1. Technical Field
This invention relates generally to insulators for vehicle exhaust systems and more specifically to an insulator for a vehicle exhaust system that includes a shield that snaps onto the insulator to protect it from excessive heat build-up and consequent possible failure due to heat damage.
2. Background Information
As motorists drive their vehicles over roads, they encounter potholes, bumps and other uneven surfaces that shake and jolt the vehicle body. These vibrations and jarring shocks to the vehicle body may cause damage to various components and connections. One of the systems of the vehicle that may be damaged by such vibrations is the exhaust system. The vibrations may cause cracks in the welds between components of the system.
In order to dampen these vibrations and to reduce the potential side effects, manufacturers have customarily used rubber vibration insulators or dampers in the connections between the exhaust system and the vehicle chassis. These vibration dampers have worked fairly well until recently.
In the past, exhaust systems on automobiles included fairly long, straight sections of pipe that allowed air to flow freely and rapidly from the engine to the exterior. Hangers connected the exhaust pipes to the vehicle bodies and dampers were located periodically along the length of these pipes to support the system and insulate occupants from vibration in the pipes. The exhaust system allowed exhaust gases to escape from the vehicle and also allowed heat from the engine to be rapidly dissipated.
Specifically, elastomeric hangers provided a number of benefits, including retention of the exhaust system to the car, as well as providing a flexible attachment that could accommodate expansion and contraction of the exhaust system as a result of heating and cooling during vehicle operation. Still further, these elastomeric bushings would isolate vibrations in the system and system noise from reaching the vehicle occupants.
Problems with this system began to appear with the introduction of catalytic converters. Catalytic converters are used to reduce the release of noxious gases into the atmosphere. They tend to work best if they are heated and consequently they are located as near to the engine block as possible, but sufficiently far away to prevent the device from overheating and being damaged. Exhaust gases are hottest when they exit the engine and manufacturers have utilized this heat to heat up the catalytic converters to improve their performance. Sometimes manufacturers preheat the catalytic converter using a small electric resistance heater. Catalytic converters restrict the free airflow through the exhaust system. The noxious gases are filtered out, but the converters drastically reduce the rate of heat loss through the exhaust system. Heat tends to build up in the area surrounding the catalytic converter and through the rest of the exhaust system. As the catalytic converter slows the air flow through the exhaust system, the rate of heat loss from the system decreases and consequently there is a greater increase in the temperature of the exhaust pipes. This heat build-up in the rest of the system may result in the vibration insulators becoming overheated and damaged. The insulator may fail, resulting in an increase in disturbances from the exhaust system and ultimately in damage to or loss of the exhaust system itself.
Manufacturers have attempted to shield components from the heat build up caused by the reduction in the exhaust gas flow rate. Their attempts have included the use of metallic heat shields positioned above the catalytic convertor and along the exhaust system in order to prevent heat from entering the cab of the vehicle and to prevent fires and the like when heat is positioned adjacent to wire harnesses or other flammable material. Metallic shields are expensive to manufacture and fairly difficult to install if a problem is diagnosed. As such, these shields have not been utilized to protect exhaust insulators or vibration dampeners. As the exhaust system is relatively cheap to replace, this type of shield has not traditionally been used to protect the exhaust system. Other possible solutions to this problem have been the use of air spaces or gaps to separate components from each other, as well as the use of double layer exhaust pipes which include an air space between the two layers. However, these solutions have been fairly costly and it has been difficult to retrofit cars with these systems. The industry desires a device that addresses these problems.
The invention provides a heat shield for a vibration insulator that is used with a vehicle exhaust system. The vibration insulator is adapted for use in a motor vehicle having a chassis, an engine and an exhaust system that includes exhaust pipes. The heat shield is disposed over a portion of the vibration insulator to reduce the heat that reaches the vibration insulator, thereby reducing the likelihood of the failure of the vibration insulator.
Referring to
Exhaust system 14 is connected at one end to a manifold (not shown) that funnels exhaust gases from the cylinders (not shown) into exhaust system 14. A number of exhaust pipe sections 18, 20, 22 connect the components of exhaust system 14 together. A catalytic converter 24 is connected to the manifold (not shown) by pipe section 18 and to a muffler 26 by pipe section 20. Muffler 26 is connected to a tail pipe 28 by pipe section 22. Tail pipe 28 is open to the atmosphere to allow the exhaust gases to escape from the exhaust system 14. The various components of exhaust system 14 are connected together in the conventional manner by the use of welds and clamps.
