Embodiments according to the present invention will be described below with reference to the drawings.
An embodiment of the present invention will be described below with reference to
A blower 4, a cooler 5, a radiator 6, and an air-mix damper 7 are provided inside the casing 3, in this order from upstream side to the downstream side of the air duct 2. The blower 4 sucks in and pressurizes outside air or vehicle cabin air and supplies it under pressure towards the downstream side. The cooler 5 cools the air supplied by the blower 4. The radiator 6 heats the air cooled upon passing through the cooler 5. The air-mix damper 7 adjusts the mix of the volume of air passing through the radiator 6 and the volume of air bypassing the radiator 6 to regulate the temperature of the air mixed at the downstream side thereof.
The downstream side of the casing 3 is connected to a plurality of vents (not shown in the drawing) for blowing out the temperature-regulated air into the vehicle interior via a blowing mode switching damper and duct, which are not shown in the drawing.
The cooler 5 forms a refrigerant circuit together with a compressor, a condenser, and an expansion valve, which are not shown in the drawing, and cools the air passing therethrough by evaporating a refrigerant which is adiabatically expanded at the expansion valve.
The radiator 6 forms a heat-transfer-medium circulating circuit 11 together with a tank 8, a pump 9, and a heat-transfer-medium heating apparatus 10 and heats the air passing therethrough by circulation of the heat transfer medium heated by the heat-transfer-medium heating apparatus 10 via the pump 9.
As shown in
The upper heat-transfer-medium circulating box 30 is a rectangular box member formed of a heat conducting material such as an aluminum alloy and includes, at the upper surface thereof, an inlet head 31 and an outlet head 32, forming a pair at both ends, and a plurality of separate parallel groove-shaped circulating channels 33 formed between the inlet head 31 and the outlet head 32. The upper surface of the inlet head 31, the outlet head 32, and the circulating channels 33 is sealed off by the bottom surface of the board accommodating box 20 described above (see
A heat-transfer-medium inlet 34 is provided in the inlet head 31 described above. A communication port 35 to the lower heat-transfer-medium circulating box 50 and an outlet 36 which is separated from the outlet head 32 and through which the heat transfer medium flowing in from the lower heat-transfer-medium circulating box 50 is made to flow out are provided in the outlet head 32.
A depressed surface 37 (see
The PTC heater 40 uses flat plate-shaped PTC elements 41 formed in a rectangular shape as heat-generating elements, and has a stacked structure in which electrode plates 42, incompressible insulating layers 43, and compressible heat-conducting layers 44 are sequentially stacked on both surfaces of the PTC elements 41 to sandwich them.
A plurality, for example, four, of the PTC elements 41 are disposed side by side, and they are configured so as to be controlled on/off in units of individual PTC elements 41 by the control circuit integrated on the control boards 22.
The electrode plates 42, which are for supplying electrical power to the PTC elements 41, are sheets with the same rectangular shape as the PTC elements 41, and are electrically conducting and heat conducting.
The incompressible insulating layers 43 are rectangular sheets, formed of an insulating material such as alumina, and are heat conducting. The incompressible insulating layers 43 have a larger surface area than the electrode plates 42, so that the four edges thereof extend slightly further outward than the four edges of the electrode plates 42 when stacked on the outer surfaces of the electrode plates 42 (see
The incompressible insulating layers 43 are formed with a thickness of 1.0 mm or more and 2.0 mm or less. This is to minimize the thermal resistance between the PTC elements 41 and electrode plates 42, and the upper heat-transfer-medium circulating box 30 and lower heat-transfer-medium circulating box 50 provided at the outer sides thereof, as well as to ensure sufficient electrical insulation. Even if the incompressible insulating layer 43 is broken, the thickness is at least 1.0 mm so that insulation is ensured by an air layer.
The compressible heat-conducting layers 44 are a rectangular sheets having compressibility, are formed of insulating sheets such as a silicone sheets, and are heat conducting. These compressible heat-conducting layers 44 have a larger surface area than the incompressible insulating layers 43, so that the four edges thereof extend significantly farther outward than the four edges of the electrode plates 42, when laminated on the outer surfaces of the incompressible insulating layers 43 (see
When the compressible heat-conducting layers 44 are formed of silicone sheets, the thickness thereof is 0.4 mm or more and 2.0 mm or less. This is to restrict the thickness to 2.0 mm or less to minimize the thermal resistance between the PTC elements 41 serving as the heat-generating elements and the upper heat-transfer-medium circulating box 30 and the lower heat-transfer-medium circulating box 50. Another reason is that, setting the thickness to at least 0.4 mm ensures a sufficient compression effect so that, when the PTC heater 40 is assembled between the upper heat-transfer-medium circulating box 30 and the lower heat-transfer-medium circulating box 50, by utilizing the compressibility, the upper heat-transfer-medium circulating box 30 and the lower heat-transfer-medium circulating box 50 are reliably placed in close contact with the PTC heater 40, and in addition, dimensional tolerance in assembly are absorbed.
