The disclosure relates to gas turbine engines, and more particularly to heat shields used in gas turbine engines.
Gas turbine engines operate according to a continuous-flow, Brayton cycle. A compressor section pressurizes an ambient air stream, fuel is added and the mixture is burned in a central combustor section. The combustion products expand through a turbine section where bladed rotors convert thermal energy from the combustion products into mechanical energy for rotating one or more centrally mounted shafts. The shafts, in turn, drive the forward compressor section, thus continuing the cycle. Gas turbine engines are compact and powerful power plants, making them suitable for powering aircraft, heavy equipment, ships and electrical power generators. In power generating applications, the combustion products can also drive a separate power turbine attached to an electrical generator.
For many stator vane assemblies, a fairing is disposed about a frame in order to define a main gas flow path for the gas turbine engine. As the fairing is directly exposed to gas flow including combustion gases, the fairing can be heated to high temperatures during operation. Heat from the fairing can heat the frame in an undesirable manner.
An assembly for a gas turbine engine includes a strut and a heat shield. The heat shield is disposed adjacent the strut and the heat shield and is adapted to contain a cooling air flow that passes along first cavity between the heat shield and the strut.
An assembly for a gas turbine engine includes a frame and a heat shield. The frame includes a strut and a casing. The heat shield is supported from the casing and disposed adjacent the strut to form a first cavity therebetween.
A stator assembly for a gas turbine engine includes a frame, a fairing, and a heat shield. The frame includes a strut. The fairing is disposed within the frame to form a main gas flow path for the gas turbine engine. The heat shield is disposed between the fairing and the strut, and the heat shield is adapted to separate a cooler air disposed in a first cavity that is formed between the heat shield and the strut from a warmer air disposed in a second cavity that is formed between the framing and the heat shield.
The present application discloses a heat shield that can be positioned around a strut and between the strut and a fairing. This heat shield can direct a cooler secondary air flow along the strut to maximize effectiveness of the cooler air in cooling the strut before allowing the air to move away from the strut. Additionally, the application discloses the heat shield can be attached to a cooler component (e.g., cooler than fairing) such as an inner casing of the frame. This configuration avoids attachment of the heat shield to the fairing, which is undesirable due to conduction heating from the fairing to the heat shield. As a result of the configurations disclosed, the gas turbine engine can experience increased efficiency and less expensive materials can be used for construction of the fairing.
An exemplary industrial gas turbine engine 10 is circumferentially disposed about a central, longitudinal axis or axial engine centerline axis 12 as illustrated in
It is understood that
Frame 42 comprises a stator component of gas turbine engine 10 (
As illustrated in
Fairing 46 is adapted to be disposed within frame 42 between outer radial casing 48 and inner radial casing 50. Outer radial platform 54 of fairing 46 has a generally conical shape. Similarly, inner radial platform 56 has a generally conical shape. Inner radial platform 56 is spaced from outer radial platform 54 by strut liners 58. Strut liners 58 are adapted to be disposed around struts 52 of frame 42 as well as strut shields 62 of heat shield 44 when fairing 46 is assembled on frame 42 as illustrated in
As illustrated in
Heat shield 44 can be disposed between frame 42 and fairing 46. Strut shields 62 extend about struts 52 and are disposed between struts 52 and strut liners 58. Strut shields 62 extend from forward shield 64F and aft shield 64A. Strut shield 62 can initially be divided for installation around struts 52 and then welded, riveted, brazed, or otherwise connected together to form an uninterrupted segment with little or no gaps. Forward shield 64F and aft shield 64A are disposed between outer radial platform 54 and outer radial casing 48 and are connected together by welding, brazing, riveting or other means. In the embodiment of
Each strut shield 62 extends generally radially inward from forward shield 64F and aft shield 64A. As illustrated in the embodiment of
Attachment of heat shield 44 to frame 42 via mount portion 66 is desirable as it allows heat shield 44 to be attached to a cooler component such as frame 42. This configuration avoids attachment to fairing 46, which is undesirable due to conduction heating from fairing 46 to heat shield 44. In the embodiment shown in FIG. 2, strut shield 62, forward shield 64F, and aft shield 64A are connected to one another by welding, riveting, brazing, or other means of joining. In the embodiment shown in
As illustrated in
