The present disclosure relates to high performance and/or high density computing solutions, such as line cards and computing blades, that can receive field replaceable computing modules, and in particular to a heat sink assembly for these computing solutions.
Over the past several years, the information technology field has seen a tremendous increase in the performance of electronic equipment coupled with a decrease in geometric floor space to house the equipment. For instance, due at least to recent advances in high throughput computing, field replaceable computing modules, such as optical transceivers, are dissipating more power (e.g., 25 Watts (W) or more) in smaller form factors (i.e., computing modules are being provided with increasingly higher power densities). However, permissible operating temperatures, which may be defined by temperature limits of internal components included in the field replaceable computing modules, have remained relatively stagnant. Thus, more effective cooling solutions for field replaceable computing modules are continuously desired.
Like reference numerals have been used to identify like elements throughout this disclosure.
Briefly, presented herein is a heat sink assembly for a cage for a field replaceable computing module, an apparatus including the cage, and a system including the apparatus and the field replaceable computing module. In one embodiment, a heat sink assembly for a cage for a field replaceable computing module includes a heat sink, a thermal interface material, and an actuation assembly. The heat sink includes fins to facilitate heat dissipation and a mating surface positioned at a base of the fins. The thermal interface material includes a first surface that is coupled to the mating surface of the heat sink and a second surface that is opposite the first surface. Thus, the second surface can engage a heat transfer surface of a field replaceable computing module installed adjacent to the heat sink. The actuation assembly includes a rotational cam. When the rotational cam is in a first position, the second surface of the thermal interface material contacts the heat transfer surface of the field replaceable computing module, and when the rotational cam moves to a second position, the second surface of the thermal interface material is moved a distance away from the heat transfer surface of the field replaceable computing module.
The heat sink assembly presented herein enables high performance and/or high density computing solutions, such as line cards and computing blades, to effectively dissipate heat from field replaceable computing modules without inhibiting insertion or removal of the field replaceable computing modules (also referred to herein as “modules,” “pluggable modules,” “swappable modules,” and the like), such as during online insertion and removal (“OIR”) operations. Specifically, the heat sink assembly presented provides a movable or “floating” heat sink and an actuation assembly that can move the floating heat sink towards and/or away from a module cage included in a computing solution. In fact, the actuation assembly moves the entire heat sink away from the module cage (and/or a module installed therein), thereby reducing, if not eliminating, the risk of a module scraping against the heat sink assembly during insertion or removal operations.
In fact, the actuation assembly may move the heat sink so that the mating surface of the heat sink (e.g., a bottom surface) remains parallel to a heat transfer surface of a module (e.g., a top surface). Consequently, during insertion or removal of the module, the entire mating surface of the heat sink (e.g., the bottom surface) will be equally spaced apart from the heat transfer surface of the module (e.g., the top surface) by a gap and the module will not rub or slide against the mating surface of the heat sink. This gap, in turn, allows a thermal interface material (“TIM”), which would be damaged by sliding or rubbing, to be included on the mating surface. The TIM increases thermal conductivity between the heat sink and a module and, thus, improves cooling for the module. One benefit of parallel motion is that it helps ensure a substantially consistent gap between the heatsink and the module, thereby helping minimize the gap required to facilitate module removal.
Additionally or alternatively, the actuation assembly may move the heat sink along one degree of freedom (e.g., vertically). Moving the heat sink along one degree of freedom (e.g., vertically) may ensure that the heat sink does not need to be positioned adjacent open space, which is desirable when a heat sink moves in a lateral or depth direction (e.g., a front-to-back direction). Instead, the surface area of the heat sink size may be maximized to span a perimeter of a module and/or module cage and the cage need not be positioned with open space surrounding its peripheral boundaries. That is, moving the heat sink along one degree of freedom may maximize a thermal contact area. Furthermore, moving the heat sink along one degree of freedom may allow the heat sink to generate compression forces on a TIM (e.g., if the one degree of freedom is linear, vertical movement) that are often desirable to maximize TIM performance with the assembly that moves the heat sink. This may reduce the number of components in the assembly, reducing costs of manufacture and servicing. For example, this compression may eliminate the need for spring clips or other such biasing members that are expensive and prone to failure (thus, creating a need for servicing/replacement). As is explained in detail below, the actuation assembly may include rotational cams to maintain parallelism and/or to move the heat sink along one degree of freedom.
