Drug Discovery and Development at the National Cancer Institute,” in Janick, J. and Simon, J.E. (eds) New Crops, Wiley, New York (1993) 161-167.
Czernik, S. et al. “Hydrogen from biomass-production by steam reforming of biomass pyrolysis oil,” Catalysis Today, 129 (2007) 265-168.
Czernik, S. et al. “Hydrogren by Catalytic Steam Reforming of Liquid Byproducts from Biomass Thermoconversion Processes,” Ind. Eng. Chern. Res., 41 (2002) 4209-4215.
Dahmen, “Rapid pyrolysis for the pretreatment of biomass and generation of bioslurry as intermediate fuel”, Chemie-Ingenieur-Technik, 79:9 (2007) 1326-1327. Language: German (Abstract only; Machine translation of Abstract).
Dandik, “Catalytic Conversion of Used Oil to Hydrocarbon Fuels in a Fractionating Pyrolysis Reactor,” Energy & Fuels, 12 (1998) 1148-1152.
Daoust et al. “Canada Yew (Taxus canadensis Marsh.) and Taxanes: a Perfect Species for Field Production and Improvement through Genetic Selection,” Natural Resources Canada, Canadian Forest Service, Sainte-Fov, Quebec (2003).
De Wild, P. et al. “Lignin valorisation for chemicals and (transportation) fuels via (catalytic) pyrolysis and hydrodeoxygenation,” Environ. Prog. Sustainable Energy, 28 (2009) 461-469.
Demirbas, Ayhan “Fuel Conversional Aspects of Palm Oil and Sunflower Oil,” Energy Sources, 25 (2003) 457-466.
Di Blasi, C. et al. “Effects of Potassium Hydroxide Impregnation of Wood Pyrolysis, American Chemical Society,” Energy & Fuels 23 (2009) 1045-1054.
Ellioti, D. “Historical Developments in Hydroprocessing Bio-oils,” Energy & Fuels, 21 (2007) 1792-1815.
Ensyn Technologies Inc. “Catalytic de-oxygenation of biomass-derived RTP vapors.” Prepared for ARUSIA, Agenzia Regionale Umbria per lo Sviluppo e L'Innovazione, Perugia, Italy (Mar. 1997).
Filtration, Kirk-Othmer Encyclopedia of Chemical Technology 5th Edition. vol. 11., John Wiley & Sons, Inc., Feb. 2005.
Gayubo, A. G. et al. “Deactivation of a HZSM-5 Zeolite Catalyst in the Transformation of the Aqueous Fraction of Biomass Pyrolysis Oil into Hydrocarbons,” Energy & Fuels, 18:6 (2004) 1640-1647.
Gayubo, A. G. et al. “Undesired components in the transformation of biomass pyrolysis oil into hydrocarbons on an HZSM-5 zeolite catalyst,” J Chem Tech Biotech, 80 (2005) 1244-1251.
Gevert, Börjie S. et al. “Upgrading of directly liquefied biomass to transportation fuels: catalytic cracking,” Biomass 14:3 (1987) 173-183.
Goesele, W. et al., Filtration, Wiley-VCHVerlag GmbH & Co. KGaA, Weinheim, 10.1002/14356007.b02 10, 2005.
Grange, P. et al. “Hydrotreatment of pyrolysis oils from biomass: reactivity of the various categories of oxygenated compounds and preliminary techno-economical study,” Catalysis Today, 29 (1996) 297-301.
Hama, “Biodiesel-fuel production in a packed-bed reactor using lipase-producing Rhizopus oryzae cells immobilized within biomass support particles”, Biochemical Engineering Journal, 34 (2007) 273-278.
Hoekstra, E. et al., “Fast Pyrolysis of Biomass in a Fluidized Bed Reactor: In Situ Filtering of the Vapors,” Ind. Eng. Chern. Res., 48:10 (2009) 4744-4756.
Holton et al. “First Total Synthesis of Taxol. 2. Completion of the C and D Rings,” J Am Chem Soc, 116 (1994) 1599-1600.
Horne, Patrick A. et al. “Catalytic coprocessing of biomass-derived pyrolysis vapours and methanol,” J. Analytical and Applied Pyrolysis, 34:1 (1995) 87-108.
Horne, Patrick A. et al. “Premium quality fuels and chemicals from the fluidised bed pyrolysis of biomass with zeolite catalyst upgrading,” Renewable Energy, 5:5-8 (1994) 810-812.
