Heat sterilizable plastic can bodies

Information

  • Patent Grant
  • 8365945
  • Patent Number
    8,365,945
  • Date Filed
    Friday, March 19, 2010
    14 years ago
  • Date Issued
    Tuesday, February 5, 2013
    11 years ago
Abstract
A plastic can body includes a bottom portion and a main body portion having a plastic sidewall that is connected to the bottom portion. The main body portion is shaped to define an upper rim that is adapted to be secured to a lid. The sidewall includes a plurality of first sidewall portions that have a substantially flat circumferentially extending outer surface and a plurality of second sidewall portions. Each of the second sidewall portions are interposed between two adjacent first sidewall portions. Each of the second sidewall portions are shaped to define a plurality of circumferentially spaced indentations. Each of the second sidewall portions includes a plurality of circumferentially spaced vertical columns. Adjacent ones of the second sidewall portions may be rotationally staggered with respect to each other so that the vertical columns on one second sidewall portion are not aligned with the vertical columns of an adjacent second sidewall portion.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


This invention relates generally to the field of packaging, and more specifically to the field of plastic containers that have size, shape and functionality that permits them to serve as a replacement for conventional metal cans.


2. Description of the Related Technology


The use of metal cans to package products such as foodstuffs is well over a century old. Conventional metal cans are either of a two-piece configuration, in which a lid is secured to a can body having an integral bottom portion using a double seaming process, or of a three-piece configuration in which a lid and a bottom member are respectively secured to opposite open ends of a substantially cylindrical can body.


Plastic cans have been proposed as a substitute for conventional metal cans, but to date they have not achieved any significant commercial success. The use of plastic to fabricate a can body offers a number of potential advantages, such as lower energy costs during both the manufacturing and recycling stages, better formability and less susceptibility to denting during handling. Dented metal cans present potential health risks, such as increased susceptibility to contamination that can lead to conditions such as botulism.


In addition, a can that is fabricated out of food grade plastic would not require potentially harmful coatings of such materials as Bisphenol A (BPA). However, plastic lacks the inherent strength of metals such as steel and aluminum. It also tends to soften at much lower temperatures than steel and aluminum.


Conventional plastic cans accordingly may lack the column strength that is necessary to avoid deformation of the sidewall of the can when a number of cans or containers or palettes of cans are stacked during transportation or in packaging or retail facilities. While it is possible to increase the strength of a plastic container by increasing the thickness of the sidewall, doing so also increases manufacturing costs by increasing the amount of plastic material that is required. Lightweighting is an important consideration in the design of plastic containers because plastic material tends to be relatively expensive.


Plastic cans also typically lack the requisite circumferential or hoop strength that is required to avoid excessive deformation when the contents of the can become pressurized. Certain products, particularly food, require sterilization during the packaging process in order to inhibit the growth of bacteria.


The most common commercial procedure for heat sterilizing canned foods is a retort process in which filled but unsterilized sealed cans are placed in a retort chamber that is injected with steam and held at a predetermined elevated temperature (typically between about 210° F. to about 260° F.) for a predetermined period of time. Conventional plastic cans have been considered unsuitable for packaging applications in which heat sterilization is required, because the heat and pressurization that is inherent to such processes has the tendency to cause irreversible damage and deformation to the sidewall of the plastic can.


Metal cans are also commonly used to package pressurized beverages such as beer and soft drinks. In addition, other beverages that are not carbonated may develop a positive pressure with respect to ambient atmospheric conditions when the container is heated or transported to higher altitudes. Conventional extrusion blow molded plastic cans have been considered unsuitable for use in the packaging of such beverages.


A need exists for a plastic can body that has sufficient column strength and hoop strength to replace a conventional metal can, and that has sufficient rigidity and stability under elevated pressures and temperatures to permit heat sterilization without experiencing excessive deformation. A need further exists for a plastic can body that has sufficient strength to resist internal pressurization, so that it could be used to package carbonated beverages and the like. In addition, a need exists for a method of producing a heat sterilized packaged product that utilizes a plastic can body.


SUMMARY OF THE INVENTION

Accordingly, it is an object of the invention to provide a plastic can body that has sufficient column strength and hoop strength to replace a conventional metal can, and that has sufficient rigidity and stability under elevated pressures and temperatures to permit heat sterilization without experiencing excessive deformation.