Moreover, the heat sink assembly presented herein may be actuated via rotations of a rotatable actuator. The actuator may allow for rotational actuations but may be otherwise fixed so that it is not moveable linearly along a front panel of a computing solution. Thus, the actuator may occupy a minimal amount of space on a front panel of a computing solution, which may be beneficial, if not required, for computing solutions with dense front panel layouts. Additionally, the actuator may lock the actuation assembly in a raised position or a lowered position, which may simplify insertion and removal of a module. This locking may also allow that the heat sink assembly presented herein to engage a module without spring clips or other such biasing members, which are relatively expensive and prone to failure, urging the two components into engagement. The actuator may provide this locking functionality without moving linearly, which would expand its footprint on the front panel.
In order to describe the heat sink assembly, apparatus, and system presented herein, terms such as “left,” “right,” “top,” “bottom,” “front,” “rear,” “side,” “height,” “length,” “width,” “upper,” “lower,” “interior,” “exterior,” “inner,” “outer,” “depth,” and the like as may be used. However, it is to be understood that these terms merely describe points of reference and do not limit the present invention to any particular orientation or configuration. For example, the terms “height,” “width,” and “depth” may be used to describe certain embodiments presented herein, but it is to be understood that these terms are not intended to limit the present application to specific implementations. Instead, in at least some embodiments, the heat sink assembly presented herein may be oriented horizontally (as shown) or vertically (i.e., a housing of a computing solution may be rotated 90 degrees about an axis extending through a front and back of the housing), or in any other manner during use (e.g., when installed into a blade chassis/enclosure). Consequently, even if a certain dimension is described herein as a “height,” it may be understood that this dimension may provide a width or depth when a computing solution in which it is included is moved to different orientations.
Now turning to
In the depicted embodiment, the heat sink assembly 30 moves the heat sink 31 and the TIM 35 upwards. More specifically, the heat sink assembly 30 moves the entire heat sink 31 and entire TIM 35 upwards, away from the cage 18. In at least some embodiments, the heat sink assembly 30 moves the heat sink 31 and TIM 35 while keeping the TIM 35 parallel to a top of the cage 18. Alternatively, the heat sink 31 and TIM 35 might be moved upwards in any manner, but are moved into a raised position that is parallel to a top of the cage 18. Still further, in some embodiments, the TIM 35 is not parallel to the top of the cage 18 when in a raised position, but is spaced apart from the top of the cage 18 across its surface area (e.g., so that the gap G spans the whole TIM 35). Regardless of how the heat sink 31 and TIM 35 are moved to a raised position (and regardless of how the TIM 35 is oriented in its raised position), the gap G allows the computing module 20 to be inserted into or removed from cage 18 without contacting and damaging TIM 35. If, instead, only a portion of the TIM 35 was moved away from the cage 18 (e.g., if the heat sink assembly 30 was tipped about a lateral axis, which would extend into the plane of the drawing sheet on which
Alternatively, and now turning to
Meanwhile, the computing apparatus 12 includes a front surface or panel 100 with an opening 101 that provides access to the module cage 18 defined therein. In the depicted embodiment, the module cage 18 extends in a depth (e.g., front-to-back) direction within the housing 14 of the apparatus 12. That is, the module cage 18 extends from the front panel 100 towards a back end 102 of the housing 14. Additionally, in the depicted embodiment, the module cage 18 is arranged to be substantially flat within the housing 14, such that the module cage 18 is parallel to a cover 104 that defines a top of the housing 14.