The lower heat-transfer-medium circulating box 50 is a rectangular box member formed of a heat-conducting material such as aluminum alloy and includes, at the lower surface thereof, an inlet head 52 and an outlet head 53 forming a pair at one end and a plurality of separate parallel groove-shaped circulating channels 54 which extend from the inlet head 52 to the other end and which form a U-turn at the other end to return to the outlet head 53. The lower surface of the inlet head 52, the outlet head 53, and the circulating channels 54 is sealed off by the cover 51. Accordingly, a flow path for the heat transfer medium is formed inside the lower heat-transfer-medium circulating box 50, wherein the heat transfer medium flowing in through the inlet head 52 is split into the plurality of circulating channels 54 by the inlet head 52, simultaneously circulates through the circulating channels 54 in parallel, performs a U-turn at the other end, and reaches the outlet head 53. A higher pressure drop is expected because the circulating channels 54 are U-turn paths and are thus longer than the circulating channels 33 in the upper heat-transfer-medium circulating box 30. Therefore, the circulating channels 54 are formed with a larger width than the width of the circulating channels 33 (see
The inlet head 52 of the lower heat-transfer-medium circulating box 50 communicates with the communicating hole 35 provided in the outlet head 32 of the upper heat-transfer-medium circulating box 30, and the heat transfer medium flowing in the upper heat-transfer-medium circulating box 30 flows in therethrough. Also, the outlet head 53 of the lower heat-transfer-medium circulating box 50 communicates with the outlet 36 provided in the outlet head 32 of the upper heat-transfer-medium circulating box 30, but so as to be separate thereform, thus forming a path through which the heat transfer medium is made to flow to the outside through the lower heat-transfer-medium circulating box 50.
The upper surface of the lower heat-transfer-medium circulating box 50 defines a flat surface 55 (see
Thus, the PTC heater 40 is configured such that it is possible to radiate heat from both surfaces to the heat transfer medium circulating in the upper heat-transfer-medium circulating box 30 and the lower heat-transfer-medium circulating box 50 provided in close contact with the two surfaces thereof, thus heating up the heat transfer medium.
The heat-transfer-medium circulating circuit 11 is connected to the inlet 34 of the upper heat-transfer-medium circulating box 30. Low-temperature heat transfer medium supplied at pressure from the pump 9 flows into the inlet head 31 from the inlet 34 and is split into the individual circulating channels 33. After the heat transfer medium circulating in the individual circulating channels 33 towards the outlet head 32 is combined at the outlet head 32, it flows into the inlet head 52 of the lower heat-transfer-medium circulating box 50 via the communicating hole 35. After this heat transfer medium is split into the individual circulating channels 54 in the inlet head 52, circulates inside each circulating channel 54, and performs a U-turn at the other end, it reaches the outlet head 53, where it is recombined. The heat transfer medium then flows out to the heat-transfer-medium circulating circuit 11 from the outlet 36 communicating with the outlet head 53. A flow path for the heat transfer medium is thus formed by the above configuration.
Next, the operation of the vehicular air-conditioning apparatus 1 and the heat-transfer-medium heating apparatus 10 according to this embodiment will be described.
In the vehicular air-conditioning apparatus 1, the outside air or vehicle cabin air drawn into the blower 4 is supplied under pressure to the cooler 5, where it is performs heat exchange with the refrigerant circulating in the cooler 5, thus being cooled. This cool air is then branched by the air-mix damper 7. One part flows into the radiator 6 and the other part bypasses the radiator 6. After the air which is heated up in the radiator 6 is mixed with the air bypassing the radiator 6 at the downstream side thereof to regulate it to a predetermined temperature, it is blown out into the vehicle cabin. Accordingly, the temperature of the vehicle cabin interior is regulated.
The air heating by the radiator 6 is achieved by radiating heat from the high-temperature heat transfer medium circulating in the heat-transfer-medium circulating circuit 11. The heat transfer medium in the heat-transfer-medium circulating circuit 11 is supplied from the tank 8 to the heat-transfer-medium heating apparatus 10 via the pump 9, where it is heated to about 80° C. and supplied to the radiator 6. The heat transfer medium at this temperature is subjected to heat exchange with air which is cooled and dehumidified by the cooler 5 while circulating in the radiator 6, radiates heat to the air to reduce the temperature, and returns back to the tank 8. By repeating this, air heating is continuously performed by the radiator 6.