Horne, Patrick A. et al. “The effect of zeolite ZSM-5 catalyst deactivation during the upgrading of biomass-derived pyrolysis vapours,” J Analytical and Applied Pyrolysis, 34:1 (1995) 65-85.
Huang et al. “New Taxanes from Taxus brevifolia,” J of Natural Products, 49 (1986) 665-669.
Huffman, D. R. et al., Ensyn Technologies Inc., “Thermo-Catalytic Cracking of Wood to Transportation Fuels,” DSS Contract No. 38SQ.23440-4-1429, Efficiency and Alternative Energy Technology Branch, Natural Resources Canada, Ottawa, Canada (1997).
Huffman, D. R., Ensyn Technologies Inc., “Thermo-catalytic cracking of wood to transportation fuels using the RTP process,” DSS Contract No. 38SQ.23440-4-1429, Efficiency and Alternative Energy Technology Branch, Natural Resources Canada, Ottawa, Ontario (Jan. 1997).
Hughes, J. et al. “Structural variations in natural F, OH and Cl apatites,” American Mineralogist, 74 (1989) 870-876.
Huie, C. W. “A review of modern sample-preparation techniques for the extraction and analysis of medicinal plants,” Anal Bioanal Chem, 373 (2002) 23-30.
International Search Report dated Feb. 22, 2013 for corresponding International Application No. PCT/US2012/68876.
Ioannidou, “Investigating the potential for energy, fuel, materials and chemicals production from corn residues (cobs and stalks) by non-catalytic and catalytic pyrolysis in two reactor configurations,” Renewable and Sustainable Energy Reviews, 13 (2009) 750-762.
Iojoiu, E. et al. “Hydrogen production by sequential cracking of biomass-derived pyrolysis oil over noble metal catalysts supported on ceria-zirconia,” Applied Catalysis A: General, 323 (2007) 147-161.
Jackson, M. et al. “Screening heterogenous catalysts for the pyrolysis of lignin,” J. Anal. Appl. Pyrolysis, 85 (2009) 226-230.
Junming et al. “Bio-oil upgrading by means of ethyl ester production in reactive distillation to remove water and to improve storage and fuel characteristics,” Biomass and Energy, 32 (2008) 1056-1061.
Kalnes, Tom et al. “Feedstock Diversity in the Refining Industry,” UOP Report to NREL and DOE (2004).
Khanal, “Biohydrogen Production in Continuous-Flow Reactor Using Mixed Microbial Culture,” Water Environment Research, 78:2 (2006) 110-117.
Khimicheskaya Entsiklopediya. Pod red. N. S. Zefirov. Moskva, Nauchnoe Izdatelstvo “Bolshaya Rossyskaya Entsiklopediya”, 1995, p. 133-137,529-530.
Kingston et al. “New Taxanes from Taxus brevifolia,” J of Natural Products, 45 (1982) 466-470.
Lappas, A. A. et al. “Biomass pyrolysis in a circulating fluid bed reactor for the production of fuels and chemicals,” Fuel, 81 (2002) 2087-2095.
Lappas, A.A. et al. “Production of Transportation Fuels from Biomass,” Workshop of Chemical Process Engineering Research Institute/Center for Research and Technology Hellas, Thermi-Thessaloniki, Greece (2004).
Lappas, A.A., “Production of biofuels via co-processing in conventional refining process,” Catalysis Today, 145 (2009) 55-62.
Maiti, R.N. et al. “Gas-liquid distributors for trickle-bed reactors: A review”; Industrial and Engineering Chemistry Research, 46:19 (2007) 6164-6182.
Mancosky, “The use of a controlled cavitation reactor for bio-diesel production,” (abstract only), AIChE Spring National Meeting 2007, Houston, Texas.
Marker, Terry L., et al. “Opportunities for Biorenewables in Petroleum Refineries,” Proceedings of the 230th ACS National Meeting, Washington, DC, Paper No. 125, Fuel Division (Aug. 31, 2005) (abstract only).
Marker, Terry L., et al., UOP, “Opportunities for Biorenewables in Oil Refineries,” Final Technical Report, U.S. Department of Energy Award No. DE-FG36-05G015085, Report No. DOEGO15085Final (2005).
Marquevich, “Hydrogen from Biomass: Steam Reforming of Model Compounds of Fast-Pyrolysis Oil,” Energy & Fuels, 13 (1999) 1160-1166.