It is further an object of the invention to provide a plastic can body that has sufficient strength to resist internal pressurization, so that it can be used to package carbonated beverages and the like.


It is yet further an object of the invention to provide a method for producing a heat sterilized packaged product that utilizes a plastic can body.


In order to achieve the above and other objects of the invention, a plastic can body, according to a first aspect of the invention includes a bottom portion and a main body portion having a plastic sidewall that is connected to the bottom portion. The main body portion is shaped to define an upper rim that is adapted to be secured to a lid. The sidewall includes a plurality of first sidewall portions that have a substantially flat circumferentially extending outer surface and a plurality of second sidewall portions. Each of the second sidewall portions are interposed between two adjacent first sidewall portions. Each of the second sidewall portions are shaped to define a plurality of circumferentially spaced indentations.


A plastic can body according to a second aspect of the invention includes a bottom portion and a main body portion having a plastic sidewall that is connected to the bottom portion. The main body portion is shaped to define an upper rim that is adapted to be secured to a lid. The sidewall includes a plurality of horizontally circumferentially extending first sidewall portions and a plurality of horizontally circumferentially extending second sidewall portions.


Each of the second sidewall portions are interposed between two adjacent first sidewall portions. In addition, each of the second sidewall portions includes a plurality of circumferentially spaced vertical columns. Adjacent second sidewall portions are rotationally staggered with respect to each other so that the vertical columns on one second sidewall portion are not aligned with the vertical columns of an adjacent second sidewall portion.


A heat sterilized plastic container according to a third aspect of the invention includes a container having a plastic sidewall that has a thickness that is substantially within a range of about 0.040 inch to about 0.065 inch. The sidewall includes a plurality of first sidewall portions and a plurality of second sidewall portions that are respectively interposed between the first sidewall portions. Each of the second sidewall portions is shaped to define a plurality of circumferentially spaced structures that are selected from the group consisting of indentations and projections.


These and various other advantages and features of novelty that characterize the invention are pointed out with particularity in the claims annexed hereto and forming a part hereof. However, for a better understanding of the invention, its advantages, and the objects obtained by its use, reference should be made to the drawings which form a further part hereof, and to the accompanying descriptive matter, in which there is illustrated and described a preferred embodiment of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a plastic can body that is constructed according to a preferred embodiment of the invention;



FIG. 2 is a side elevational view of the plastic can body that is shown in FIG. 1;



FIG. 3 is a diagrammatical longitudinal cross-section depicting the plastic can body that is shown in FIG. 1;



FIG. 4 is a diagrammatical transverse cross-section depicting the plastic can body that is shown in FIG. 1;



FIG. 5 is an enlarged view of one portion of the plastic can body that is shown in FIG. 2;



FIG. 6 is a diagrammatical depiction of a preferred multilayer material that is used in a sidewall of the plastic can body that is depicted in FIG. 1;



FIG. 7 is a flowchart depicting a method that is performed according to a preferred embodiment of the invention; and



FIG. 8 is a flowchart depicting a method that is performed according to an alternative embodiment of the invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S)

Referring now to the drawings, wherein like reference numerals designate corresponding structure throughout the views, and referring in particular to FIG. 1, a plastic can body 10 that is constructed according to a preferred embodiment of the invention is preferably fabricated from a food grade plastic material such as polyolefin, polypropylene, polyethylene or high-density polyethylene using a conventional extrusion blow molding process. The most preferred construction of the plastic portion of the plastic can body 10 is discussed in greater detail below.


Alternatively, plastic can body 10 may be fabricated from a material such as polyethylene terephthalate (PET) using a conventional reheat stretch blow molding process.


As is best shown in FIGS. 1 and 2, plastic can body 10 preferably includes a bottom portion 12 and a main body portion 14 having a plastic sidewall 16 that is connected to the bottom portion 12. The main body portion 14 preferably defined an upper rim 16 that is adapted to be secured to a lid member 30, as is diagrammatically shown in FIG. 3.


The lid member 30 is preferably fabricated from a metallic material such as steel, but it alternatively could be fabricated from a plastic material or any other suitable material. The lid member 30 is preferably secured to the upper rim 16 using a standard double seaming process of the type that is used to seal metal cans. Alternatively, the lid member 30 could be welded or otherwise secured to the upper rim 16.