In the heat-transfer-medium heating apparatus 10, low-temperature heat transfer medium flows in from the inlet 34 in the upper heat-transfer-medium circulating box 30 to the inlet head 31. The temperature of this heat transfer medium is raised by the PTC heater 40 while it circulates the circulating channels 33 after being split at the inlet head 31, and it reaches the outlet head 32. The heat transfer medium combined at the outlet head 32 flows into the inlet head 52 of the lower heat-transfer-medium circulating box 50 via the communicating hole 35, and while it circulates in the circulating channels 54 after being split by the inlet head 52, its temperature is raised again by the PTC heater 40, and it reaches the outlet head 53. In this way, while the heat transfer medium is circulating in the upper heat-transfer-medium circulating box 30 and the lower heat-transfer-medium circulating box 50, its temperature is raised to produce high-temperature heat transfer medium at about 80° C., which flows out from the outlet head 53 to the heat-transfer-medium circulating circuit 11 via the outlet 36.
A high voltage is applied from the control board 22 to the PTC elements 41, serving as heat-generating elements, of the PTC heater 40 via the electrode plates 42. Thus, the PTC elements 41 generate heat which is radiated from both surfaces thereof. This heat is conducted to the upper heat-transfer-medium circulating box 30 and the lower heat-transfer-medium circulating box 50 via the electrode plates 42, the incompressible insulating layers 43, and the compressible heat-conducting layers 44, which are in close contact with the PTC elements 41, thus contributing to the heating of the heat transfer medium.
The PTC elements 41, of which there are four, are switched on and off in units of individual PTC elements 41 by the control board 22 according to the temperature of the heat transfer medium flowing into the heat-transfer-medium heating apparatus 10, thus controlling the heating capacity. Thus, it is possible to heat the heat transfer medium to a predetermined temperature and discharge it.
The high voltage applied to the PTC elements 41 is electrically isolated from the upper heat-transfer-medium circulating box 30 and the lower heat-transfer-medium circulating box 50 by the incompressible insulating layers 43 disposed on the surfaces at both sides thereof. In this embodiment, because the compressible heat-conducting layers 44 are also formed of insulating sheets such as silicone sheets, they also function as insulating layers. Thus, forming double insulating layers enhances the electrical insulation. The surface area of the incompressible insulating layers 43 is larger than that of the electrode plates 42, and the surface area of the compressible heat-conducting layers 44 is in turn larger than that of the incompressible insulating layers 43; thus, the four edges thereof extend further outward than the four edges of the electrode plates 42 and the incompressible insulating layers 43. Therefore, short circuits can be reliably prevented between the PTC elements 41 and electrode plates 42, and the upper heat-transfer-medium circulating box 30 and lower heat-transfer-medium circulating box 50.
Heat-generating components such as the FETs 23 are provided on the control board 22 controlling the PTC heater 40; the heat-generating components such as the FETs 23 are provided on the lower surface of the control boards 22 and are in contact with the cooling portion 25 provided on the bottom surface of the board accommodating box 20. The cooling portion 25, which is in contact with the heat-transfer-medium circulating channels 33 in the upper heat-transfer-medium circulating box 30, is at a lower temperature than the heat-generating components such as the FETs 23 due to the heat transfer medium circulating inside. Therefore, the heat-generating components are forcibly cooled by the circulating heat transfer medium. In addition, because the heat-generating components such as the FETs 23 and the cooling portion 25 are disposed in the vicinity of the inlet side of the heat-transfer-medium circulating channels 33, they are efficiently cooled by the heat transfer medium, which is still at a low temperature, in the vicinity of the inlet.
This embodiment affords the following advantages.
Heat is radiated from both surfaces of the PTC heater 40, thus heating the heat transfer medium circulating in the upper heat-transfer-medium circulating box 30 and the lower heat-transfer medium circulating box 50. Therefore, it is possible to increase the heat-radiating efficiency of the PTC heater 40 and improve the heating performance. In addition, a stacked structure is provided in which the PTC heater 40 is sandwiched by the upper heat-transfer-medium circulating box 30 and the lower heat-transfer-medium circulating box 50, thus placing the upper heat-transfer-medium circulating box 30 and the lower heat-transfer-medium circulating box 50 in close contact with the two surfaces of the PTC heater 40. Therefore, it is possible to assemble the PTC heater 40, the upper heat-transfer-medium circulating box 30, and the lower heat-transfer-medium circulating box 50 in close contact with each other, which improves the heat-conducting properties and the ease of assembly.