Accordingly, during insertion of the computing module 20 into the module cage 18, the perimeter of back surface 24 is aligned with the cage 18 and then the computing module 20 is pushed into the module cage 18 to connect the connector 25 on the back surface 24 with a connector 124 included in the cage 18 (see
In
Now turning to
Additionally, the module cage 18 extends from first side 126 to second side 128 and includes an open top 130. Collectively, the open front end 120, the back end 122, the first side 126, the second side 128, and the open top 130 define an internal chamber 132. That is, the open front end 120, the back end 122, the first side 126, the second side 128, and the open top 130 define a perimeter or periphery of chamber 132 (with sides 126 and 128 defining a lateral periphery while front end 120 and back end 122 defining a longitudinal periphery). The chamber 132 houses a computing module 20 and the open top 130 allows the heat sink assembly 30 to access and engage the top surface 22 (i.e., the heat transfer surface) of a computing module 20 installed within a chamber 132.
In different embodiments, the open top 130 may provide access to the chamber 132 in any desirable manner, such as via one or more windows, cut-outs, segments, etc. However, in the depicted embodiment, the open top 130 spans the entire surface area of the chamber 132, extending a length L1 from the open front end 120 to the back end 122 (e.g., in a front-to-back dimension) and a width W1 from the first side 126 to the second side 128 (e.g., in a lateral dimension). Thus, the depicted embodiment may maximize the area within which heat may transfer from the computing module 20 to the heat sink assembly 30.
In
Regardless of the shape of the TIM 35, the mating surface 133 of the heat sink 31 may have dimensions L2 (e.g., a front-to-back dimension) and W2 (e.g., width) that are at least as large as the corresponding top dimensions (L1 and W1, respectively) of the chamber 132 (defined by the open top 130) and a heat receiving portion of the TIM 35 (e.g., the flat section 138) may span or cover a majority of the mating surface 133. More specifically, the TIM 35 may span (e.g., cover) at least a depth or front-to-back dimension L1 of the open top 130 (which defines a depth of a top of the chamber 132). Additionally or alternatively, the TIM 35 may span a lateral dimension L2 of the open top (which defines a lateral dimension of a top of the chamber 132). For example, the flat section 138 of the TIM 35 may have a lateral dimension W3 (e.g., width W3) that is equal to or greater than W1 and/or the flat section 138 of the TIM 35 may have a front-to-back dimension L3 (e.g., depth L3) that is equal to or greater than L1. Consequently, the flat section 138 of the TIM 35 may cover as much of the computing module 20 as possible and maximize heat transfer between a computing module 20 and the heat sink 31.
Notably, with the heat sink assembly presented herein, the TIM 35 can span the entire surface area (e.g., L1 by W1) of the chamber 132 because, in at least some embodiments, the heat sink assembly 30 only moves the heat sink 31 vertically with respect to the module cage 18 (and a computing module 20 installed therein). If, instead, the heat sink 31 moved laterally or in a front-to-back direction, open space would need to be available to allow movement of heat sink 31. In some instances, this issue might be addressed by moving the heat sink 31 outside the peripheral boundaries of the module cage 18 (e.g., laterally beyond side 126 or 128). However, such movement would increase the footprint of the heat sink assembly 30, which is often undesirable, if not impossible, in high-density computing solutions.
Still referring to
The fins 140 also define a number of openings, cavities, channels, etc. to accommodate portions of the heat sink assembly 30. In the depicted embodiment, the fins 140 define cavities 150 that extend laterally across at least a portion of the heat sink 31, as well as a through hole 152 and longitudinal channels 154 that extend in a front-to-back direction through the heat sink 31. The through hole 152 may extend completely through the heat sink 31, from the front 144 of the heat sink 31 to the back 146 of the heat sink 31. However, the longitudinal channels 154 need not extend completely through the heat sink 31 and, instead, may only be included on a predetermined number of fins 140 (e.g., one to four fins closest to the front 144 and one to four fins closest to the back 146). That said, in different embodiments, these features may have various shapes, orientations, arrangements, etc. to accommodate various components or features of the heat sink assembly 30.
Now turning to
In the depicted embodiment, the through hole 152 is centrally aligned in the heat sink 31 (e.g., with respect to sides of the heat sink 31). However, in other embodiments, the through hole 152 can extend through any portion of the fins 140 so that the axle 172 extends through any portion of the fins 140, provided that that the axle 172 can still lift the heat sink 31 vertically away from the open top 130 of the module cage 18. For example, through hole 152 could extend through a side of the heat sink 31 in a front-to-back direction and the axle 172 could be rearranged accordingly. Moreover, in the depicted embodiment, the heat sink assembly 30 includes a single axle 172, but in other embodiments, the heat sink assembly 30 can include two or more axles 172 and the heat sink 31 can include a corresponding number of through holes 152. Likewise, in other embodiments, longitudinal channels 154 and/or cavities 150 could be rearranged in any desirable arrangement or configuration to accommodate different arrangements of rotational cams 174, guide pins (discussed below), or other such features.
