Heat shield for cooling a strut

Information

  • Patent Grant
  • 9982561
  • Patent Number
    9,982,561
  • Date Filed
    Thursday, December 19, 2013
    11 years ago
  • Date Issued
    Tuesday, May 29, 2018
    6 years ago
Abstract
An assembly for a gas turbine engine includes a strut and a heat shield. The heat shield is disposed adjacent the strut and the heat shield and is adapted to contain a cooling air flow that passes along first cavity between the heat shield and the strut.
Description
BACKGROUND

The disclosure relates to gas turbine engines, and more particularly to heat shields used in gas turbine engines.


Gas turbine engines operate according to a continuous-flow, Brayton cycle. A compressor section pressurizes an ambient air stream, fuel is added and the mixture is burned in a central combustor section. The combustion products expand through a turbine section where bladed rotors convert thermal energy from the combustion products into mechanical energy for rotating one or more centrally mounted shafts. The shafts, in turn, drive the forward compressor section, thus continuing the cycle. Gas turbine engines are compact and powerful power plants, making them suitable for powering aircraft, heavy equipment, ships and electrical power generators. In power generating applications, the combustion products can also drive a separate power turbine attached to an electrical generator.


For many stator vane assemblies, a fairing is disposed about a frame in order to define a main gas flow path for the gas turbine engine. As the fairing is directly exposed to gas flow including combustion gases, the fairing can be heated to high temperatures during operation. Heat from the fairing can heat the frame in an undesirable manner.


SUMMARY

An assembly for a gas turbine engine includes a strut and a heat shield. The heat shield is disposed adjacent the strut and the heat shield and is adapted to contain a cooling air flow that passes along a first cavity between the heat shield and the strut.


An assembly for a gas turbine engine includes a frame and a heat shield. The frame includes a strut and a casing. The heat shield is supported from the casing and disposed adjacent the strut to form a first cavity therebetween.


A stator assembly for a gas turbine engine includes a frame, a fairing, and a heat shield. The frame includes a strut. The fairing is disposed within the frame to form a main gas flow path for the gas turbine engine. The heat shield is disposed between the fairing and the strut, and the heat shield is adapted to separate a cooler air disposed in a first cavity that is formed between the heat shield and the strut from a warmer air disposed in a second cavity that is formed between the framing and the heat shield.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a quarter sectional view of an industrial turbine.



FIG. 2 is a cross-section of an assembly including a frame, a fairing, and a heat shield arranged together.



FIG. 3 is a cross-sectional view of the strut, fairing, and heat shield along section 3-3 of FIG. 2.





DETAILED DESCRIPTION

The present application discloses a heat shield that can be positioned around a strut and between the strut and a fairing. This heat shield can direct a cooler secondary air flow along the strut to maximize effectiveness of the cooler air in cooling the strut before allowing the air to move away from the strut. Additionally, the application discloses the heat shield can be attached to a cooler component (e.g., cooler than fairing) such as an inner casing of the frame. This configuration avoids attachment of the heat shield to the fairing, which is undesirable due to conduction heating from the fairing to the heat shield. As a result of the configurations disclosed, the gas turbine engine can experience increased efficiency and less expensive materials can be used for construction of the fairing.


An exemplary industrial gas turbine engine 10 is circumferentially disposed about a central, longitudinal axis or axial engine centerline axis 12 as illustrated in FIG. 1. The engine 10 includes in series order from front to rear, low and high pressure compressor sections 16 and 18, a central combustor section 20 and high and low pressure turbine sections 22 and 24. In some examples, a free turbine section 26 is disposed downstream of the low pressure turbine 24. Although illustrated with reference to an industrial gas turbine engine, this application also extends to other configurations such as aero engines with a fan or gear driven fan, and engines with more or fewer sections than illustrated.


