The present disclosure is directed, in general, to a heat sink and methods of manufacture thereof.
This section introduces aspects that may be helpful to facilitating a better understanding of the inventions. Accordingly, the statements of this section are to be read in this light. The statements of this section are not to be understood as admissions about what is in the prior art or what is not in the prior art.
Heat sinks are commonly used to increase the heat transfer area of an electronic device to decrease the thermal resistance between the device and cooling medium, e.g., air. There is a growing trend, however, for electronic devices to dissipate so much power that traditional heat sink designs are inadequate to sufficiently cool the device. Improved heat transfer efficiency from electronic devices would help extend the lifetime of such devices.
One embodiment is a heat sink comprising a base and a plurality of heat exchange elements. The heat exchange elements are connected to and raised above, a surface of the base. There is a first row of the heat exchange elements, with each of the heat exchange elements having a long dimension that is substantially parallel to the long dimension of the other heat exchange elements of the first row and to the surface. There is a second row of the heat exchange elements, each of the heat exchange elements having a long dimension that is substantially parallel to the long dimension of the other heat exchange elements of the second row and to the surface. The first row and the second row are substantially opposed to each other such that one set of ends of the heat exchange elements of the first row are staggered with respect to one set of ends of the heat exchange elements of the second row.
Another embodiment is an apparatus. The apparatus comprises the above-described heat sink and a structure configured to produce heat, wherein the heat sink is coupled to the structure.
Another embodiment is a method of manufacturing a heat sink. The method comprises forming a base and forming a plurality of heat exchange elements connected to and raised above, a surface of the base. There is a first row of the heat exchange elements, with each of the heat exchange elements having a long dimension that is substantially parallel to the long dimension of the other heat exchange elements of the first row and to the surface. There is a second row of the heat exchange elements, each of the heat exchange element having a long dimension that is substantially parallel to the long dimension of the other heat exchange elements of the second row and to the surface. The first row and the second row are substantially opposed to each other such that one set of ends of the heat exchange elements of the first row are staggered with respect to one set of ends of the heat exchange elements of the second row.
The embodiments of the disclosure are best understood from the following detailed description, when read with the accompanying FIGUREs. Some features in the figures may be described as “vertical” or “horizontal” for convenience in referring to those features. Such descriptions do not limit the orientation of such features with respect to the natural horizon or gravity. Various features may not be drawn to scale and may be arbitrarily increased or reduced in size for clarity of discussion. Reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
The description and drawings merely illustrate the principles of the invention. It will thus be appreciated that those skilled in the art will be able to devise various arrangements that, although not explicitly described or shown herein, embody the principles of the invention and are included within its scope. Furthermore, all examples recited herein are principally intended expressly to be only for pedagogical purposes to aid the reader in understanding the principles of the invention and the concepts contributed by the inventor(s) to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments of the invention, as well as specific examples thereof, are intended to encompass equivalents thereof. Additionally, the term, “or,” as used herein, refers to a non-exclusive or, unless otherwise indicated. Also, the various embodiments described herein are not necessarily mutually exclusive, as some embodiments can be combined with one or more other embodiments to form new embodiments.
Embodiments of the disclosure benefit from the recognition that thermal boundary layers develop along the surfaces of a heat sink. Consequently, efficient heat transfer from the heat sink to the surrounding air can be deterred because the primary means of heat transfer from the slow air flowing in the boundary layer at the surface and the faster moving cold air in the space farther away from the surface is diffusion.
The embodiments described herein improve heat transfer efficiency by: i) increasing the turbulence (or mixing) of air located in the channels between the heat exchange elements of a heat sink; and ii) placing structures in a staggered fashion so as to ensure cooler air in the middle of channels contacts heat exchange elements directly. For instance, increased air turbulence helps mix the hotter air next to the heat exchange elements with the cooler air in the middle of channels, and thereby improve heat transfer. The increased contact of cold air with heat exchange elements, achieved by staggering the heat exchange elements in different rows as described herein, are believed in some cases to be capable of improving the cooling factor of a heat sink by up to about three times as compared to an analogous heat sink designs but without the staggered elements.
One embodiment of the disclosure is a heat sink.
Turning to
The term staggered as used herein means that the ends 137 of the heat exchange elements 110 of the second row 127 are substantially offset from the ends 135 of the heat exchange elements 110 of the first row 125. For instance, consider two adjacent the heat exchange elements 110 in either of the rows 125, 127. The adjacent the heat exchange elements 110 define a channel 140, with a channel width 145, in-between the adjacent the two heat exchange elements 110. The ends 137 of elements 110 in the second row 127 are considered to be staggered with respect to ends 135 of elements 110 in the first row 125 when the ends 137 are aligned with a central space 147 (e.g., a middle 80 percent, more preferably a middle 40 percent, and even more preferably, a middle 20 percent of the space 147;
In some embodiment, the height 150 of an element 110 might be longer than the long dimension 130 which, e.g., can correspond to a horizontal length of the element 110. However, the horizontal length, which is substantially parallel to the base surface, is still the long dimension 130 in the plane of the base's surface 120, e.g., because it is at least longer than the thickness 155 of the element 130 and because the height 150 dimension is perpendicular to the base's surface 120.