In the preferred embodiment, the bottom portion 12 is integral with the plastic sidewall 16 and is also fabricated from a plastic material. Alternatively, the plastic can body 10 could be made for a three-piece can construction, in which the can body 10 is constructed as an open tube having a bottom rim that is similar to the upper rim 16, and a bottom lid could be secured in the manner described above with reference to the lid member 30.


As is best shown in FIGS. 1 and 2, the sidewall 18 is preferably constructed to define a plurality of first sidewall portions 20 and a plurality of second sidewall portions 22, each of which is interposed between two adjacent of the first sidewall portions 20. The first sidewall portions 20 are each preferably constructed so that they have substantially flat circumferentially extending outer surface 24, which in the preferred embodiment extends about an entire circumference of the main body portion 14.


The substantially flat circumferentially extending outer surfaces 24 are preferably oriented so that they are substantially vertical as viewed in side elevation, as shown in FIG. 2. In other words, they are preferably positioned to substantially reside within a plane that is parallel to a longitudinal axis 28 of the main body portion 14.


Alternatively, the outer circumferential surface of the first sidewall portions 20 could be convexly or concavely curved, or it could have a more complex shape.


In addition, each of the substantially flat circumferentially extending outer surfaces 24 preferably intersect a horizontal plane 32 that is perpendicular to the longitudinal axis 28 of the main body portion 14, as is shown diagrammatically in FIG. 3.


The main body portion 14 is preferably substantially cylindrical in shape, but it could alternatively be constructed of anyone of a plurality of possible alternative shapes, including a tapered shape or a complex shape according to the preferences of a packaging customer. The use of the plastic material in the sidewall 18 facilitates the fabrication of complex shapes that are difficult or impossible to achieve using a metal can body. Preferably, but not necessarily, the main body portion is shaped so that it is substantially symmetrical about the longitudinal axis 28.


Each of the second sidewall portions 22 is preferably shaped to define a plurality of circumferentially spaced indentations 26. Each of the second sidewall portions 22 preferably extend about an entire circumference of the main body portion 14. The circumferentially spaced indentations 26 are preferably spaced substantially evenly about the entire circumference of the main body portion 14. Preferably, although not necessarily, there are an even number of the circumferentially spaced indentations 26 within each of the second sidewall portions 22.


In the illustrated embodiment, there are twelve of the indentations 26 defined within each of the second sidewall portions 22. Preferably, the number of indentations within each of the second sidewall portions 22 is within a range of about four to about fifty, and more preferably within a range of about eight to about twenty-four.


Referring again to FIGS. 1 and 2, it will be seen that each of the second sidewall portions 22 further includes a plurality of substantially vertical columns or beams 34, with each of the vertical columns or beams 34 being interposed between two adjacent ones of the circumferentially spaced indentations 26. The substantially vertical columns or beams 34 have the effect of providing additional column strength to the main body portion 14.


Each of the substantially vertical columns 34 preferably has an outer surface that is convexly curved as viewed in transverse cross-section, as is shown diagrammatically in FIG. 4. The plastic can body 10 has a maximum diameter DMAX that is depicted in FIG. 2, which is preferably substantially within a range of about 40 mm to about 250 mm, more preferably within a range of about 45 mm to about 150 mm and most preferably within a range of about 55 mm to about 100 mm.


In the preferred embodiment, the convex curvature of the outer surface of the substantially vertical columns 34 is a substantially constant radius, but alternatively a nonconstant radius could be used. Preferably, a ratio of the average radius R1 of the outer surface of the substantially vertical columns 34 to the maximum diameter DMAX is substantially within a range of about 0.0195 to about 0.15, and more preferably substantially within a range about 0.03 to about 0.075.


As is diagrammatically shown in FIG. 4, each of the indentations 26 preferably has an average concave radius of curvature R2. In the preferred embodiment, the curvature is a substantially constant radius, but a nonconstant radius could alternatively be employed. Preferably, a ratio of the radius of curvature R2 to the maximum outer diameter DMAX is substantially within a range of about 0.25 to about 1.5, and more preferably substantially within a range of about 0.5 to about 1.0.