In gas turbines, incoming ambient air 30 becomes pressurized air 32 in the compressors 16 and 18. Fuel mixes with the pressurized air 32 in the combustor section 20, where it is burned to produce combustion gases 34 that expand as they flow through turbine sections 22, 24 and power turbine 26. Turbine sections 22 and 24 can rotate in response to the combustion gases 34 to drive high and low pressure rotor shafts 36 and 38 respectively, which in turn rotate the attached compressor sections 18, 16. Free turbine section 26 can, for example, drive an electrical generator, pump, gearbox, or other accessory (not shown).


It is understood that FIG. 1 provides a basic understanding and overview of the various sections and the basic operation of an industrial gas turbine engine. The present application is applicable to all types of gas turbine engines, including those with aerospace applications.



FIG. 2 shows a cross-section of assembly 40 with heat shield 44 installed between frame 42 and fairing 46. Assembly 40 includes frame 42, heat shield 44, and fairing 46. Frame 42 includes outer radial casing 48, inner radial casing 50, and struts 52. Fairing 46 includes outer radial platform 54, inner radial platform 56, and strut liners 58. Heat shield 44 includes strut shields 62, forward shield 64F, aft shield 64A, and mount portion 66.


Frame 42 comprises a stator component of gas turbine engine 10 (FIG. 1) and can form portions of compressor sections 16 and 18 or turbine sections 22 and 24. Heat shield 44 and fairing 46 are shown installed within frame 42 in FIG. 2. Both heat shield 44 and fairing 46 are connected to the frame 42. In FIG. 2, heat shield 44 is connected to frame 42 in a different location than fairing 46, in particular, fairing 46 is connected at or near a forward end of inner radial casing 50 and heat shield 44 is connected at or near an aft end of inner radial casing 50. Fairing 46 is disposed within the frame 42 to form at least a portion of the main gas flow path for a portion of gas turbine engine 10. It should be understood that the embodiments of heat shield 44 are provided in relation to a specific embodiment of frame 42, in particular, a frame that comprises a low pressure turbine exhaust case, but heat shield 44 described is applicable to other gas turbine sections and elements including stator vane components.


As illustrated in FIG. 2, outer radial casing 48 of frame 42 is conically shaped and forms a portion of the casing of gas turbine engine 10 (FIG. 1), for example, in low pressure turbine section 24. Outer radial casing 48 abuts and is connected to second outer radial casing 49 of another module of gas turbine engine 10. Inner radial casing 50 is disposed generally radially inward of outer radial casing 48 and is connected thereto by a plurality of circumferentially spaced struts 52 (only one is shown in FIG. 2).


Fairing 46 is adapted to be disposed within frame 42 between outer radial casing 48 and inner radial casing 50. Outer radial platform 54 of fairing 46 has a generally conical shape. Similarly, inner radial platform 56 has a generally conical shape. Inner radial platform 56 is spaced from outer radial platform 54 by strut liners 58. Strut liners 58 are adapted to be disposed around struts 52 of frame 42 as well as strut shields 62 of heat shield 44 when fairing 46 is assembled on frame 42 as illustrated in FIG. 2. As discussed previously, outer radial platform 54, inner radial platform 56, and strut liners 58, form at least a portion of the main gas flow path, which directs combustion gases 34 through the portion of gas turbine engine illustrated in FIG. 2.


As illustrated in FIG. 2, a secondary air flow 60, which is cooler than combustion gases 34, is provided and flows along struts 52. In particular, strut shields 62 of heat shield 44 act to contain secondary air flow 60 around struts 52 and generally direct secondary air flow 60 inward radially along a cavity between heat shield 44 and struts 52. This arrangement allows for a cooling air flow along struts 52 to keep struts 52 relatively cooler than other components such as fairing 46.


Heat shield 44 can be disposed between frame 42 and fairing 46. Strut shields 62 extend about struts 52 and are disposed between struts 52 and strut liners 58. Strut shields 62 extend from forward shield 64F and aft shield 64A. Strut shield 62 can initially be divided for installation around struts 52 and then welded, riveted, brazed, or otherwise connected together to form an uninterrupted segment with little or no gaps. Forward shield 64F and aft shield 64A are disposed between outer radial platform 54 and outer radial casing 48 and are connected together by welding, brazing, riveting or other means. In the embodiment of FIG. 2, forward shield 64F and aft shield 64A are adapted to direct secondary air flow 60 away from entering a cavity formed between heat shield 44 (in particular strut shields 62) and struts 52.