Because the PTC heater 40 has a stacked construction in which the electrode plates 42, the incompressible insulating layers 43, and the compressible heat-conducting layers 44 are sequentially provided on both surfaces of the PTC elements 41, the thermal resistance between the PTC elements 41 and the upper heat-transfer-medium circulating box 30 and lower heat-transfer-medium circulating box 50 is reduced, thus increasing the heat-conduction properties, and in addition, it is possible to ensure sufficient electrical insulation therebetween. In particular, by utilizing the compressibility of the compressible heat-conducting layers 44, it is possible to assemble the PTC heater 40 and the upper and lower heat-transfer-medium circulating boxes 30 and 50 by pressing them together, thus improving the contact properties between these parts. As a result, it is possible to improve the heat-conducting properties and to absorb dimensional tolerance in assembly.
Because the incompressible insulating layers 43 have a thickness of 1.0 mm or more and 2.0 mm or less, it is possible to sufficiently reduce the thermal resistance between the PTC elements 41 and electrode plates 42, and the upper heat-transfer-medium circulating box 30 and lower heat-transfer-medium circulating box 50 which are provided at the outer sides thereof, and it is also possible to ensure sufficient electrical insulation therebetween. In addition, even if the incompressible insulating layers 43 are broken, because it is possible to ensure an air layer of at least 1.0 mm, it is possible to maintain insulation.
By forming the compressible heat-conducting layers 44 of insulating sheets such as silicone sheets, they can also function as insulating layers. Therefore, it is possible to form a double insulating layer structure, which allows the electrical insulation properties to be enhanced. In addition, because these insulating sheets (silicone sheets) have a thickness of 0.4 mm or more and 2.0 mm or less, it is possible to ensure the required compressibility while at the same time sufficiently reducing the thermal resistance.
The surface area of the incompressible insulating layers 43 is larger than that of the electrode plates 42, and the surface area of the compressible heat-conducting layers 44 is in turn larger than that of the incompressible insulating layers 43. Therefore, it is possible to make the four edges thereof extend further outward than the four edges of the electrode plates 42 and the incompressible insulating layers 43. As a result, it is possible to reliably prevent short circuits between the PTC elements 41 and electrode plates 42, and the upper heat-transfer-medium circulating box 30 and lower heat-transfer-medium circulating box 50, and it is thus possible to further improve the electrical insulation properties.
The circulating channels 33 and 54 in the upper heat-transfer-medium circulating box 30 and the lower heat-transfer-medium circulating box 50 provided on the two surfaces of the PTC heater 40 communicate with each other, thus lengthening the flow path of the heat transfer medium. Therefore, it is possible to increase the contact length with respect to the PTC heater 40, which allows the heating performance of the heat transfer medium to be increased. In addition, because the capacity of the PTC heater 40 can be controlled according to the temperature of the heat transfer medium, it is possible to stably supply heat transfer medium which has been heated to a predetermined temperature.
The control board 22 having the heat-generating components such as the FETs 23 is disposed inside the board accommodating box 20 connected to the upper heat-transfer-medium circulating box 30, so as to be forcibly cooled by the heat transfer medium circulating in the upper heat-transfer-medium circulating box 30. Therefore, the control board 22 can be thermally stabilized, thus improving the heat resistance and reliability thereof. In particular, because the heat-generating components are in contact with the cooling portion 25 provided in the board accommodating box 20 to allow it to be cooled by heat conduction, it is possible to further increase the cooling effect. Moreover, because the heat-generating components and the cooling portion 25 are disposed close to the inlet side of the upper heat-transfer-medium circulating box 30, it is possible to efficiently cool them with comparatively low-temperature heat transfer medium.
Because the vehicular air-conditioning apparatus 1 of this embodiment includes the heat-transfer-medium heating apparatus 10, and the heat transfer medium heated by this heat-transfer-medium heating apparatus 10 is circulated in the radiator 6 to serve as a heat source for the air, it is suitable for use in air-conditioning apparatuses in vehicles that are not equipped with an engine using coolant, such as an electric car. However, it is not limited to this application and may be similarly employed in air-conditioning apparatuses of vehicles equipped with an engine whose coolant functions as a heat source for heating the air at a radiator. In such a case, because low-temperature coolant can be quickly heated and circulated in the radiator when the air-conditioning apparatus is activated, it is possible to improve the startup performance of the air conditioner.
The embodiment described above has been described using an example in which the heat transfer medium is circulated from the upper heat-transfer-medium circulating box 30 to the lower heat-transfer-medium circulating box 50. However, it may be circulated in the opposite direction from the lower heat-transfer-medium circulating box 50 to the upper heat-transfer-medium circulating box 30. In this case, to maintain the cooling performance of the control board 22, the board accommodating box 20 can be disposed at the side where the lower heat-transfer-medium circulating box 50 is located.
Number | Date | Country | Kind |
---|---|---|---|
2006-234151 | Aug 2006 | JP | national |