FIG. 1 shows two adjacent second sidewall portions 22, indicated with reference numerals 36, 38. In the preferred embodiment, adjacent second sidewall portions 36, 38 are rotationally staggered with respect to each other so that the substantially vertical columns 34 within the respective adjacent second sidewall portions 36, 38 are not aligned with each other. More preferably, the adjacent second sidewall portions 36, 38 are staggered or rotationally displaced with respect to each other so that each of the vertical columns 34 is substantially centered with respect to one of the indentations 26 in the adjacent second sidewall portion.


The staggering of the vertical columns 34 maintains the high column strength that is imparted by the columns 34, while increasing the overall hoop and shear strengths of the main body portion 14.



FIG. 5 provides an enlarged view of one of the indentations 26 along with the surrounding structure. In the preferred embodiment, each of the indentations 26 has a horizontally oriented hourglass shape having a first side 40 that has a first vertical height, a second side 42 that has a second vertical height and a central portion 44 that has a minimum height H2 that is preferably less than either of said first or second vertical heights. In the preferred embodiment, the first and second vertical heights are substantially equal to each other and are represented by the value H1. A ratio H1/H2 is preferably substantially within a range of about 1.1 to about 2.0, and more preferably substantially within a range of about 1.25 to about 1.75.


In the preferred embodiment, a fillet 46 is defined between each of outer surfaces 24 of the adjacent first sidewall portions 20 and the floor 48 of each of the indentations 26. As FIG. 5 shows, each of the vertical columns 34 have a first end 50 that is joined to one of the fillets 46 and a second end 52 that is joined to another of the fillets 46. Each of the fillets 46 is concave as viewed in side elevation and has a radius R3 that in the preferred embodiment is substantially constant. Preferably, a ratio of the radius R3 to the maximum outer diameter DMAX of the plastic can body 10 is substantially within a range of about 0.01 to about 0.05 and more preferably substantially within a range of about 0.02 to about 0.04.


The second ends 52 of the vertical columns 34 on each side of the indentation 26 together with the first end 50 of the vertical column 34 that is centered with respect to the indentation 26 within the adjacent underlying second sidewall portion 22 together define a triangular shape that, in aggregate with the other triangular shapes that are likewise defined on the sidewall 18 creates an intermeshed complex force transmission structure that optimizes the column strength, the hoop strength and shear strength of the sidewall 18 and the main body portion 14.


Moreover, the complex curvature that is created by the fillets 46, the vertical columns 34 and the outer surfaces 24 of the adjacent first sidewall portions 20 provide structural reinforcement longitudinally, circumferentially and diagonally throughout the extent of the sidewall 18.


Each of the fillets 46 is preferably angled with respect to the longitudinal axis 28 at an angle A1 that is preferably substantially within a range of about 114° to about 134°, and more preferably substantially within a range of about 119° to about 129°.


At least one of the first sidewall portions 20 has a first vertical height H3, and at least one of the second sidewall portions 22 has a second vertical height H4. In the preferred embodiment, all of the first sidewall portions 20 are of the same vertical height H3, and all of the second sidewall portions 22 are of the same vertical height H4. A ratio H3/H4 of the first vertical height to the second vertical height is preferably substantially within a range of about 0.20 to about 5.0, and more preferably substantially within a range of about 0.50 to about 2.0.


In an alternative embodiment, the structure of the sidewall 18 that is described above could be inverted so that the indentations 26 are protrusions and the vertical columns 34 are concave and extend inwardly rather than being convex.


In another alternative embodiment, the first and second sidewall portions 20, 22 could have a helical construction that would extend through the entire length of the sidewall 18 so that the sidewall 18. For purposes of this document, such an embodiment would be considered to have a plurality of first sidewall portions and a plurality of second sidewall portions, since parts of both of the first and second sidewall portions would be longitudinally displaced from each other.


Preferably, the sidewall 18 is fabricated from an extruded multilayer material, shown diagrammatically in FIG. 6, using a conventional extrusion blow molding process in which a hollow parison of multiplayer plastic material is continuously extruded, and a moving mold captures a portion of the parison, which is subsequently internally inflated against the inner surfaces of the mold to shape and size the contours of the plastic can body 10, which is removed from the mold and trimmed.