Each strut shield 62 extends generally radially inward from forward shield 64F and aft shield 64A. As illustrated in the embodiment of FIG. 2, an aft portion (downstream with respect to flow direction of combustion gases 34) of each strut shield 62 is adapted as mount portion 66. Mount portion 66 is located generally radially below and aft of strut shield 62. Mount portion 66 is adapted to connect to inner radial casing 50 of frame 42. This connection can be accomplished by welding, riveting, brazing, bolting, or other connection. In the embodiment of FIG. 2, mount portion 66 is connected to inner radial case 50 by one or more fasteners 68.


Attachment of heat shield 44 to frame 42 via mount portion 66 is desirable as it allows heat shield 44 to be attached to a cooler component such as frame 42. This configuration avoids attachment to fairing 46, which is undesirable due to conduction heating from fairing 46 to heat shield 44. In the embodiment shown in FIG. 2, strut shield 62, forward shield 64F, and aft shield 64A are connected to one another by welding, riveting, brazing, or other means of joining. In the embodiment shown in FIG. 2, strut shield 62, forward shield 64F, and aft shield 64A are supported by mount portion 66. In other embodiments, strut shield 62, forward shield 64F, and aft shield 64A can comprise separate components, can be segmented, or can comprise subassemblies of several components. Additionally, in other embodiments, one or more components of heat shield 44 such as strut shield 62, forward shield 64F, and aft shield 64A may not be connected together but instead are disposed with gaps therebetween. In yet other embodiments, one or more components of heat shield 44 such as strut shield 62, aft shield 64A, and/or forward shield 64F can be connected to and/or supported from other portions of frame 42 such as outer radial casing 48.



FIG. 3 is a cross-sectional view along 3-3 of FIG. 2. FIG. 3 is sectioned to extend through one strut 52, one strut shield 62, and one strut liner 58. First cavity 70 is defined between strut liner 58 and strut shield 62. Second cavity 72 is defined between strut shield 62 and strut 52.


As illustrated in FIG. 3, strut shield 62 a single uninterrupted segment with no gaps around the circumference. In other embodiments, strut shield 62 can be segmented with gaps or sections. As discussed previously, strut liner 58, strut shield 62 and strut 52 extend generally radially with respect to the centerline axis 12 of gas turbine engine 10 (FIG. 1). As illustrated in the embodiment of FIG. 3, a forward portion (upstream portion with respect to a direction of combustion gas 34 flow in FIG. 2) of strut shield 62 is disposed in close proximity to and generally confirms to a shape of a forward portion of strut liner 58. Similarly, as shown in FIG. 3, a rear portion (downstream portion with respect to a direction of combustion gas 34 flow in FIG. 2) of strut shield 62 is disposed in close proximity to and generally conforms to a shape of a rear portion of strut 52. Strut liner 58 is generally aerodynamically shaped to direct combustion gases 34 in a desired manner.


During operation, cavity 70 contains a warmer gas than cavity 72. This is due to heat transfer from strut liner 58. Strut shield 62 is disposed between strut liner 58 and strut 52 and is adapted to block a line-of-sight from strut liner 58 to strut 52. As used therein, block line-of-sight means that no portion of frame 42 is exposed to faring 46 travelling axially from a forward end of frame 42 to an aft end. Thus, to block line-of-sight a part of strut shield 62 is interposed between frame 42 and fairing 46. This configuration blocks or reduces radiant heat transfer from strut liner 58 to strut 52 and keeps secondary gas flow 60 (FIG. 2) contained adjacent strut 52 within second cavity 72. Cooler secondary gas flow 60 is directed into second cavity 72 and passes along strut 52 to keep strut 52 relatively cooler than strut liner 58.


