The present invention concerns a heat-sealable biodegradable packaging material, which comprises a fibrous substrate and one or more polymer coating layers extruded onto said substrate. The invention also concerns a heat-sealed product package comprising the packaging material according to the invention, as well as uses of a resin in extrusion coating, in particular to produce the packaging material and the package according to the invention.
The fibre-based packaging material of product packages, such as packing paper or board, is usually provided with a polymeric coating that makes the package tight and by means of which the package can be closed by heat sealing. Multi-layer coatings can comprise an inner EVOH, PET or polyamide layer that provides the material with an effective barrier to water vapour and oxygen, and an outer polyolefin layer that makes the material heat-sealable. One disadvantage of the said widely-used coating polymers is, however, that they are not biodegradable.
Polylactide (PLA), which has reasonably good moisture and gas barrier properties that are adequate to many applications, has been used as the coating polymer of biodegradable packaging material; however, its use involves a number of problems. Polylactide as such is stiff and fragile, requiring a high extrusion temperature and a fairly large layer thickness to stick to the fibre substrate of the packaging material. Because of the high temperature, polylactide runs the risk of breaking, and in extrusion, the edges of a molten web tend to tear and pin holes easily remain in the extruded layer.
As a solution to said problems, the specification EP-1094944 B1 discloses an inner adhesion layer, which is co-extruded together with an outer polylactide layer and which consists of a biodegradable polymer, examples of which, according to the specification, include some commercial copolyesters, cellulose esters, and polyester amides. They facilitate the extrusion of polylactide and provide adhesion that prevents the coating from peeling off the fibre substrate.
Another problem with the use of polylactide in the outer coating layer of the packaging material is its fairly high melting point, and the resulting poor heat sealing ability. As an improvement to this, the specification US-2002/0065345 A1 discloses a biodegradable aliphatic polyester that is blended with polylactide, its portion in the mixture being at least 9%, and a tackifier, its portion in the mixture being at least 1%. As suitable aliphatic polyesters, the publication mentions polycaprolactone (PLC) and polybutylene succinate adipate (PBSA). According to the patent specification, the mixture can be extruded into a film, which can be axially or biaxially stretched and which can be attached to the fibre substrate by lamination. As a result, polymer-coated biodegradable packaging material is obtained, which has a considerably improved heat sealing ability.
The specification US 2005/0192410 A1 describes polylactide films and coatings, wherein the processibility of polylactide is improved by blending with it 10-40 weight-% of polycaprolactone and 5-10 weight-% of mineral particles. According to the specification, the mixture can be used in extrusion coating, but there is no reference to its adhesion to the fibre substrate or to its heat sealing ability in the specification. Instead, the specification describes the intermediate layers between the carrier and the PLA-based coating layer or the top layers that come on top of the PLA layer; cf. section [0039] in the specification.
The specification US 2007/0259195 A1 describes polylactide-based films, which contain, blended therewith, 0.1-10 weight-% of biodegradable polymeric additive, the purpose of which is to increase the crystallinity of the polylactide, improving its heat resistance. As examples of such additives, the specification presents FEPOL 2040 marketed by Far Eastern Textile, Taiwan, and Ecoflex marketed by BASF, both of which comprise polybutylene adipate terephthalate (PBAT). According to the specification, the mixtures can be extruded onto the fibre substrate in a conventional manner, but there is no reference to the adhesion of the mixture to the substrate or to the heat sealing ability of the coating thus obtained. In the specification, the intended improved heat resistance of PLA does not, however, refer to an improvement of the heat sealing ability but rather to its weakening.
The problem solved by the present invention is to provide polymer-coated, biodegradable packaging material, wherein the coating containing a polylactide blend has both an improved adhesion to the fibre substrate and improved heat sealing ability. From these premises the aim is in particular to reduce the share of the polymer blended with polylactide, while said polymer blend is extrudable and completely biodegradable. According to the invention, the solution is that the biodegradable polymer coating layer contains polylactide and at least about 1 weight-% of terpene phenolic resin blended therewith.
The terpene used to produce the resin is a low-cost, coniferous wood-based material. To the applicant's knowledge such resin has not been previously used for polymer blend coatings of biodegradable paper or board packages. Examples of the terpenes are a-pinene and p-pinene. Combined with the use of polylactide terpene phenolic resin increases the share of biorenewable materials contained in the biodegradable packages.
The invention covers use of terpene phenolic resins made from at least phenol and terpene monomers. One or more further monomers may be used for the resin. As noted above, the terpene monomer may be for instance a-pinene or p-pinene.