Referring to
Vibration insulator 36 defines two bores 38, 38′ (
In the preferred embodiment, the silicone elastomer is taken from the group ASTM D2000 classification GE, FC, FE and FK, although others could be used without departing from the spirit of the present invention. These silicone elastomers are designed to withstand high heat without failing, melting or drooping. Shield 42 is preferably soft and flexible so that it may be easily snapped into position over insulator 36 and is able to flex with the insulator. Positioning heat shield 42 over insulator 36 allows for the superior strength and structural properties of EPDM to be utilized, while enabling insulator 36 to withstand higher temperatures.
Insulator 36 shown in
The device of the present invention is used in the following manner. In order to install shield 42, lock 40 is released (when present) and insulator 36 is slipped off upper and lower arms 30, 34. Heat shield 42 is positioned over insulator 36 so that the outer peripheral wall 50 of insulator 36 slides into central cavity 44 and along inner peripheral wall 52 of shield 42. Shield 42 and insulator 36 are pushed together until front surface 70 of protuberances 62, 62′ abuts inner surface 52 of shield 42. Apertures 48, 48′ and bores 38, 38′ are aligned with each other. Additionally, beads 68 interlock with projections 66. The shield/insulator combination is then brought toward upper and lower arms 30, 34. Free ends 56, 56′ of upper and lower arms 30, 34 are inserted through apertures 48, 48′ and aligned bores 38, 38′. Lock 40 (if required) is then applied to upper and lower arms 30, 34 to lock the shield/insulator component onto arms 30, 34. Alternatively, shield 42 and insulator 36 may be forced over lock 40 while it is in place. Similarly, shield 42 may be applied to insulator 36 during original equipment manufacturing. In this situation, insulator 36 and shield 42 would be shipped to the manufacturer as an assembly and applied when the vehicle is being manufactured.
In order to replace either shield 42 or insulator 36, lock 40 is released, the shield/insulator component 42/36 is removed by simply pulling it off free ends 56, 56′ of arms 30, 34 or the shield/insulator component 42/46 can be pulled over lock 40. If it is desired to remove shield 42 from insulator 36, the mechanic merely needs to insert his/her fingers between the outer peripheral wall 50 of insulator 36 and inner peripheral wall 52, and then to pull shield 42 off insulator 36. Because shield 42 is manufactured from a soft, flexible material it may be easily snapped into place over insulator 36 and may be just as easily removed.
While this method of positioning shield 42 over insulator 36 has been described, shield 42 may be inserted onto upper and lower arms 30, 34 first and then insulator 36 may be inserted onto upper and lower arms 30, 34 and then pushed into shield 42. The heat shield thermally insulating the vibration insulator from heat generated by the vehicle exhaust system.
In the foregoing description, certain terms have been used for brevity, clearness, and understanding. No unnecessary limitations are to be implied therefrom beyond the requirement of the prior art because such terms are used for descriptive purposes and are intended to be broadly construed.
Moreover, the description and illustration of the invention are an example and the invention is not limited to the exact details shown or described.
Number | Name | Date | Kind |
---|---|---|---|
2267431 | Steensen | Dec 1941 | A |
3161252 | Brown | Dec 1964 | A |
3746127 | Leventhal | Jul 1973 | A |
3863445 | Heath | Feb 1975 | A |
3891191 | Choules et al. | Jun 1975 | A |
3960232 | Hubbell, III | Jun 1976 | A |
4116411 | Masuda | Sep 1978 | A |
4349078 | Shimada et al. | Sep 1982 | A |
4415391 | Reid | Nov 1983 | A |
4424960 | Dan et al. | Jan 1984 | A |
4465252 | Donovan et al. | Aug 1984 | A |
4634088 | Schad | Jan 1987 | A |
4638965 | De Bruine et al. | Jan 1987 | A |
4727957 | Fujita | Mar 1988 | A |
5032342 | Drabing et al. | Jul 1991 | A |
5507463 | Kobylinski et al. | Apr 1996 | A |
5673877 | Karner et al. | Oct 1997 | A |
5957415 | Perea | Sep 1999 | A |
6223849 | Godel et al. | May 2001 | B1 |
6402119 | Miska | Jun 2002 | B1 |
6572070 | Arciero et al. | Jun 2003 | B2 |
Number | Date | Country |
---|---|---|
3643698 | Jul 1988 | DE |
4139717 | Jun 1993 | DE |
2678221 | Dec 1992 | FR |
2273478 | Jun 1994 | GB |
59-034931 | Feb 1984 | JP |
59-068515 | Apr 1984 | JP |
60-082438 | May 1985 | JP |
61-258914 | Nov 1986 | JP |
02-092727 | Apr 1990 | JP |
03-157225 | Jul 1991 | JP |
Number | Date | Country | |
---|---|---|---|
20030106735 A1 | Jun 2003 | US |