Now turning to
Moreover, although guide pins 182 and guide pins 192 are depicted as two pairs of coaxial guide pins, guide pins 182 and guide pins 192 need not be aligned an need not include the same number of pins. For example, guide pins 182 might include three pins spaced evenly across the width W2 of the fins 140 and guide pins 192 might include two pins spaced evenly across the width W2 of the fins 140 (and, thus, out of alignment with guide pins 182). The longitudinal channels 154 may be arranged in the fins 140 to match the configuration and orientation of guide pins 182 and guide pins 192 (and longitudinal channels 154 may extend through any front-to-back span of fins 140).
Moreover, the main hole 190 may allow the axle 172 to rotate freely, but as is shown in
As is shown in
Now turning to
The elongated portion 194 has a maximum height H1 and the shortened portion 196 has a maximum height H2 that is smaller than height H1. Collectively, heights H1 and H2 may span a majority of the height of cavity 150 and the elongated portion 194 may consistently exert pressure on the heat sink 31 to move the heat sink 31 to different positions. Specifically, when the rotational cams 174 are in a rest position P1, the elongated portion 194 may engage a bottom surface of its cavity 150, pushing the heat sink 31 downwards along vertical axis A3. Then, when the rotational cams 174 are rotated from a rest position P1 to an actuated position P2, the rotational cams 174 push the heat sink 31 upwards along vertical axis A3.
In the depicted embodiment, the rotational cams 174 may rotate approximately 180 degrees in direction D1; however, this is just a schematic example and at least some embodiments (including embodiments presented herein) may provide actuation in response to a 90 degree rotation in direction D1 (or 90 degrees in a direction opposite direction D1). Further, the rotational cams 174 may have a profile that is specified or “tuned” to provide non-constant vertical motion with respect to angular rotational position. This may be advantageous, for example, to provide an initially rapid downward motion of the heat sink, followed by a more gradual “seating” of TIM 35 onto the module 20. Additionally or alternatively, the profile can be tuned so that, in their rest positions P1, the rotational cams 174 provide a specific compression of the TIM to maximize heat transfer (e.g., tuned for a specific TIM material) without requiring additional components (e.g., spring clips) to create compression. However, some embodiments might also include additional components (e.g., springs or other biasing members) to increase the compression force generated by vertical movement if desired.
As mentioned, the features of the heat sink assembly 30 (and specifically, the actuation assembly 170) may restrict the heat sink assembly 30 to one degree of freedom. Thus, as the rotational cams 174 move between positions P1 and P2, the rotational cams 174 may only move the heat sink 31 vertically with respect to a module cage 18 (and, if installed, a computing module 20 installed in the module cage 18). Thus, when the rotational cams 174 are moved from their rest position P1 to their actuated position P2, the heat sink may move a distance D2 upwards along axis A3, creating a gap G (e.g., 2-3 millimeters) between the computing module 20 and the TIM 35. Notably, the axle 172 remains fixed in a horizontal plane P1 during movements of the rotation cams 174 and the rotational cams 174 drive vertical movement of the heat sink 31, which is essentially floating on the rotational cams 174, with respect to plane P1. Thus, the heat sink 31 may sometimes be referred to as a floating heat sink 31.
