1. Field of the Invention
The present invention relates to a switch structure applied in push switches, and more particularly to a heat-spot distant type push switch structure.
2. Description of the Prior Art
“Switch” is a necessary mechanism for electrical equipments and electronic products, such as refrigerators, TVs, extension cords, computers, and video game consoles, all the aforesaid equipments and devices need the switch for turning on/off the power thereof. Push switch is the most conventional used switch.
Please refer to
Please refer to
In the conventional push switch 1′, the propping stick 123′ and the spring 1231′ is used for increasing the switch rating; in addition, the propping stick 123′ is made of metal for avoiding from being melted. However, even if the use of the propping stick 123′ and the spring 1231′ make the conventional push switch 1′ has a higher switching rating, the structure of the propping stick 123′ and the spring 1231′ bring shortcomings and drawbacks for the conventional push switch 1′ as follows:
(1) As shown in
(2) Although the metal-made propping stick 123′ make the push switch 1′ has a higher switching rating, the metal-made propping stick 123′ causes increment of the manufacturing cost for the push switch 1′.
(3) Inheriting to above point 2, moreover, the housing 11′ of the push switch 1′ is designed to include large interior space for accommodating the swing portion 122′ of the push switching member 12′, the propping stick 123′, the spring 1231′, and the switching spring 15′, and that causes the entire volume of the push switch 1′ cannot to be effectively shrunk.
(4) Inheriting to above point 3, furthermore, what is important is that, although the propping stick 123′ and spring 1231′ can enhance the contact force of the switching spring 15′ and the second terminal 14′, the enhanced contact force causes the push switching member 12′ be pressed and switched hard.
Actually, besides the above-mentioned three drawbacks, the push switch 1′ further includes a shortcoming, that is the push switch 1′ cannot be switched quickly. So that, for the conventional push switch 1′ has many shortcomings and drawbacks, the push switch 1′ can merely applied in household appliances and some electronic devices but in powered hand tools. Accordingly, the switch manufacturers propose a microactive switch. Please refer to
The switch mechanism assembly 11″ consists of a first terminal 111″, a second terminal 112″, a third terminal 113″, a first spring 114″, a second spring 115″, a sliding lever 116″, and a return spring 117″, wherein the second terminal 112″ has a first contact point 1121″ and the third terminal 113″ has a second contact point 1131″. The first spring 114″ and the second spring 115″ are disposed on the first terminal 111″ and include a third contact point 1141″ and a fourth contact point 1151″, respectively. The third contact point 1141″ and the fourth contact point 1151″ are opposite to the first contact point 1121″ and the second contact point 1131″. Besides, the sliding lever 116″ includes an extension bar 1161″ and a sliding block 1162″, wherein the extension bar 1161″ is provided with the return spring 117″ and the sliding block 1162″ has two protrusion portions 1163″ on the bottom thereof (one protrusion portion 1163″ is shielded by the sliding block 1162″.)
Continuously, please refer to
By above descriptions, it is able to know that the switch of the switch mechanism assembly 11′ is carried out by way of moving the sliding lever 116″ to change the arm force directions of the first spring 114″ and the second spring 115″. So that, the mainly advantages of the switch mechanism assembly 11′ are small occupied space and able to be quickly switch. However, even if this switch mechanism assembly 11′ solves the drawbacks of the conventional push switch 1′, the switch mechanism assembly 11′ still includes the shortcomings and drawbacks as follows:
(A) As shown in
(B) For the switch mechanism assembly 11′, the first spring 114″ and the second spring 115″ may lose their springiness gradually after the switch mechanism assembly 11′ is long-term used; therefore, it needs to increase the force on the press member 12″ for facilitating the third contact point 1141″ and the first contact point 1121″ able to be kept in touch steadily. Besides, when the microactive switch 1″ is operated on rapid switching, the first spring 114″ and the second spring 115″ of the switch mechanism assembly 11″ may be influenced by high temperature, and that causes the switching rating of microactive switch 1″ be not high.