Examples of the phenol monomer are phenol and various alkyl and alkoxyphenols, and examples of the further monomers are cyclic or acyclic unsaturated olefins, such as e.g. diisobutylene and cyclopentadiene. Manufacture of such products has been described in the patent literature, the patents U.S. Pat. Nos. 5,457,175, 5,723,566, 5,844,063 and 6,160,083 being cited as examples, Terpene phenolic resins useful in the invention are available as commercial products.
Preferably the biodegradable polymer coating layer contains at least 2 weight-%, more preferably at least 4 weight-%, and most preferably at least 10 weight-% of terpene phenolic resin blended with polylactide. The share of polylactide in said blends would be at most 98 weight-%, more preferably at most 96 weight-%, and most preferably at most 90 weight-%, respectively.
The upper limit for the share of terpene phenolic resin in the blend may be 20 weight-%, preferably 15 weight-%, the remaining 80 weight-%, preferably 85 weight-%, being polylactide. Suitably the blend would substantially consist of 5-15 weight-% of terpene phenolic resin and 85-95 weight-% of polylactide.
The fibrous substrate in the packaging material may be paper or board, paperboard as well as cardboard.
The biodegradable polymer coating layer as discussed above may be in a direct contact with the fibrous substrate of the packaging material. The terpene phenolic resin serves to improve adhesion of the coating layer to the underlying fibrous substrate. In case of a multilayer coating said coating layer would be the lower-most layer.
The biodegradable polymer coating layer as discussed above may also form the uppermost surface layer of the coated packaging material. In this case the terpene phenolic resin serves to improve the heat-sealability of the polymer coated packaging material. If the coating is a monolayer coating its aim is to improve both adhesion to the fibrous substrate and heat-sealability.
In case of a multilayer coating each layer should consist of biodegradable polymers so as to secure biodegradability of the packaging material as a whole. The material may have a polymer coating on one side or on both sides thereof. The coatings on the opposite sides of the fibrous substrate may be similar or differ from each other.
The heat-sealed product package according to the invention is a closed package partially or, preferably, completely made of the packaging material as described above. Such sealed packages may be carton packages for dry products such as chocolate, tobacco, cosmetics, bottled alcoholic beverages, etc., in which at least the outer surface is polymer coated, the heat seal having the coated outer side of the package sealed to the coated or uncoated inner side of the package.
The invention also includes heat-sealed liquid packages, in which at least the inner surface of the package has a polymer coating to prevent wetting of the fibrous substrate. Preferably the fibrous substrate is polymer coated on both sides. The inner side of the package may have a multilayer coating including at least one oxygen barrier layer and an innermost heat-seal layer.
The invention even comprises heat-sealed containers made of the packaging material according to the invention, such as disposable drinking cups for hot or cold drinks such as coffee, juice etc., in which the polymer coating lies in the inside of the container in contact with the drink.
The invention includes use of terpene phenolic resin as a blend with polylactide to improve the heat-sealability of an extruded polymer coating layer made from said blend. An addition of 2 weight-% of the resin brought a clear improvement in terms of the hot air temperature needed for the heat-sealing, and increasing the share of the resin to 10 weight-% produced a progressively improving result as decreasing sealing air temperatures required.
The invention further includes use of terpene phenolic resin as a blend with polylactide for increased line speed in extrusion of a polymer coating layer comprising said blend. An addition as small as 1 weight-% of the resin allows nearly doubling the line speed as compared to pure polylactide, and additions in the range of 1-10 weight-% have been found to yield good results.
The invention even includes use of terpene phenolic resin as a blend with polylactide for reduced neck-in in extrusion of a polymer coating layer comprising said blend. A clear reduction is achieved by adding 2 weight-% of the resin to the blend, and an addition of 10 weight-% brings a significant further improvement.
In each case the blend is preferably used for extrusion of a polymer coating layer onto a fibrous paper or board substrate of a packaging material.
Furthermore, the invention includes use of terpene phenolic resin as a blend with polylactide for improved adhesion as a polymer coating layer comprising said blend is extruded onto a fibrous paper or board substrate of a packaging material. A significant improvement as compared to pure polylactide was found with additions of 4 to 10 weight-% of the resin in the blend. Due to the improvement the weight of the polymer coating layer may be reduced, with material savings as a result.