The present application discloses a heat shield that can be positioned around a strut and between the strut and a fairing. This heat shield can direct a cooler secondary air flow along the strut to maximize effectiveness of the cooler air in cooling the strut before allowing the air to move away from the strut. Additionally, the application discloses the heat shield can be attached to a cooler component (e.g., cooler than fairing) such as an inner casing of the frame. This configuration avoids attachment of the heat shield to the fairing, which is undesirable due to conduction heating from the fairing to the heat shield. As a result of the configurations disclosed, the gas turbine engine can experience increased efficiency and less expensive materials can be used for construction of the fairing.


Discussion of Possible Embodiments

The following are non-exclusive descriptions of possible embodiments of the present invention.


An assembly for a gas turbine engine includes a strut and a heat shield. The heat shield is disposed adjacent the strut and the heat shield and is adapted to contain a cooling air flow that passes along first cavity between the heat shield and the strut.


The assembly of the preceding paragraph can optionally include, additionally and/or alternatively, any one or more of the following features, configurations and/or additional components:


a fairing disposed about the strut and the heat shield to form a main gas flow path for the gas turbine engine;


the heat shield directs the cooling air flow away from entering a second cavity formed between the heat shield and the strut;


the second cavity contains a warmer gas then the first cavity;


a forward portion of the heat shield is disposed in close proximity to and generally confirms to a shape of a forward portion of the fairing;


a forward portion of the heat shield is not connected to either the fairing or strut;


a rear portion of the heat shield is disposed in close proximity to and generally conforms to a shape of a rear portion of the strut;


an inner radial casing connected to the strut, and the heat shield is connected to and supported from the inner radial casing; and


the heat shield that surrounds the strut is comprised of a single uninterrupted segment.


An assembly for a gas turbine engine includes a frame and a heat shield. The frame includes a strut and a casing. The heat shield is supported from the casing and disposed adjacent the strut to form a first cavity therebetween.


The assembly of the preceding paragraph can optionally include, additionally and/or alternatively, any one or more of the following features, configurations and/or additional components:


the first cavity receives a cooling air flow to cool the strut;


a fairing disposed about the strut and the heat shield to form a portion of a main gas flow path for the gas turbine engine;


the heat shield directs the cooling air flow away from entering a second cavity formed between the heat shield and the strut;


the second cavity contains a warmer gas then the first cavity;


a forward portion of the heat shield is disposed in close proximity to and generally confirms to a shape of a forward portion of the fairing;


a rear portion of the heat shield is disposed in close proximity to and generally conforms to a shape of a rear portion of the strut; and


the heat shield that surrounds the strut is comprised of a single uninterrupted segment.


A stator assembly for a gas turbine engine includes a frame, a fairing, and a heat shield. The frame includes a strut. The fairing is disposed within the frame to form a main gas flow path for the gas turbine engine. The heat shield is disposed between the fairing and the strut, and the heat shield is adapted to separate a cooler air disposed in a first cavity that is formed between the heat shield and the strut from a warmer air disposed in a second cavity that is formed between the framing and the heat shield.


The assembly of the preceding paragraph can optionally include, additionally and/or alternatively, any one or more of the following features, configurations and/or additional components:


an inner radial casing connected to the strut, the heat shield is connected to and supported from the inner radial casing; and


the heat shield that surrounds the strut is comprised of a single uninterrupted segment.


While the invention has been described with reference to an exemplary embodiment(s), it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment(s) disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.