In the depicted embodiment, the elongated portion 194 and the shortened portion 196 each have rounded edges. Additionally, the elongated portion 194 has an outward taper and the short portion 196 tapers slightly inwards. These shapes may smooth movements of the heat sink 31 as the rotational cams 174 move between the rest position P1 and the actuated position P2 while providing structural integrity. However, the dimensions and shapes of the elongated portion 194 and short portion 196 may vary in different embodiments (and
In particular, when the rotational cams 174 are in their actuated position P2 (such that gap G is provided between the TIM 35 and the module cage 18), a computing module 20 can be installed or removed from the module cage 18. In at least some embodiments, the gap G may be consistent across the surface area of the TIM 35 (e.g., an area defined by W3 and L3), such that the TIM 35 (or at least a portion thereof) is parallel to the cage 18 and/or the computing module 20 (i.e., the heat sink assembly 30 may provide uniform lifting). In any case, after a computing module 20 is installed in module cage 18, the rotational cams 174 may be moved to their rest position P1, which may move the TIM 35 into engagement with a heat transfer surface of the computing module 20 (e.g., top surface 22). In fact, in some embodiments, moving the rotational cams 174 to their rest positions P1 may compress the TIM 35 against the heat transfer surface of the computing module 20 (e.g., top surface 22), further encouraging heat transfer. This compression can be achieved without springs or other such biasing member (and, instead, may be achieved with mechanical locking, as is described below). Alternatively, the compression could be supplemented or enhanced with biasing members, if desired. Biasing might also remove axle and cam backlash.
Now turning to
Specifically, as is shown in
However, the depicted embodiment is only one example and in other embodiments, the rider 212 may include any desirable indicator and may lock in any desirable manner. For example, the rider 212 need not lock the actuation assembly 170 into specific positions and the actuation assembly 170 may include other features or components that provide locking. Further, actuator 176 may include features, such as a metallic tab or fingers that provide a visibly apparent locking feature that prevents module removal in the “locked” state. As another example, in addition to or in lieu of the depicted indicia, the front panel 100 may include lights (e.g., light emitting diodes (LEDs)) that are actuated by rotation of the actuator 176. Specifically, in at least some embodiments, the lock member 217 could activate one or more actuators or switches when inserted into locking apertures 198 and 199 and the one or more actuators or switches could operate a light to provide an illuminated indication (e.g., a red light or a green light) on the front panel 100.
Now turning to
Meanwhile, if, for example, a user grasps the rider 212 via grip 219 and moves it longitudinally along an elongate section 226 of the fixed portion 210, the slit 218 is long enough to remain engaged with the locking flange 220 over the range of longitudinal motion provided to the rider 212. The range may be defined as the difference between the length of rider 212 and the distance between the front panel 100 and a head portion 222 of the fixed portion 210. Consequently, the rider 212 and the slit 218 are sized to allow for longitudinal movement of the rider 212 along the elongate section 226 of the fixed portion 210 that does not disengage the slit 218 from the locking flange 220. Additionally, in at least some embodiments, the actuator 176 includes a biasing member 230 that can exert a biasing force BF on the rider 212 towards the front panel 100. Thus, the biasing member 230 may urge the lock member 217 of the indicator 214 (on the rider 212) into engagement with locking apertures 198 and 199 (to selectively lock heat sink assembly 30) and the longitudinal play of the rider 212 may allow the lock member 217 to be disengaged from apertures 198 and 199 (to selectively unlock heat sink assembly 30).
Overall, during method 200, the rotation shown in the third step will move the TIM 35 away from a computing module 20 and/or a module cage 18 (creating a gap G). Meanwhile, engaging lock member 217 with second locking aperture 199 will selectively lock the TIM 35 in a raised position. Meanwhile, when the lock member 217 is engaged with the first locking aperture 198, the actuator 176 selectively locks the TIM 35 in contact with a computing module 20 and/or a module cage 18. Notably, a spring (or other such biasing member) is not required to act on the TIM 35 (or heat sink 31) to lock the TIM 35 in either position. Instead, a spring is used to bias the actuator (and, in some embodiments, need not be used at all). Consequently, the heat sink 31 can be secured in a cooling position without using spring clips that may be expensive and prone to failure.
Moreover, during the method 200, the actuator 176 does not need to move linearly along the front panel 100 in any direction to actuate the heat sink assembly 30. Instead, the actuator 176 remains fixed in a single location on the front panel 100 and receives rotational actuations. Thus, the actuator 176 may minimize its footprint on the front panel 100 and will provide limited, if any, interference with other components on or adjacent to the front panel 100, including components of other computing solutions installed adjacent computing solution 10.