In the following the invention is illustrated by means of laboratory tests. Extrusion grade polylactide was used as the basic coating polymer, which was blended with various amounts of terpene phenolic resin Sylvares TP 2040E by Arizona Chemicals. 47 to 49 weight-% of the resin was first compounded with 53 to 51 weight-% of polylactide, respectively, to form a masterbatch, and 2, 4, 8 and 20 weight-% of the masterbatch was then blended with polylactide to obtain the test materials. Thus the shares of the resin in the test materials were about 1, 2, 4 and 10 weight-%, respectively.
The blended test materials were then extruded as monolayers onto one side of a cupboard substrate having a weight of 210 g/m2, by varying the extruded coating weights and the line speed in extrusion. The results are shown in
The effect of the blended terpene phenolic resin on the line speed in extrusion can be seen from the measured results in
The test series of
In the test series of
More particularly,
If the packaging material has extruded polymer coatings on both sides, the coatings on the opposite sides need not be identical. There may be a monolayer coating on one side and a multilayer coating on the other side of the fibrous base. It is also possible to include in multilayer coatings layers of other biodegradable polymers suitable for extrusion coating, preferably in blends with polylactide. Examples of such other polymers are PBAT (polybutylene adipate terephtalate), PBSA (polybutylene succinate adipate), PBS (polybutylene succinate), PHA (polyhydroxy alkanoate), PHB (polyhydroxy butyrate), PHBV (polyhydroxybutyrate hydroxyvalerate), PGA (polyglycolic acid), PEG (polyethylene glycol), PCL (polycaprolactane), and starch based biopolymers. The innermost and/or the outermost layer of the multilayer structure shall be of the blend of PLA and the terpene phenolic resin, however.
Number | Date | Country | Kind |
---|---|---|---|
20115537 | May 2011 | FI | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FI2012/050543 | 5/31/2012 | WO | 00 | 11/29/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/164171 | 12/6/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5252646 | Iovine et al. | Oct 1993 | A |
5257491 | Rouyer | Nov 1993 | A |
5457175 | Scharrer et al. | Oct 1995 | A |
5506011 | Farrell | Apr 1996 | A |
5723566 | Salvetat et al. | Mar 1998 | A |
5844063 | Salvetat et al. | Dec 1998 | A |
RE36177 | Rouyer | Apr 1999 | E |
6160083 | Thompson et al. | Dec 2000 | A |
6645584 | Kuusipalo | Nov 2003 | B1 |
6767972 | Irick, Jr. | Jul 2004 | B1 |
7422782 | Haedt et al. | Sep 2008 | B2 |
20020065345 | Narita et al. | May 2002 | A1 |
20020178506 | Corzani et al. | Dec 2002 | A1 |
20030216492 | Bowden | Nov 2003 | A1 |
20040213941 | Whitehouse | Oct 2004 | A1 |
20050192410 | Scheer et al. | Sep 2005 | A1 |
20070259195 | Chou et al. | Nov 2007 | A1 |
20080176015 | Yamamatsu | Jul 2008 | A1 |
20080311320 | Hiruma | Dec 2008 | A1 |
20090239433 | Kurihara | Sep 2009 | A1 |
20100305280 | Whitehouse | Dec 2010 | A1 |
20100323196 | Dou | Dec 2010 | A1 |
20130004760 | Pellingra | Jan 2013 | A1 |
20130071677 | Penttinen | Mar 2013 | A1 |
20130137562 | Penttinen | May 2013 | A1 |
20140147604 | Nevalainen | May 2014 | A1 |
20150274367 | Nevalainen | Oct 2015 | A1 |
20150284133 | Nevalainen | Oct 2015 | A1 |
Number | Date | Country |
---|---|---|
0699800 | Mar 1996 | EP |
1297949 | Apr 2003 | EP |
1327663 | Jul 2003 | EP |
1094944 | Sep 2004 | EP |
2513091 | Apr 1996 | JP |
2005002200 | Jan 2005 | JP |
Entry |
---|
http://www.industrycortex.com/datasheets/profile/3794770, 2016. |
Machine translation of JP 2005002200 A, 2017. |
Rauwendaal (Extrusion, Encyclopedia of Polymer Science and Technology, vol. 2, 2001, p. 497-558). |
First Office Action dated Nov. 20, 2014, in Chinese Patent Application No. 201280026617.X, with English translation. |
Finish Search Report dated Feb. 27, 2012, issued in Finish Application No. 20115537. |
PCT/ISA/210—International Search Report dated Oct. 1, 2012, issued in PCT/FI2012/050543. |
PCT/ISA/237—Written Opinion of the International Searching Authority dated Oct. 1, 2012, issued in PCT/FI2012/050543. |
Number | Date | Country | |
---|---|---|---|
20140099502 A1 | Apr 2014 | US |