In the most preferred embodiment, the outer surface 60 of the sidewall 18 is defined by a first layer 64 of plastic material, which is fabricated from a food grade polypropylene. A second adhesive layer 66 attaches the first layer 64 to a third layer 68, which is preferably fabricated from ethylene vinyl acetate (EVOH). A fourth layer 70 of adhesive secures the third layer 68 to a fifth layer 72 of regrind polypropylene material. A sixth, inner layer 70 of a virgin polypropylene material is blended with the fifth layer 72.


The sidewall 18 is preferably shaped to have a substantially constant thickness TS, as is shown diagrammatically in FIG. 3, that is preferably substantially within a range of about 0.040 inch to about 0.065 inch for applications requiring heat sterilization, and more preferably substantially within a range of about 0.045 inch to about 0.055 inch. For other packaging applications in which heat sterilization is not anticipated, the thickness TS is preferably substantially within a range of about 0.015 inch to about 0.065 inch, and more preferably substantially within a range about 0.020 inch to about 0.055 inch.


A method of providing a heat sterilized package product according to a preferred embodiment of the invention is depicted in FIG. 7 and would utilize the plastic can body 10 described above. The plastic can body 10 would be filled with a product, which could be a food or a beverage, and the lid 30 would be secured to the upper rim of the plastic can body 10 using a process such as the double-seaming process in order to seal the product within the closed container.


The lid 30 could be fabricated from a metallic material such as steel or aluminum, from a plastic material, or be of a composite design that includes both metallic material and plastic material. For example, the lid 30 could be fabricated from a plastic material that has a metallic insert with a tamper evident button that is designed to pop outwardly when the lid 30 is first removed from the container.


The closed container would then be subjected to a heat sterilization process such as a retort process in which the closed container is exposed to heated steam at temperatures of about 210° F. to about 260° F. for a predetermined period of time that is sufficient to kill any bacteria that may be within the closed container. The unique construction of the plastic can body 10 ensures that it will be able to survive such a heat sterilization process with a minimum of deformation and without being breached. The closed container is then commercially distributed to consumers.


A method of packaging materials that are expected to undergo internal pressurization, such as carbonated beverages, according to another embodiment of the invention is depicted in FIG. 8 and would also utilize the plastic can body 10 that is described above. The plastic can body 10 would be filled with a product such as a carbonated beverage and the lid 30 as it is described above would be secured to the upper rim of the plastic can body 10 using a process such as the double-seaming process in order to seal the product within the closed container.


In this and other embodiments, the lid 30 could be an easy open lid that may be opened by a consumer without needing an additional tool such as a can opener. After filling and sealing, the product would be commercially distributed to consumers. The unique construction of the plastic can body 10 will ensure that any deformation as a result of internal pressurization will not be excessive.


The use of plastic material to fabricate the can body offers a number of potential advantages, such as lower energy costs during both the manufacturing and recycling stages, better formability and less susceptibility to denting during handling in comparison to metal cans. It also reduces the potential for contamination that can lead to conditions such as botulism.


It is to be understood, however, that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.