Claims
  • 1. An assembly for a gas turbine engine, comprising: a strut;a heat shield disposed adjacent the strut and the heat shield is adapted to contain a cooling air flow that passes along a first cavity between the heat shield and the strut, the heat shield comprising: a strut shield disposed around the strut; anda fairing disposed about the strut and the heat shield to form a portion of a main gas flow path for the gas turbine engine, wherein a forward portion of the strut shield is closer to a forward portion of the fairing than a forward portion of the strut as viewed in a cross section taken through the fairing, the heat shield, and the strut along a flow direction and between radially opposed ends of the fairing.
  • 2. The assembly of claim 1, wherein the heat shield directs the cooling air flow away from entering a second cavity formed between the heat shield and the fairing.
  • 3. The assembly of claim 2, wherein the second cavity contains a warmer gas than the first cavity.
  • 4. The assembly of claim 1, wherein the forward portion of the strut shield generally conforms to a shape of the forward portion of the fairing.
  • 5. The assembly of claim 4, wherein the forward portion of the strut shield is not connected to either the fairing or the strut.
  • 6. The assembly of claim 1, wherein a rear portion of the strut shield is closer to a rear portion of the strut than a rear portion of the fairing, and wherein the rear portion of the strut shield generally conforms to a shape of the rear portion of the strut.
  • 7. The assembly of claim 1, further comprising an inner radial casing connected to the strut, wherein the heat shield is connected to and supported from the inner radial casing.
  • 8. The assembly of claim 1, wherein the heat shield that surrounds the strut is comprised of a single uninterrupted segment.
  • 9. An assembly for a gas turbine engine, comprising: a frame including a strut and a casing;a heat shield supported from the casing and disposed adjacent the strut to define a first cavity therebetween, the heat shield comprising: a strut shield disposed around the strut; anda fairing disposed about the strut and the heat shield to form a portion of a main gas flow path for the gas turbine engine, wherein a forward portion of the strut shield is closer to a forward portion of the fairing than a forward portion of the strut as viewed in a cross section taken through the fairing, the heat shield, and the strut along a flow direction and between radially opposed ends of the fairing.
  • 10. The assembly of claim 9, wherein the first cavity receives a cooling air flow to cool the strut.
  • 11. The assembly of claim 9, wherein the heat shield directs the cooling air flow away from entering a second cavity formed between the heat shield and the fairing.
  • 12. The assembly of claim 11, wherein the second cavity contains a warmer gas than the first cavity.
  • 13. The assembly of claim 9, wherein the forward portion of the strut shield generally conforms to a shape of the forward portion of the fairing.
  • 14. The assembly of claim 9, wherein a rear portion of the strut shield is closer to a rear portion of the strut than a rear portion of the fairing, and wherein the rear portion of the heat shield generally conforms to a shape of the rear portion of the strut.
  • 15. The assembly of claim 9, wherein the heat shield that surrounds the strut is comprised of a single uninterrupted segment.