Masoumifard, N. et al. “Investigation of heat transfer between a horizontal tube and gas-solid ftuidized bed,” International Journal of Heat and Fluid Flow, 29:5 (2008) 1504-1511.
McLaughlin et al. 19-Hydroxybaccatin III, 10-Deacetylcephalo-Mannine, and 10-Deacetyltaxol: New Anti-Tumor Taxanes from Taxus wallichiana,' J of Natural Products, 44 (1981) 312-319.
McNeil “Semisynthetic Taxol Goes on Market Amid Ongoing Quest for New Versions,” J of the National Cancer Institute, 87:15 (1995) 1106-1108.
Meier, D. et al. “State of the art of applied fast pyrolysis of lignocellulosic materials—a review,” Bioresource Technology, 68:1 (1999) 71-77.
Meier, D. et al., “Pyrolysis and Hydroplysis of Biomass and Lignins—Activities at the Institute of Wood Chemistry in Hamburg, Germany,” vol. 40, No. 2, Preprints of Papers Presented at the 209th ACS National Meeting, Anaheim, CA (Apr. 2-7, 1995).
Mercader, F. et al. “Pyrolysis oil upgrading by high pressure thermal treatment,” Fuel, 89:10 (2010) 2829-2837.
Miller et al. “Antileukemic Alkaloids from Taxus wallichiana Zucc,” J Org Chem, 46 (1981) 1469-1474.
Mohan, D. et al. “Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review,” Energy Fuels, 20:3 (2006) 848-849.
Newton “Taxol: A Case Study in Natural Products Chemistry,” Lecture Notes, University of Southern Maine, http:/www.usm.maine.edu/ (2009) 1-6.
Nicolaou et al. “Total Synthesis of Taxol,” Nature, 367 (1994) 630-634.
Nowakowski, D. et al. “Potassium catalysis in the pyrolysis behaviour of short rotation willow coppice,” Fuels, 86 (2007) 2389-2402.
Ognisty, T. P. “The direct contact heat transfer performance of a spray nozzle, a notched through distributor, and two inch Pall rings,” AIChE 1990 Spring National Meeting (Orlando Mar. 18-22, 1990) Preprint N. 37c 36P, Mar. 18, 1990.
Ohman “Bed Agglomeration Characteristics during Fluidized Bed Combustion of Biomass Fuels,” Energy & Fuels, 14 (2000) 169-178.
Okumura, Y. et al. “Pyrolysis and gasification experiments of biomass under elevated pressure condition,” Nihon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, vol. 73, No. 7, 2007, pp. 1434-1441.
Olazar, M. et al. “Pyrolysis of Sawdust in a Conical Spouted-Bed Reactor with a HZSM-5 Catalyst,” AIChE Journal, 46:5 (2000) 1025-1033.
Onay “Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixed-bed reactor,” Fuel Processing Technology, 88 (2007) 523-531.
Onay, “Production of Bio-Oil from Biomass: Slow Pyrolysis of Rapeseed (Brassica napus L.) in a Fixed-Bed Reactor,” Energy Sources, 25 (2003) 879-892.
Ong et al. “Pressurized hot water extraction of bioactive or marker compounds in botanicals and medicinal plant materials,” J Chromatography A, 1112 (2006) 92-102.
Ooi, Y. S. et al. “Catalytic Cracking of Used Palm Oil and Palm Oil Fatty Acids Mixture for the Production of Liquid Fuel: Kinetic Modeling.” J Am Chem Soc, 18 (2004) 1555-1561.
Otterstedt, J. E. et al. “Catalytic Cracking of Heavy Oils,” in Occelli, Mario L. (ed) Fluid Catalytic Cracking, Chapter 17, ACS, Washington, DC (1988) 266-278.
Padmaja, K.V. et al. “Upgrading of Candelilla biocrude to hydrocarbon fuels by fluid catalytic cracking,” Biomass and Bioenergy, 33 (2009) 1664-1669.
Pavia et al., Intro to Org Labo Techniques (1988) 3d ed. Saunders College Publishing, Washington p. 62-66, 541-587.
PCT/US2012/055384 International Search Report, dated Mar. 28, 2013, and International Preliminary Report on Patentability, dated Mar. 25, 2014.
Pecora, A.A.B. et al., “Heat transfer coefficient in a shallow fluidized bed heat exchanger with a continuous flow of solid particles,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, 28:3 (2006) 253-258.
Pecora, A.A.B., et al., “An analysis of process heat recovery in a gas-solid shallow fluidized bed,” Brazilian Journal of Chemical Engineering, 23:4 (2006) 497-506.
