Claims
- 1. A heat resistant steel containing 0.05 to 0.2 wt. % of C, less than 0.5 wt. % of Si, less than 0.6 wt. % of Mn, 8 to 13 wt. % of Cr, 1.5 to 3 wt. % of Mo, 2.2 to 3 wt. % of Ni, 0.05 to 0.3 wt. % of V, 0.02 to 0.2 wt. % in total of either or both of Nb and Ta, 0.02 to 0.1 wt. % of N, a ratio (Mn/Ni) of said Mn to Ni being less than 0.11, and the balance substantially Fe.
- 2. A heat resistant steel containing 0.07 to 0.15 wt. % of C, 0.01 to 0.1 wt. % of Si, 0.1 to 0.4 wt. % of Mn, 11 to 12.5 wt. % of Cr, 2.2 to 3.0 wt. % of Ni, 1.8 to 2.5 wt. % of Mo, 0.04 to 0.08 wt. % in total of either or both of Nb and Ta, 0.15 to 0.25 wt. % of V, 0.04 to 0.08 wt. % of N, a ratio (Mn/Ni) of said Mn to Ni being 0.04 to 0.10, and the balance substantially Fe, and having a wholly tempered martensite structure.
- 3. A heat resistant steel containing 0.05 to 0.2 wt. % of C, less than 0.5 wt. % of Si, less than 0.6 wt. % of Mn, 8 to 13 wt. % of Cr, 1.5 to 3 wt. % of Mo, 2.2 to 3 wt. % of Ni, 0.05 to 0.3 wt. % of V, 0.02 to 0.2 wt. % in total of either or both of Nb and Ta, 0.02 to 0.1 wt. % of N, a ratio (Mn/Ni) of said Mn to Ni being less than 0.11, and the balance substantially Fe, and having a 450.degree. C., 10.sup.5 -h creep rupture strength of higher than 50 kg/mm.sup.2 and a 25.degree. C., V-notch Charpy impact value of higher than 5 kg-m/cm.sup.2 after having been heated at 500.degree. C. for 10.sup.3 hours.
- 4. A heat resistant steel containing 0.05 to 0.2 wt. % of C, less than 0.5 wt. % of Si, less than 0.6 wt. % of Mn, 8 to 13 wt. % of Cr, 1.5 to 3 wt. % of Mo, 2.2 to 3 wt. % of Ni, 0.05 to 0.3 wt. % of V, 0.02 to 0.2 wt. % in total of either or both of Nb and Ta, 0.02 to 0.1 wt. % of N, at least one selected from the group consisting of less than 1 wt. % of W, less than 0.5 wt. % of Co, less than 0.5 wt. % of Cu, less than 0.01 wt. % of B, less than 0.5 wt. % of Ti, less than 0.3 wt. % of Al, less than 0.1 wt. % of Zr, less than 0.1 wt. % of Hf, less than 0.01 wt. % of Ca, less than 0.01 wt. % of Mg, less than 0.01 wt. % of Y and less than 0.01 wt. % of rare earth elements, and the balance substantially Fe.
- 5. A gas turbine disc having in its outer circumferential portion a plurality of recessed grooves into which blades are embedded, having a maximum thickness in its center and having in its outer circumferential side a plurality of through-holes into which bolts are inserted to connect a plurality of said discs;
- characterized in that said disc is made of a martensitic steel having a 450.degree. C., 10.sup.5 -h creep rupture strength of higher than 50 kg/mm.sup.2 and a 25.degree. C., V-notch Charpy impact value of higher than 5 kg-m/cm.sup.2 after having been heated at 500.degree. C. for 10.sup.3 hours, and having a wholly tempered martensite structure, and that a ratio (t/D) of the thickness (t) of said disc to the diameter (D) of the same is 0.15 to 0.30.
- 6. A gas turbine disc having in its outer circumferential portion a plurality of recessed grooves into which blades are embedded, having a maximum thickness in its center and having in its outer circumferential side a plurality of through-holes into which bolts are inserted to connect a plurality of said discs;
- characterized in that said disc is made of a heat resistant steel containing 0.05 to 0.2 wt. % of C, less than 0.5 wt. % of Si, less than 0.6 wt. % of Mn, 8 to 13 wt. % of Cr, 1.5 to 3 wt. % of Mo, 2.2 to 3 wt. % of Ni, 0.05 to 0.3 wt. % of V, 0.02 to 0.2 wt. % in total of either or both of Nb and Ta, 0.02 to 0.1 wt. % of N, a ratio (Mn/Ni) of said Mn to Ni being less than 0.11, and the balance substantially Fe, and having a wholly tempered martensite structure.