Claims
  • 1. A plastic can body, comprising a bottom portion; anda main body portion having a plastic sidewall that is connected to the bottom portion, the main body portion having a non-threaded mounting portion defining flanged upper rim that is adapted to be secured to a can lid, wherein the sidewall includes a plurality of first sidewall portions that have a substantially flat circumferentially extending outer surface and a plurality of second sidewall portions, each of the second sidewall portions being interposed between two adjacent first sidewall portions, and wherein each of the second sidewall portions are shaped to define a plurality of circumferentially spaced indentations.
  • 2. A plastic can body according to claim 1, wherein said substantially flat circumferentially extending outer surface extends about an entire circumference of the main body portion.
  • 3. A plastic can body according to claim 1, wherein the main body portion has a vertical longitudinal axis, and the substantially flat circumferentially extending outer surface extends within a horizontal plane that is perpendicular to the vertical longitudinal axis.
  • 4. A plastic can body according to claim 1, wherein the main body portion is substantially cylindrical in shape.
  • 5. A plastic can body according to claim 1, wherein each of the second sidewall portions extend about an entire circumference of the main body portion.
  • 6. A plastic can body according to claim 5, wherein the plurality of circumferentially spaced indentations are spaced substantially evenly about the entire circumference of the main body portion.
  • 7. A plastic can body according to claim 1, wherein each of the second sidewall portions further comprises a plurality of substantially vertical columns, each of the vertical columns being interposed between two adjacent indentations.
  • 8. A plastic can body according to claim 7, wherein each of the vertical columns has an outer surface that is convexly curved.
  • 9. A plastic can body according to claim 8, wherein the main body portion has a maximum outer diameter and the convexly curved outer surface of the vertical columns has a radius, and wherein a ratio of the radius to the maximum outer diameter is substantially within a range of about 0.0195 to about 0.15.
  • 10. A plastic can body according to claim 9, wherein the ratio of the radius to the maximum outer diameter is substantially within a range of about 0.03 to about 0.075.
  • 11. A plastic can body according to claim 1, wherein the main body portion has a maximum outer diameter and each of the indentations has a concave curvature as viewed in a horizontal plane that has a radius, and wherein a ratio of the radius to the maximum outer diameter is substantially within a range of about 0.25 to about 1.5.
  • 12. A plastic can body according to claim 11, wherein the ratio of the radius to the maximum outer diameter is substantially within a range of about 0.5 to about 1.0.
  • 13. A plastic can body according to claim 7, wherein adjacent second sidewall portions are oriented so that the substantially vertical columns are not aligned with each other.
  • 14. A plastic can body according to claim 13, wherein each of the substantially vertical columns on one of the second sidewall portions is substantially centered as viewed in side elevation with respect to an indentation on an adjacent one of the second sidewall portions.
  • 15. A plastic can body according to claim 1, wherein each of the indentations has a horizontally oriented hourglass shape.
  • 16. A plastic can body according to claim 1, wherein each of the indentations has a first side having a first vertical height, a second side having a second vertical height and a central portion having a minimum vertical height that is less than the first and second vertical heights.
  • 17. A plastic can body according to claim 1, wherein further comprising a fillet defined in the sidewall between the indentation and an adjacent one of the first sidewall portions.
  • 18. A plastic can body according to claim 17, wherein each of the second sidewall portions further comprises a plurality of substantially vertical columns, each of the vertical columns being interposed between two adjacent indentations, and wherein each of the vertical columns has a first end that is joined to the fillet.
  • 19. A plastic can body according to claim 17, wherein the main body portion has a maximum outer diameter and the fillet is concave as viewed in side elevation and has a radius, and wherein a ratio of the radius to the maximum outer diameter is substantially within a range of about 0.01 to about 0.05.
  • 20. A plastic can body according to claim 19, wherein the ratio of the radius to the maximum outer diameter is substantially within a range of about 0.02 to about 0.04.
  • 21. A plastic can body according to claim 1, wherein the main body portion is constructed and arranged to withstand a heat sterilization process, and wherein the sidewall has a thickness that is substantially within a range of about 0.040 inch to about 0.065 inch.
  • 22. A plastic can body according to claim 21, wherein the sidewall has a thickness that is substantially within a range of about 0.045 inch to about 0.055 inch.
  • 23. A plastic can body according to claim 1, wherein the sidewall has a thickness that is substantially within a range of about 0.015 inch to about 0.065 inch.
  • 24. A plastic can body according to claim 23, wherein the sidewall has a thickness that is substantially within a range of about 0.020 inch to about 0.055 inch.