Thus, in view of the conventional push switch and the microactive switch still have shortcomings and drawbacks, the inventor of the present application has made great efforts to make inventive research thereon and eventually provided a heat-spot distant type push switch structure.
The first objective of the present invention is to provide a heat-spot distant type push switch structure, in which a compression spring, a switching spring and a switching member are stacked for connection, and such stacked connection of the compression spring, the switching spring and the switching member facilitates the occupied space of the heat-spot distant type push switch structure capable of being reduced; moreover, by such mechanical structure design, the switching member would initially withstand the switching spring for opening two contacts points, without applying any other forces to the push switch; this mechanical structure design can enhance the durability of the push switch.
The second objective of the present invention is to provide a heat-spot distant type push switch structure, in which the supporting terminal, the compression spring, the switching spring, the electrical terminal, and the sliding lever assembly are designed to particular structures for forming a specific distant between the switching member and the touch point of two contact points, such that the switching member is away from the heat-spot produced by the two contact points; therefore the switching member can still not be fused after the heat-spot distant type push switch structure is long-term used.
The third objective of the present invention is to provide a heat-spot distant type push switch structure, in which the compression spring, the switching spring and the switching member are stacked for connection, therefore when two contact points contact to each other tightly, the driving force released by the compression spring produces a horizontal component force and a vertical component force, wherein the horizontal component force maintains the contact of the two contact points, and the vertical component force makes upper contact point down and press the lower contact point, so as to avoid the upper contact point from ricocheting off the lower contact point when the upper contact point is impacted by an external force.
Accordingly, to achieve the objectives of the present invention, the inventor of the present invention provides a heat-spot distant type push switch structure, comprising:
a supporting terminal;
a compression spring, connected to the supporting terminal by one end thereof;
a switching spring, having a first contact end, a switching member contacting end and a supporting terminal connecting end, wherein the first contact end has a spring connecting portion connected with the other end of the compression spring, and the supporting terminal connecting end being connected to the supporting terminal for facilitating the switching spring able to pivotally move up/down by using the supporting terminal as axes;
an electrical terminal, having a welding end, an extension section and a second contact end, wherein the extension section is connected with the welding end and the second contact end, and the second contact end being opposite to the supporting terminal in a free space, therefore the first contact end is able to touch the second contact end of the electrical terminal when the switching spring pivotally moves down; and
a sliding lever assembly, having a sliding bar, a sliding block and a switching member, wherein the sliding bar is disposed on the front end of the sliding block, and the switching member being disposed on the side end of the sliding block for initially withstanding the switching member contacting end of the switching spring, so as to make the first contact end of the switching spring away from the second contact end of the electrical terminal, and making the compression spring stay in a compressive state; moreover, the sliding lever assembly is adjacent to the electrical terminal in the free space, and the switching member is located over the extension section of the electrical terminal and below the supporting terminal;
wherein when pressing the sliding lever assembly for making the sliding bar and the sliding block move toward negative X-axis in the free space, the switching member being away from the switching member contacting end of the switching spring, meanwhile the compression spring staying in a releasing state and releasing a driving force by a specific angle in the free space;
wherein the driving force makes the switching spring pivotally move down by using the supporting terminal as axes, and then the first contact end of the switching spring tightly contacts with second contact end of the electrical terminal; therefore the supporting terminal conducts to the electrical terminal via the switching spring, and a specific distance is formed between the switching member and the contact point of the first contact end and the second contact end.
The invention as well as a preferred mode of use and advantages thereof will be best understood by referring to the following detailed description of an illustrative embodiment in conjunction with the accompanying drawings, wherein:
To more clearly describe a heat-spot distant type push switch structure according to the present invention, embodiments of the present invention will be described in detail with reference to the attached drawings hereinafter.