- 7. A gas turbine disc having in its outer circumferential portion a plurality of recessed grooves into which blades are embedded, having a maximum thickness at its center and having in its outer circumferential side a plurality of through-holes into which bolts are inserted to connect a plurality of said discs;
- characterized in that said disc is made of a heat resistant steel containing 0.05 to 0.2 wt. % of C, less than 0.5 wt. % of Si, less than 0.6 wt. % of Mn, 8 to 13 wt. % of Cr, 1.5 to 3 wt. % of Mo, 2.2 to 3 wt. % of Ni, 0.05 to 0.3 wt. % of V, 0.02 to 0.2 wt. % in total of either or both of Nb and Ta, 0.02 to 0.1 wt. % of N, at least one selected from the group consisting of less than 1 wt. % of W, less than 0.5 wt. % of Co, less than 0.5 wt. % of Cu, less than 0.01 wt. % of B, less than 0.5 wt. % of Ti, less than 0.3 wt. % of Al, less than 0.1 wt. % of Zr, less than 0.1 wt. % of Hf, less than 0.01 wt. % of Ca, less than 0.01 wt. % of Mg, less than 0.01 wt. % of Y and less than 0.01 wt. % of rare earth elements, a ratio (Mn/Ni) of said Mn to Ni being less than 0.11, and the balance substantially Fe, and having a wholly tempered martensite structure.
- 8. An annular spacer for a gas turbine used in such a manner that a plurality of turbine discs are connected together at their outer circumferential sides by bolts with said spacers interposed therebetween, characterized in that said spacer is made of a martensitic steel having a 450.degree. C., 10.sup.5 -h creep rupture strength of higher than 50 kg/mm.sup.2 and a 25.degree. C., V-notch Charpy impact value of higher than 5 kg-m/cm.sup.2, and having a wholly tempered martensite structure.
- 9. A cylindrical distance piece for a gas turbine used in such a manner that a plurality of turbine discs and a plurality of compressor discs are connected together through said distance piece by bolts, characterized in that said distance piece is made of a martensitic steel having a 450.degree. C., 10.sup.5 -h creep rupture strength of higher than 50 kg/mm.sup.2 and a 25.degree. C., V-notch Charpy impact value of higher than 5 kg-m/cm.sup.2 after having been heated at 500.degree. C. for 10.sup.3 hours, and that a ratio (t/D) of the minimum thickness (t) of said distance piece to the maximum inner diameter (D) of the same is 0.05 to 0.10.
- 10. A cylindrical distance piece for a gas turbine used in such a manner that a plurality of turbine discs and a plurality of compressor discs are connected together through said distance piece by bolts, characterized in that said distance piece is made of a heat resistant steel containing 0.05 to 0.2 wt. % of C, less than 0.5 wt. % of Si, less than 0.6 wt. % of Mn, 8 to 13 wt. % of Cr, 1.5 to 3 wt. % of Mo, 2.2 to 3 wt. % of Ni, 0.05 to 0.3 wt. % of V, 0.02 to 0.2 wt. % in total of either or both of Nb and Ta, 0.02 to 0.1 wt. % of N, a ratio (Mn/Ni) of said Mn to Ni being less than 0.11, and the balance substantially Fe, and having a wholly tempered martensite structure.
- 11. A cylindrical distance piece for a gas turbine used in such a manner that a plurality of turbine discs and a plurality of compressor discs are connected together through said distance piece by bolts, characterized in that said distance piece is made of a heat resistant steel containing 0.05 to 0.2 wt. % of C, less than 0.5 wt. % of Si, less than 0.6 wt. % of Mn, 8 to 13 wt. % of Cr, 1.5 to 3 wt. % of Mo, 2.2 to 3 wt. % of Ni, 0.05 to 0.3 wt. % of V, 0.02 to 0.2 wt. % in total of either or both of Nb and Ta, 0.02 to 0.1 wt. % of N, at least one selected from the group consisting of less than 1 wt. % of W, less than 0.5 wt. % of Co, less than 0.5 wt. % of Cu, less than 0.01 wt. % of B, less than 0.5 wt. % of Ti, less than 0.3 wt. % of Al, less than 0.1 wt. % of Zr, less than 0.1 wt. % of Hf, less than 0.01 wt. % of Ca, less than 0.01 wt. % of Mg, less than 0.01 wt. % of Y and less than 0.01 wt. % of rare earth elements, a ratio (Mn/Ni) of said Mn to Ni being less than 0.11, and the balance substantially Fe, and having a wholly tempered martensite structure.