  • 25. A plastic can body, comprising a bottom portion; anda main body portion having a plastic sidewall that is connected to the bottom portion, the main body portion having a non-threaded mounting portion defining a flanged upper rim that is adapted to be secured to a can lid, wherein the sidewall includes a plurality of horizontally circumferentially extending first sidewall portions and a plurality of horizontally circumferentially extending second sidewall portions, each of the second sidewall portions being interposed between two adjacent first sidewall portions, and whereineach of the second sidewall portions includes a plurality of circumferentially spaced vertical columns, and wherein adjacent second sidewall portions are rotationally staggered with respect to each other so that the vertical columns on one second sidewall portion are not aligned with the vertical columns of an adjacent second sidewall portion.
  • 26. A plastic can body according to claim 25, wherein the horizontally circumferentially extending first sidewall portions comprise a substantially flat outer surface.
  • 27. A plastic can body according to claim 25, wherein the main body portion is substantially cylindrical in shape.
  • 28. A plastic can body according to claim 25, wherein each of the second sidewall portions further comprises a plurality of circumferentially spaced indentations.
  • 29. A plastic can body according to claim 28, wherein the circumferentially spaced indentations are spaced substantially evenly about the entire circumference of the main body portion.
  • 30. A plastic can body according to claim 25, wherein each of the vertical columns has an outer surface that is convexly curved.
  • 31. A plastic can body according to claim 30, wherein the main body portion has a maximum outer diameter and the convexly curved outer surface of the vertical columns has a radius, and wherein a ratio of the radius to the maximum outer diameter is substantially within a range of about 0.0195 to about 0.15.
  • 32. A plastic can body according to claim 31, wherein the ratio of the radius to the maximum outer diameter is substantially within a range of about 0.03 to about 0.075.
  • 33. A plastic can body according to claim 28, wherein the main body portion has a maximum outer diameter and each of the indentations has a concave curvature as viewed in a horizontal plane that has a radius, and wherein a ratio of the radius to the maximum outer diameter is substantially within a range of about 0.25 to about 1.5.
  • 34. A plastic can body according to claim 33, wherein the ratio of the radius to the maximum outer diameter is substantially within a range of about 0.5 to about 1.0.
  • 35. A plastic can body according to claim 25, wherein each of the substantially vertical columns on one of the second sidewall portions is substantially centered as viewed in side elevation with respect to a space between two adjacent substantially vertical columns on an adjacent one of the second sidewall portions.
  • 36. A plastic can body according to claim 25, wherein further comprising a fillet defined in the sidewall within the second sidewall portion adjacent to an interface with an adjacent one of the first sidewall portions.
  • 37. A plastic can body according to claim 36, wherein each of the vertical columns has a first end that is joined to the fillet.
  • 38. A plastic can body according to claim 36, wherein the main body portion has a maximum outer diameter and the fillet is concave as viewed in side elevation and has a radius, and wherein a ratio of the radius to the maximum outer diameter is substantially within a range of about 0.01 to about 0.05.
  • 39. A plastic can body according to claim 38, wherein the ratio of the radius to the maximum outer diameter is substantially within a range of about 0.02 to about 0.04.
  • 40. A plastic can body according to claim 25, wherein the main body portion is constructed and arranged to withstand a heat sterilization process, and wherein the sidewall has a thickness that is substantially within a range of about 0.040 inch to about 0.065 inch.
  • 41. A plastic can body according to claim 40, wherein the sidewall has a thickness that is substantially within a range of about 0.045 inch to about 0.055 inch.
  • 42. A plastic can body according to claim 25, wherein the sidewall has a thickness that is substantially within a range of about 0.015 inch to about 0.065 inch.
  • 43. A plastic can body according to claim 42, wherein the sidewall has a thickness that is substantially within a range of about 0.020 inch to about 0.055 inch.
US Referenced Citations (20)
Number Name Date Kind
D200443 Deegan Feb 1965 S
D201400 Kneeland Jun 1965 S
D205686 Marchant Sep 1966 S
3357593 Sears, Jr. et al. Dec 1967 A
D277041 Nichols Jan 1985 S
4840289 Fait et al. Jun 1989 A
4997691 Parkinson Mar 1991 A
5054632 Alberghini et al. Oct 1991 A
5071029 Umlah et al. Dec 1991 A
D323290 Keedy, Jr. Jan 1992 S
D324493 Nickerson Mar 1992 S
5217737 Gygax et al. Jun 1993 A
5718352 Diekhoff et al. Feb 1998 A
6095360 Shmagin et al. Aug 2000 A
6520362 Heisel et al. Feb 2003 B2
D559120 Farrow et al. Jan 2008 S
D559121 Farrow et al. Jan 2008 S
20040149677 Slatt et al. Aug 2004 A1
20040211746 Trude et al. Oct 2004 A1
20090166314 Matsuoka Jul 2009 A1
Foreign Referenced Citations (2)
Number Date Country
2161133 Jan 1986 GB
02074635 Sep 2002 WO
Non-Patent Literature Citations (1)
Entry
International Search Report for International Application No. PCT/US2011/029014 dated Aug. 22, 2011.
Related Publications (1)
Number Date Country
20110226787 A1 Sep 2011 US