Please refer to
As shown in FIGs., the switching spring 13 includes a first contact end 131, a switching member contacting end 132 and a supporting terminal connecting end 133, wherein the first contact end 131 has a spring connecting portion connected with the other end of the compression spring 12, and the first contact end 131 is provided with a first contact silver point 1312. The supporting terminal connecting end 133 has two recess portions 1331 and two protrusion portions 1332, which used for cooperating with the two supporting portions 1111 and the two clasping portions 1112, so as to make the supporting terminal connecting end 133 of the switching spring 13 connect with the switching spring connecting end 111 of the supporting terminal 11, and facilitate the switching spring 13 able to pivotally move up/down by using the supporting terminal 11 as axes.
The electrical terminal 14 includes a welding end 141, an extension section 142 and a second contact end 143, wherein the extension section 142 is connected with the welding end 141 and the second contact end 143, and the second contact end 143 is provided with a second contact silver point 1431. In the heat-spot distant type push switch structure 1, the electrical terminal 14 is opposite to the supporting terminal 11 in a free space, therefore the first contact silver point 1312 of the first contact end 131 is able to touch the second contact silver point 1431 of the second contact end 143 when the switching spring 13 pivotally moves down.
Continuously referring to
Thus, by above descriptions, the framework and the constituting elements of the heat-spot distant type push switch structure 1 of the present invention has been completely introduced. Next, the schematic motion diagrams will be shown and used for more clearly describing the function and technology feature of the heat-spot distant type push switch structure 1. Please refer to
Particularly, in the heat-spot distant type push switch structure of the present invention, when the first contact end 131 of the switching spring 13 tightly contacts with the second contact end 143 of the electrical terminal 14, there has a specific distance d formed between the switching member 153 and the contact point of the first contact end 131 and the second contact end 143, and the specific distance d make the switching member 153 away from the heat-spot formed by the contact point of the first contact end 131 and the second contact end 143. So that, the switching member 153 would not be fused or melted even if the push switch structure of the present invention has been long-term used.
Moreover, as shown in
Please refer to
Thus, through the descriptions, the heat-spot distant type push switch structure of the present invention has been completely introduced and disclosed; in summary, the present invention has the following advantages:
1. As shown in
2. Inheriting to above point 1, by such mechanical structure design, the switching member 153 would initially withstand the switching member contacting end 132 of the switching spring 13, and then the first contact end 131 of the switching spring 13 is made be away from the second contact end 143 of the electrical terminal 14; This mechanical structure design can easily keep the heat-spot distant type push switch structure 1 in OFF state, without applying any other forces to the push switch; so that this mechanical structure design can enhance the durability of the push switch.
3. In addition, what is important is that, in the heat-spot distant type push switch structure 1 shown in the
4. Inheriting to above point 3, since the distance d makes the switching member 153 away from the heat-spot, the manufacturing material for the switching member 153 becomes selectivity and is not limited to metal.
5. Inheriting to above point 3, moreover, when the first contact end 131 of the switching spring 13 tightly contacts with the second contact end 143 of the electrical terminal 14, the driving force F released by the compression spring 12 produces a horizontal component force FH and a vertical component force FV, in which the horizontal component force FH maintains the contact of the first contact end 131 and the second contact end 143, and the vertical component force FV makes the first contact end 131 down and press the second contact end 143, so as to avoid the first contact end 131 from ricocheting off the second contact end 143 when the first contact end 131 is impacted by an external force. The horizontal component force FH and the vertical component force FV are the technology feature of the heat-spot distant type push switch structure 1.
6. Inheriting to above point 2, the heat-spot distant type push switch structure 1 of the present invention allows users to easily switch on/off by slightly pressing the sliding lever assembly 15 for controlling the motion of the sliding block 152 and the switching member 153.
The above description is made on embodiments of the present invention. However, the embodiments are not intended to limit scope of the present invention, and all equivalent implementations or alterations within the spirit of the present invention still fall within the scope of the present invention.