  • 16. A stator assembly for a gas turbine engine, comprising: a frame including a strut;a fairing disposed within the frame to form a portion of a main gas flow path for the gas turbine engine;a heat shield disposed between the fairing and the strut, wherein the heat shield is adapted to separate a first portion of air disposed in a first cavity formed between the heat shield and the strut from a second portion of air disposed in a second cavity formed between the frame and the heat shield, wherein the first portion of air is cooler than the second portion of air; andan inner radial casing connected to the strut, wherein the heat shield is connected to and directly radially supported from the inner radial casing, the fairing is connected to and supported from the inner radial casing, and wherein the heat shield is connected at a different location than the fairing.
  • 17. The assembly of claim 16, wherein the heat shield that surrounds the strut is comprised of a single uninterrupted segment.
PCT Information
Filing Document Filing Date Country Kind
PCT/US2013/076377 12/19/2013 WO 00
Publishing Document Publishing Date Country Kind
WO2014/105599 7/3/2014 WO A
US Referenced Citations (154)
Number Name Date Kind
2214108 Nichols Sep 1940 A
3576328 Vase Apr 1971 A
3802046 Wachtell et al. Apr 1974 A
3970319 Carroll et al. Jul 1976 A
4009569 Kozlin Mar 1977 A
4044555 McLoughlin et al. Apr 1977 A
4088422 Martin May 1978 A
4114248 Smith et al. Sep 1978 A
4305697 Cohen et al. Dec 1981 A
4321007 Dennison Mar 1982 A
4369016 Dennison Jan 1983 A
4478551 Honeycutt, Jr. et al. Oct 1984 A
4645217 Honeycutt, Jr. et al. Feb 1987 A
4678113 Bridges et al. Jul 1987 A
4738453 Ide Apr 1988 A
4756536 Belcher Jul 1988 A
4793770 Schonewald et al. Dec 1988 A
4920742 Nash et al. May 1990 A
4987736 Ciokajlo et al. Jan 1991 A
4989406 Vdoviak et al. Feb 1991 A
4993918 Myers et al. Feb 1991 A
5031922 Heydrich Jul 1991 A
5042823 Mackay et al. Aug 1991 A
5071138 Mackay et al. Dec 1991 A
5076049 VonBenken et al. Dec 1991 A
5100158 Gardner Mar 1992 A
5108116 Johnson et al. Apr 1992 A
5169159 Pope et al. Dec 1992 A
5174584 Lahrman Dec 1992 A
5188507 Sweeney Feb 1993 A
5211541 Fledderjohn et al. May 1993 A
5236302 Weisgerber et al. Aug 1993 A
5246295 Ide Sep 1993 A
5265807 Steckbeck et al. Nov 1993 A
5269057 Mendham Dec 1993 A
5272869 Dawson et al. Dec 1993 A
5273397 Czachor et al. Dec 1993 A
5292227 Czachor et al. Mar 1994 A
5312227 Grateau et al. May 1994 A
5338154 Meade et al. Aug 1994 A
5357744 Czachor et al. Oct 1994 A
5370402 Gardner et al. Dec 1994 A
5385409 Ide Jan 1995 A
5401036 Basu Mar 1995 A
5438756 Halchak et al. Aug 1995 A
5474305 Flower Dec 1995 A
5483792 Czachor et al. Jan 1996 A
5558341 McNickle et al. Sep 1996 A
5597286 Dawson Jan 1997 A
5605438 Burdgick et al. Feb 1997 A
5609467 Lenhart et al. Mar 1997 A
5632493 Gardner May 1997 A
5634767 Dawson Jun 1997 A
5691279 Tauber et al. Nov 1997 A
5755445 Arora May 1998 A
5851105 Fric et al. Dec 1998 A
5911400 Niethammer et al. Jun 1999 A
6163959 Arraitz et al. Dec 2000 A
6196550 Arora et al. Mar 2001 B1
6227800 Spring et al. May 2001 B1
6337751 Kimizuka Jan 2002 B1
6343912 Mangeiga et al. Feb 2002 B1
6358001 Bosel et al. Mar 2002 B1
6364316 Arora Apr 2002 B1
6439841 Bosel Aug 2002 B1
6511284 Darnell et al. Jan 2003 B2
6578363 Hashimoto et al. Jun 2003 B2
6601853 Inoue Aug 2003 B2
6612807 Czachor Sep 2003 B2
6619030 Seda et al. Sep 2003 B1
6638013 Nguyen et al. Oct 2003 B2
6652229 Lu Nov 2003 B2
6672833 MacLean et al. Jan 2004 B2
6719524 Nguyen et al. Apr 2004 B2