Petrik, P.T. et al. “Heat exchange in condensation of R227 coolant on inclined tubes placed in a granular BED,” Journal of Engineering Physics and Thermophysics, 77:4 (2004) 758-761.
Prasad Y. S. et al. “Catalytic conversion of canola oil to fuels and chemical feedstocks. Part II. Effect of co-feeding steam on the performance of HZSM-5 catalyst,” Can J Chem Eng, 64 (1986) 285-292.
Prins, Wolter et al. “Progress in fast pyrolysis technology,” Topsoe Catalysis Forum 2010, Munkerupgaard, Denmark (Aug. 19-20, 2010).
Radlein, D. et al. “Hydrocarbons from the Catalytic Pyrolysis of Biomass,” Energy & Fuels, 5 (1991) 760-763.
Rao “Taxol and Related Taxanes. I. Taxanes of Taxus brevifolia Bark,” Pharm Res 10:4 (1993) 521-524.
Rao et al. “A New Large-Scale Process for Taxol and Related Taxanes from Taxus brevifolia,” Pharm Res, 12:7 (1995) 1003-1010.
Ravindranath, G., et al., “Heat transfer studies of bare tube bundles in gas-solid ftuidized bed”, 9th International Symposium on Fluid Control Measurement and Visualization 2007, FLUCOME 2007, vol. 3, 2007, pp. 1361-1369.
Rodriguez, O.M.H. et al. “Heat recovery from hot solid particles in a shallow ftuidized bed,” Applied Thermal Engineering, 22:2 (2002) 145-160.
Samolada, M. C. et al. “Production of a bio-gasoline by upgrading biomass flash pyrolysis liquids via hydrogen processing and catalytic cracking,” Fuel, 77:14 (1998) 1667-1674.
Sang “Biofuel Production from Catalytic Cracking of Palm Oil,” Energy Sources, 25 (2003) 859-869.
Scahill, J. et al. “Removal of Residual Char Fines from Pyrolysis Vapors by Hot Gas Filtration,” in Bridgwater, A. V. et al. (eds) Developments in Thermochemical Biomass Conversion, Springer Science+Business Media, Dordrecht (1997) 253-266.
Scott, D. et al. Pretreatment of poplar wood for fast pyrolysis: rate of cation removal, Journal of Analytical and Applied Pyrolysis, 57 (2000) 169-176.
Senilh et al. “Mise en Evidence de Nouveaux Analogues du Taxol Extraits de Taxus baccata,” J of Natural Products, 47 (1984) 131-137. (English Abstract included).
Sharma, R. “Upgrading of pyrolytic lignin fraction of fast pyrolysis oil to hydrocarbon fuels over HZSM-5 in a dual reactor system,” Fuel Processing Technology, 35 (1993) 201-218.
Sharma, R. K. et al. “Catalytic Upgrading of Pyrolysis Oil,” Energy & Fuels, 7 (1993) 306-314.
Sharma, R. K. et al. “Upgrading of wood-derived bio-oil over HZSM-5,” Bioresource Technology, 35:1 (1991) 57-66.
Smith R.M. “Extractions with superheated water,” J Chromatography A, 975 (2002) 31-46.
Snader “Detection and Isolation,” in Suffness, M. (ed) Taxol-Science and Applications, CRC Press, Boca Raton, Florida (1995) 277-286.
Srinivas, S.T. et al “Thermal and Catalytic Upgrading of a Biomass-Derived Oil in a Dual Reaction System,” Can. J. Chem. Eng., 78 (2009) 343-354.
Stierle et al “The Search for Taxol-Producing Microorganism Among the Endophytic Fungi of the Pacific Yew, Taxus brevifolia,” J of Natural Products, 58 (1995) 1315-1324.
Stojanovic, B. et al. “Experimental investigation of thermal conductivity coefficient and heat exchange between ftuidized bed and inclined exchange surface,” Brazilian Journal of Chemical Engineering, 26:2 (2009) 343-352.
Sukhbaatar, B. “Separation of Organic Acids and Lignin Fraction From Bio-Oil and Use of Lignin Fraction in Phenol-Formaldehyde Wood Adhesive Resin,” Master's Thesis, Mississippi State (2008).
Twaiq, A. A. et al. “Performance of composite catalysts in palm oil cracking for the production of liquid fuels and chemicals,” Fuel Processing Technology, 85 (2004) 1283-1300.