During operation, cavity 70 contains a warmer gas than cavity 72. This is due to heat transfer from strut liner 58. Strut shield 62 is disposed between strut liner 58 and strut 52 and is adapted to block a line-of-sight from strut liner 58 to strut 52. As used therein, block line-of-sight means that no portion of frame 42 is exposed to faring 46 travelling axially from a forward end of frame 42 to an aft end. Thus, to block line-of-sight a part of strut shield 62 is interposed between frame 42 and fairing 46. This configuration blocks or reduces radiant heat transfer from strut liner 58 to strut 52 and keeps secondary gas flow 60 (
The present application discloses a heat shield that can be positioned around a strut and between the strut and a fairing. This heat shield can direct a cooler secondary air flow along the strut to maximize effectiveness of the cooler air in cooling the strut before allowing the air to move away from the strut. Additionally, the application discloses the heat shield can be attached to a cooler component (e.g., cooler than fairing) such as an inner casing of the frame. This configuration avoids attachment of the heat shield to the fairing, which is undesirable due to conduction heating from the fairing to the heat shield. As a result of the configurations disclosed, the gas turbine engine can experience increased efficiency and less expensive materials can be used for construction of the fairing.
Discussion of Possible Embodiments
The following are non-exclusive descriptions of possible embodiments of the present invention.
An assembly for a gas turbine engine includes a strut and a heat shield. The heat shield is disposed adjacent the strut and the heat shield and is adapted to contain a cooling air flow that passes along first cavity between the heat shield and the strut.
The assembly of the preceding paragraph can optionally include, additionally and/or alternatively, any one or more of the following features, configurations and/or additional components:
a fairing disposed about the strut and the heat shield to form a main gas flow path for the gas turbine engine;
the heat shield directs the cooling air flow away from entering a second cavity formed between the heat shield and the strut;
the second cavity contains a warmer gas then the first cavity;
a forward portion of the heat shield is disposed in close proximity to and generally confirms to a shape of a forward portion of the fairing;
a forward portion of the heat shield is not connected to either the fairing or strut;
a rear portion of the heat shield is disposed in close proximity to and generally conforms to a shape of a rear portion of the strut;
an inner radial casing connected to the strut, and the heat shield is connected to and supported from the inner radial casing; and
the heat shield that surrounds the strut is comprised of a single uninterrupted segment.
An assembly for a gas turbine engine includes a frame and a heat shield. The frame includes a strut and a casing. The heat shield is supported from the casing and disposed adjacent the strut to form a first cavity therebetween.
The assembly of the preceding paragraph can optionally include, additionally and/or alternatively, any one or more of the following features, configurations and/or additional components:
the first cavity receives a cooling air flow to cool the strut;
a fairing disposed about the strut and the heat shield to form a portion of a main gas flow path for the gas turbine engine;
the heat shield directs the cooling air flow away from entering a second cavity formed between the heat shield and the strut;
the second cavity contains a warmer gas then the first cavity;
a forward portion of the heat shield is disposed in close proximity to and generally confirms to a shape of a forward portion of the fairing;
a rear portion of the heat shield is disposed in close proximity to and generally conforms to a shape of a rear portion of the strut; and
the heat shield that surrounds the strut is comprised of a single uninterrupted segment.
A stator assembly for a gas turbine engine includes a frame, a fairing, and a heat shield. The frame includes a strut. The fairing is disposed within the frame to form a main gas flow path for the gas turbine engine. The heat shield is disposed between the fairing and the strut, and the heat shield is adapted to separate a cooler air disposed in a first cavity that is formed between the heat shield and the strut from a warmer air disposed in a second cavity that is formed between the framing and the heat shield.
The assembly of the preceding paragraph can optionally include, additionally and/or alternatively, any one or more of the following features, configurations and/or additional components:
an inner radial casing connected to the strut, the heat shield is connected to and supported from the inner radial casing; and
the heat shield that surrounds the strut is comprised of a single uninterrupted segment.
While the invention has been described with reference to an exemplary embodiment(s), it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment(s) disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/076377 | 12/19/2013 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61747225 | Dec 2012 | US |