Heat sink designs featuring heat exchange elements with parallel long dimensions, such as disclosed herein, can provide superior heat removal as compared to certain heat sink designs using a two-dimension array pin- or pillar-shaped heat exchange elements for configurations where the air flow is predominantly parallel to the base and the long dimension of the heat exchange elements described in the invention. In contrast, pin- or pillar-shaped heat exchange elements can provide superior heat removal as compared to certain heat sink designs described in this invention when the flow is predominantly parallel to the heat sink base and also orthogonal to the long dimension of the heat exchange elements, and also when the flow is predominantly orthogonal to the heat sink base. The invention described herein is of interest to the case where the flow is predominantly parallel to the heat sink base and the long dimension of the heat exchange elements.
For many of the example embodiments presented herein, such as in
As illustrated in
To facilitate such advantages, in some embodiments, a length 215 of the gap 210 between the set of ends 135 of elements 110 of the first row 125 and the set of ends 137 of elements 110 of the second row 127 can be up to about five times a channel width 125 between adjacent ones of elements 110. In some preferred embodiments, the gap 210 extends to an outer perimeter 220 of the base 105. In some preferred embodiments, the gap 220 is substantially centrally located over the base 105 (e.g., such as when the elements 110 of the first row 125 and the second row 127 all have the same long dimension 130 length).
In some embodiments, there are additional structures that can be located in the gap 210 to facilitate increase air flow turbulence around the elements 110. For instance, as shown in
In some embodiments, however there is no gap between the ends 135, 137 of the elements 110 of the opposing rows 125, 127, such as discussed above in the context of
In yet other embodiments, such as shown in
Some embodiments of the heat sink can include additional rows of heat exchange elements. For instance, as shown in
Or, a set of ends 540 of the heat exchange elements 110 of the additional row 525 are staggered with respect to a second set of ends 545 of the first row or the second row (e.g., second ends 545 of the elements of the second row 127, as depicted in
In some preferred embodiments, as also illustrated in
In some embodiments of the heat sink 100, as illustrated in
In some embodiments of the heat sink 100, as illustrated in
As illustrated in
One skilled in the art would be familiar with the appropriate size and spacing of elements 110 to use for particular cooling applications. For instance, in certain micro-electronic applications, the elements 110 can have lengths 130 and heights 150 up to about 200 mm and thicknesses up to about 2 mm, with the height-to-length aspect ratio ranging from about 1:1 to 20:1, height-to-thickness aspect ratios ranging about from 1:1 to 500:1, and the channel width 145 ranging from about 1 to 20 mm. Proportionally greater sizes and spacing could be used in larger-scale cooling applications.
As further illustrated in
For instance, in some embodiments the apparatus 400 can be an electrical device, and the heat generating structure 410 includes an integrated circuit, or, in other cases, a power supply of the electrical device. In some embodiments, the apparatus 400 can a heat exchanger and the heat generating structure 410 is a pipe that carries a heated fluid therein (e.g., water, air, refrigerant). For instance, a plurality of heat sinks 100 can be thermally coupled to a heat pipe structure 410 that is configured to circulate fluid from another device that generates heat, e.g., a motor or electrical power supply (not shown). In other embodiments, however, heat pipes could be incorporated within the base 105. Although the base 105 and structure 410 are depicted as having a planar interface 415, in other cases, the interface 415 could be non-planar (e.g., such as when the structure 410 is the wall of a cylindrical pipe).
Another embodiment of the disclosure is a method of manufacturing a heat sink.
With continuing reference to
In some embodiments, forming the base 105 in step 605 includes machining a thin sheet of metal to the appropriate dimensions. E.g., for some electronic cooling applications, the base's thickness 160 (
In some cases, forming the base (step 605) can include a step 615 of forming fluid flow conduits (e.g., pipes or chambers) within the base 105. During the heat sink's operation fluid can be circulated through the conduits to facilitate cooling.
In some cases, forming the base (step 605) includes a step 620 of forming a heat exchange structure (e.g., a structure 410 such as discussed in the context of
In some embodiments, forming the plurality of elements 110, connected to and raised above, the base's surface 120 in step 610, includes a step 625 of coupling the heat exchange elements 110 to the surface 120.
The coupling step 625 can include coupling individual elements 110, or preformed rows 125, 127 of the elements 110, to the surface 120. For instance the preformed rows can comprise a metal sheet which is folded to form the elements 110, and then the folded sheet can be coupled to the base 120. Non-limiting examples of coupling methods include epoxy bond, brazing, soldering, welding or various combinations thereof.
In other embodiments, the forming step 610 can include a step 630 of shaping a same work piece that the base 105 is formed from. As a non-limiting example, a single metal sheet work piece can be shaped by skiving, machining, bending or stamping, the sheet to form the elements 110. As another non-limiting example, a molten work piece can be shaped by extrusion or die casting, or, extrusion or die casting followed by post-extrusion machining, to form the elements 110.
Although the embodiments have been described in detail, those of ordinary skill in the art should understand that they could make various changes, substitutions and alterations herein without departing from the scope of the disclosure.
The present application is related to U.S. patent application Ser. No. ______ (docket no. 807926) to Salamon, entitled, “AIR JET ACTIVE HEAT SINK”, and which is commonly assigned with the present application, which is incorporated herein by reference in its entirety.