Now turning to
For example,
Next,
The first portion 252 includes the open front end 120 and portions of sides 126 and 128, but now also defines a receptacle 256 for the axle 172 that can support a proximal end of the axle 172, either instead of or in addition to the main hole 190 included on the front panel 100 (the proximal end of the axle 172 will still be connected to the actuator 176 through the front panel 100, but the hole 190 need not support the axle 172). Meanwhile, the second portion 254 includes portions of sides 126 and 128 and the back end 122. Like module cage 18′, the second portion 254 of module cage 18″ includes/defines a bracket 258 that extends upwards from its back end 122; however, bracket 258 has a reduced profile as compared to bracket 250. Additionally, bracket 258 might not include guide pins (e.g., like guide pins 182 in
Overall cage 18″ may provide a robust support for the heat sink assembly 30 presented herein and may maintain alignment of components of the heat sink assembly 30 (e.g., of actuation assembly 170) regardless of the overall environment (i.e., regardless of the computing solution 10 in which heat sink assembly 30 is included). Additionally, one or both of the first portion 252 and second portion 254 can be tuned or adjusted to adapt cage 18″ for specific environments.
That said, when a four-bar linkage 302 is used in combination with the rotational cams 174, the actuator 303 may need to be a push-pull, rotatable actuator to allow for vertical movement caused by the four-bar linkage 302. A spring 304 may bias the actuator 303 outwardly and a pin 306 may engage a main slot 310 formed in the front panel 100 of an apparatus 12 to lock the four-bar linkage in different positions. Specifically, after the actuator 303 is rotated to clear the pin 306 from its first locking position (which is illustrated), the actuator 303 may be pushed inwards and heat sink engagement members 312 may engage the heat sink engagement members 312 to push heat sink 31. Linkage members 314 may convert this linear motion into vertical and linear movement that moves the TIM 35 towards or away from the module cage 18. The pin 306 can then be rotated upwards (180 degrees from its shown position) to lock against an internal surface of front panel 100. Then, to lower the heat sink 31, the procedure is reversed. To accommodate movement of actuator 303 with the heat sink 31, the main slot 310 may be widened as compared to the main hole 190 used for actuation assembly 170. Among other advantages, the four-bar arrangement may ensure substantially coplanar heat sink motion while reducing the number of actuating cams, thereby reducing actuation friction and system complexities.
Now turning to
Now turning to
Moreover, the thermal data from diagram 600 indicates that the heat sink assembly 30 does not induce thermal spreading that mitigates improvements in contact resistance provided by the TIM 35 engaging the computing module 20. That is, forming cavities 150, through hole 152, and longitudinal channels 154 in heat sink 31 will not generate thermal spreading that counteracts the thermal effectiveness of the heat sink 31. Thus, the heat sink assembly presented herein may support higher operational temperatures while still meeting regulatory standards. Additionally or alternatively, the heat sink assembly presented herein may reduce operating temperatures which may power consumption (e.g., due to reduced fan speeds) and/or reduce acoustic noise (e.g., from fans). The heat sink assembly presented herein may also achieve these advantages with an inexpensive solution that, for example, does not require expensive and maintenance intensive spring clips.
In summary, an apparatus is provided comprising: a cage defining a chamber; a heat sink including fins to facilitate heat dissipation and a mating surface positioned at a base of the fins; a thermal interface material including a first surface and a second surface, the first surface being coupled to the mating surface of the heat sink and the second surface being opposite the first surface so that the second surface can be positioned against a perimeter of the chamber; and an actuation assembly including a rotational cam, wherein when the rotational cam is in a first position, the second surface of the thermal interface material is disposed within or adjacent the perimeter of the chamber, and when the rotational cam moves to a second position, the second surface of the thermal interface material is moved a distance away from the perimeter of the chamber.