- 12. A compressor disc having in its outer circumferential portion a plurality of recessed grooves into which blades are embedded, having in its outer circumferential side a plurality of through-holes into which bolts are inserted to connect a plurality of said discs and having in its center and portions provided with said through-holes a maximum thickness, characterized in that at least a final-stage compressor disc on the side on which the temperature of a gas is high is made of a martensitic steel having a 450.degree. C., 10.sup.5 -h creep rupture strength of higher than 50 kg/mm.sup.2 and a 25.degree. C., V-notch Charpy impact value of higher than 5 kg-m/cm.sup.2 after having been heated at 500.degree. C. for 10.sup.3 hours, and having a wholly tempered martensite structure, and that a ratio (t/D) of the thickness (t) of said compressor disc to the diameter (D) of the same is 0.05 to 0.10.
- 13. A compressor disc having in its outer circumferential portion a plurality of recessed grooves into which blades are embedded, having in its outer circumferential side a plurality of through-holes into which bolts are inserted to connect a plurality of said discs and having in its center and portions provided with said through-holes a maximum thickness, characterized in that at least a final stage compressor disc on the side on which the temperature of a gas is high is made of a heat resistant steel containing 0.05 to 0.2 wt. % of C, less than 0.5 wt. % of Si, less than 0.6 wt. % of Mn, 8 to 13 wt. % of Cr, 1.5 to 3 wt. % of Mo, 2.2 to 3 wt. % of Ni, 0.05 to 0.3 wt. % of V, 0.02 to 0.2 wt. % in total of either or both of Nb and Ta, 0.02 to 0.1 wt. % of N, a ratio (Mn/Ni) of said Mn to Ni being less than 0.11, and the balance substantially Fe, and having a wholly tempered martensite structure.
- 14. A compressor disc having in its outer circumferential portion a plurality of recessed grooves into which blades are embedded, having in its outer circumferential side a plurality of through-holes into which bolts are inserted to connect a plurality of said discs and having in its center and portions provided with said through-holes a maximum thickness, characterized in that at least a final stage compressor disc on the side on which the temperature of a gas is high is made of a heat resistant steel containing 0.05 to 0.2 wt. % of C, less than 0.5 wt. % of Si, less than 0.6 wt. % of Mn, 8 to 13 wt. % of Cr, 1.5 to 3 wt. % of Mo, 2.2 to 3 wt. % of Ni, 0.05 to 0.3 wt. % of V, 0.02 to 0.2 wt. % in total of either or both of Nb and Ta, 0.02 to 0.1 wt. % of N, at least one selected from the group consisting of less than 1 wt. % of W, less than 0.5 wt. % of Co, less than 0.5 wt. % of Cu, less than 0.01 wt. % of B, less than 0.5 wt. % of Ti, less than 0.3 wt. % of Al, less than 0.1 wt. % of Zr, less than 0.1 wt. % of Hf, less than 0.01 wt. % of Ca, less than 0.01 wt. % of Mg, less than 0.01 wt. % of Y and less than 0.01 wt. % of rare earth elements, a ratio (Mn/Ni) of said Mn to Ni being less than 0.11, and the balance substantially Fe, and having a wholly tempered martensite structure.
- 15. Stacking bolts for a gas turbine which are respectively used to connect a plurality of turbine discs and compressor discs, characterized in that at least one of a set of said stacking bolts is made of a martensitic steel having a 450.degree. C., 10.sup.5 -h creep rupture strength of higher than 50 kg/mm.sup.2 and a 25.degree. C., V-notch Charpy impact value of higher than 5 kg-m/cm.sup.2, and having a wholly tempered martensite structure.
Priority Claims (2)
Number |
Date |
Country |
Kind |
61-21956 |
Feb 1986 |
JPX |
|
61-60574 |
Mar 1986 |
JPX |
|
Parent Case Info
This is a division of application Ser. No. 010,793, filed Feb. 4, 1987, now U.S. Pat. No. 4850187.
Foreign Referenced Citations (3)
Number |
Date |
Country |
54-146212 |
Nov 1979 |
JPX |
59-93857 |
May 1984 |
JPX |
62-180040 |
Aug 1987 |
JPX |
Divisions (1)
|
Number |
Date |
Country |
Parent |
10793 |
Feb 1987 |
|