6736401 Chung et al. May 2004 B2
6792758 Dowman Sep 2004 B2
6796765 Kosel et al. Sep 2004 B2
6805356 Inoue Oct 2004 B2
6811154 Proctor et al. Nov 2004 B2
6935631 Inoue Aug 2005 B2
6969826 Trewiler et al. Nov 2005 B2
6983608 Allen, Jr. et al. Jan 2006 B2
7055305 Baxter et al. Jun 2006 B2
7094026 Coign et al. Aug 2006 B2
7100358 Gekht et al. Sep 2006 B2
7200933 Lundgren et al. Apr 2007 B2
7229249 Durocher et al. Jun 2007 B2
7238008 Bobo et al. Jul 2007 B2
7367567 Farah et al. May 2008 B2
7371044 Nereim May 2008 B2
7389583 Lundgren Jun 2008 B2
7614150 Lundgren Nov 2009 B2
7631879 Diantonio Dec 2009 B2
7673461 Cameriano et al. Mar 2010 B2
7677047 Somanath et al. Mar 2010 B2
7735833 Braun et al. Jun 2010 B2
7798768 Strain et al. Sep 2010 B2
7815417 Somanath et al. Oct 2010 B2
7824152 Morrison Nov 2010 B2
7891165 Bader et al. Feb 2011 B2
7909573 Cameriano et al. Mar 2011 B2
7955446 Dierberger Jun 2011 B2
7959409 Guo et al. Jun 2011 B2
7988799 Dierberger Aug 2011 B2
8069648 Snyder et al. Dec 2011 B2
8083465 Herbst et al. Dec 2011 B2
8091371 Durocher et al. Jan 2012 B2
8092161 Cai et al. Jan 2012 B2
8152451 Manteiga et al. Apr 2012 B2
8162593 Guimbard et al. Apr 2012 B2
8172526 Lescure et al. May 2012 B2
8177488 Manteiga et al. May 2012 B2
8221071 Wojno et al. Jul 2012 B2
8245399 Anantharaman et al. Aug 2012 B2
8245518 Durocher et al. Aug 2012 B2
8282342 Tonks Oct 2012 B2
8371127 Durocher et al. Feb 2013 B2
8371812 Manteiga et al. Feb 2013 B2
20030025274 Allan et al. Feb 2003 A1
20030042682 Inoue Mar 2003 A1
20030062684 Inoue Apr 2003 A1
20030062685 Inoue Apr 2003 A1
20050046113 Inoue Mar 2005 A1
20050050898 Noda Mar 2005 A1
20060010852 Gekht et al. Jan 2006 A1
20060123796 Aycock et al. Jun 2006 A1
20070025847 Wakazono et al. Feb 2007 A1
20080216300 Anderson et al. Sep 2008 A1
20100054927 Almstedt Mar 2010 A1
20100132371 Durocher et al. Jun 2010 A1
20100132374 Manteiga Jun 2010 A1
20100132377 Durocher et al. Jun 2010 A1
20100202872 Weidmann Aug 2010 A1
20100236244 Longardner Sep 2010 A1
20100275572 Durocher et al. Nov 2010 A1
20100275614 Fontaine et al. Nov 2010 A1
20100307165 Wong et al. Dec 2010 A1
20110000223 Russberg Jan 2011 A1
20110005234 Hashimoto et al. Jan 2011 A1
20110020116 Hashimoto Jan 2011 A1
20110061767 Vontell et al. Mar 2011 A1
20110081237 Durocher Apr 2011 A1
20110081239 Durocher Apr 2011 A1
20110081240 Durocher et al. Apr 2011 A1
20110085895 Durocher et al. Apr 2011 A1
20110214433 Feindel et al. Sep 2011 A1
20110262277 Sjoqvist et al. Oct 2011 A1
20110302929 Bruhwiler Dec 2011 A1
20120111023 Sjoqvist et al. May 2012 A1
20120156020 Kottilingam et al. Jun 2012 A1
20120186254 Ito et al. Jul 2012 A1
20120204569 Schubert Aug 2012 A1
20120227371 Johnson et al. Sep 2012 A1
20130011242 Beeck et al. Jan 2013 A1
Foreign Referenced Citations (10)
Number Date Country
0344877 Dec 1989 EP
2187019 May 2010 EP
2226086 Jun 1990 GB
WO 03020469 Mar 2003 WO
WO 2006007686 Jan 2006 WO
WO 2009157817 Dec 2009 WO
WO 2010002295 Jan 2010 WO
WO2010002296 Jan 2010 WO
WO2011129724 Oct 2011 WO
WO 2012158070 Nov 2012 WO
Non-Patent Literature Citations (2)
Entry
International Searching Authority, PCT Notification of Transmittal of the International Search Report and the Written Opinion, dated Apr. 15, 2014, 14 pages.
Extended European Search Report for EP Application No. 13868090.5, dated Feb. 15, 2016, 7 pages.
Related Publications (1)
Number Date Country
20150330248 A1 Nov 2015 US
Provisional Applications (1)
Number Date Country
61747225 Dec 2012 US