In another form, a heat sink assembly for a cage for a field replaceable computing module is provided, comprising: a heat sink including fins to facilitate heat dissipation and a mating surface positioned at a base of the fins; a thermal interface material including a first surface and a second surface, the first surface being coupled to the mating surface of the heat sink and the second surface being opposite the first surface so that the second surface can engage a heat transfer surface of the field replaceable computing module installed adjacent the heat sink; and an actuation assembly including a rotational cam, wherein when the rotational cam is in a first position, the second surface of the thermal interface material contacts the heat transfer surface of the field replaceable computing module, and when the rotational cam moved to a second position, the second surface of the thermal interface material is moved a distance away from the heat transfer surface of the field replaceable computing module.
In yet another form, a system is provided, comprising: a field replaceable computing module with a heat transfer surface; a cage defining a chamber sized to receive the field replaceable computing module; a heat sink including fins to facilitate heat dissipation and a mating surface positioned at a base of the fins; a thermal interface material including a first surface and a second surface, the first surface being coupled to the mating surface of the heat sink and the second surface being opposite the first surface so that the second surface can selectively engage the heat transfer surface of the field replaceable computing module when the field replaceable computing module is installed in the chamber of the cage; and an actuation assembly including a rotational cam, wherein when the field replaceable computing module is installed in the chamber of the cage and the rotational cam is in a first position, the second surface of the thermal interface material contacts the heat transfer surface of the field replaceable computing module, and when the rotational cam moved to a second position, the second surface of the thermal interface material is moved a distance away from the heat transfer surface of the field replaceable computing module.
The above description is intended by way of example only. Although the techniques are illustrated and described herein as embodied in one or more specific examples, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made within the scope and range of equivalents of the claims. In addition, various features from one of the embodiments may be incorporated into another of the embodiments. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the disclosure as set forth in the following claims.
It is also to be understood that the heat sink assembly, apparatus, and system presented herein described herein, or portions thereof, may be fabricated from any suitable material or combination of materials, such as plastic, metal, foamed plastic, wood, cardboard, pressed paper, supple natural or synthetic materials including, but not limited to, cotton, elastomers, polyester, plastic, rubber, derivatives thereof, and combinations thereof. Suitable plastics may include high-density polyethylene (HDPE), low-density polyethylene (LDPE), polystyrene, acrylonitrile butadiene styrene (ABS), polycarbonate, polyethylene terephthalate (PET), polypropylene, ethylene-vinyl acetate (EVA), or the like.
Finally, when used herein, the term “approximately” and terms of its family (such as “approximate”, etc.) should be understood as indicating values very near to those which accompany the aforementioned term. That is to say, a deviation within reasonable limits from an exact value should be accepted, because a skilled person in the art will understand that such a deviation from the values indicated is inevitable due to measurement inaccuracies, etc. The same applies to the terms “about” and “around” and “substantially”.
Number | Name | Date | Kind |
---|---|---|---|
6813155 | Lo | Nov 2004 | B2 |
7212409 | Belady et al. | May 2007 | B1 |
7733652 | Costello et al. | Jun 2010 | B2 |
8427837 | Nguyen | Apr 2013 | B2 |
8854818 | Angelucci | Oct 2014 | B1 |
8911244 | Elison et al. | Dec 2014 | B2 |
9126405 | Sugiura | Sep 2015 | B2 |
9313925 | Kelty | Apr 2016 | B2 |
9453972 | Arvelo et al. | Sep 2016 | B1 |
10212852 | Reddy et al. | Feb 2019 | B1 |
10295767 | Chen et al. | May 2019 | B2 |
20030161108 | Bright | Aug 2003 | A1 |
20080239677 | Coleman | Oct 2008 | A1 |
20090059533 | Li | Mar 2009 | A1 |
20090284930 | Ice | Nov 2009 | A1 |
20120243168 | Tanaka | Sep 2012 | A1 |
20140010552 | McColloch et al. | Jan 2014 | A1 |
20140170898 | Elison et al. | Jun 2014 | A1 |
20150092354 | Kelty | Apr 2015 | A1 |
20170269314 | Gaal | Sep 2017 | A1 |
20210151361 | Schlack | May 2021 | A1 |
Entry |
---|
International Search Report and Written Opinion in counterpad International Application No. PCT/US2021/039848, dated Oct. 21, 2021, 20 pages. |
Number | Date | Country | |
---|---|---|---|
20220011056 A1 | Jan 2022 | US |