Twaiq, F. A. et al. “Liquid hydrocarbon fuels from palm oil by catalytic cracking over aluminosilicate mesoporous catalysts with various Si/Al ratios,” Microporous and Mesoporous Materials, 64 (2003) 95-107.
Tyson, K. et al. “Biomass Oil Analysis: Research Needs and Recommendations,” National Renewable Energy Laboratory, Report No. NREL/TP-510-34796 (Jun. 2004).
Valle, B. et al. “Integration of Thermal Treatment and Catalytic Transformation for Upgrading Biomass Pyrolysis Oil,” International Journal of Chemical Reactor Engineering, 5:1 (2007).
Vasanova, L.K. “Characteristic features of heat transfer of tube bundles in a cross water-air ftow and a three-phase ftuidized bed,” Heat Transfer Research, 34:5-6 (2003) 414-420.
Vitolo, S. et al. “Catalytic upgrading of pyrolytic oils over HZSM-5 zeolite: behaviour of the catalyst when used in repeated upgrading-regenerating cycles,” Fuel, 80 (2001) 17-26.
Vitolo, S. et al. “Catalytic upgrading of pyrolytic oils to fuel over different zeolites,” Fuel, 78:10 (1999) 1147-1159.
Wang, Xianhua et al., “The Influence of Microwave Drying on Biomass Pyrolysis,” Energy & Fuels 22 (2008) 67-74.
Westerhof, Roel J. M. et al., “Controlling the Water Content of Biomass Fast Pyrolysis Oil,” Ind. Eng. Chem. Res. 46 (2007) 9238-9247.
Williams, Paul T. et al. “Characterisation of oils from the fluidised bed pyrolysis of biomass with zeolite catalyst upgrading,” Biomass and Bioenergy, 7:1-6 (1994) 223-236.
Williams, Paul T. et al. “Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks,” Energy, 25:6 (2000) 493-513.
Williams, Paul T. et al. “The influence of catalyst type on the composition of upgraded biomass pyrolysis oils,” J Analytical and Applied Pyrolysis, 31 (1995) 39-61.
Yukimune et al. “Methyl Jasmonate-induced Overproduction of Paclitaxel and Baccatin III in Taxus Cell Suspension Cultures,” Nature Biotechnology 14 (1996) 1129-1132.
Zhang et al. “Investigation on initial stage of rapid pyrolysis at high pressure using Taiheiyo coal in dense phase,” Fuel, 81:9 (2002) 1189-1197.
Zhang, “Hydrodynamics of a Novel Biomass Autothermal Fast Pyrolysis Reactor: Flow Pattern and Pressure Drop,” Chern. Eng. Technol., 32:1 (2009) 27-37.
Graham, R.G. et al. “Thermal and Catalytic Fast Pyrolysis of Lignin by Rapid Thermal Processing (RPT),” Seventh Canadian Bioenergy R&D Seminar, Skyline Hotel, Ottawa, Ontario, Canada, Apr. 24-26, 1989.
Wisner, R. “Renewable Identification Nos. (RINs) and Government Biofuels Blending Mandates,” AgMRC Renewable Energy Newsletter (Apr. 2009), available at http://www.agmrc.org/renewable_energy/biofuelsbiorefining_general/renewable-identification-numbers-rins-and-government-biofuels-blending-mandates/.
Qi et al. “Review of biomass pyrolysis oil properties and upgrading research,” Energy Conversion & Management, 48 (2007) 87-92.
Office Action, U.S. Appl. No. 14/346,517, dated Sep. 25, 2015.
Yoo et al. “Thermo-mechanical extrusion pretreatment for conversion of soybean hulls to fermentable sugars,” Bioresource Technology, 102 (2011) 7583-7590.
Search Report, Intellectual Property Office of Singapore, dated Jun. 4, 2015, for corresponding SG 11201403208Y.
Written Opinion, Intellectual Property Office of Singapore, dated Jul. 31, 2015, for corresponding SG 11201403208Y.
Supplemental European Search Report, dated Sep. 4, 2015, for corresponding EP 12858367.1.
European Search Opinion, dated Sep. 11, 2015, for corresponding EP 12858367.1.
Extended European Search Report dated Feb. 19, 2016 for European Patent Application No. 12749454.0.
Related Publications (1)
Number Date Country
20160348005 A1 Dec 2016 US
Continuations (1)
Number Date Country
Parent 13031701 Feb 2011 US
Child 15233560 US