The accompanying drawings, which are incorporated into and form a part of the specification, illustrate embodiments of the present invention and, together with the description, serve to explain the principles of the invention. The drawings are only for the purpose of illustrating preferred embodiments of the invention and are not to be construed as limiting the invention. In the drawings:
Let us first consider a design in which the turbines, generators, and heat exchangers are at 1,000-meter depth. (Later we will look at the design which has the turbine and generator at the surface).
At the bottom, the vapor condenses on a heat exchange surface 4 (or in a heat exchanger) and transfers heat into a working fluid in a boiler 5, and the working fluid drives a turbine 6 to produce electricity.
The exhaust from the turbine is condensed in a heat exchanger 7 by cold seawater, which enters by pipe 8 and is exhausted by pipe 9. Since the cold seawater is nearby, larger quantities can be used so that the temperature rise is smaller, and the condensing temperature of the turbine exhaust can be lower, and the efficiency will be higher. Similarly, at the ocean surface, the warm water is nearby, so that larger quantities can be used to supply the heat. The warm seawater, after delivering its heat to the evaporation tank is exhausted through pipe 18.
The turbine working fluid liquid flows from the heat exchanger 7 via boiler feed pump 12 back to the boiler 5.
The condensed transfer fluid is pumped back by pump 10 via pipe 11 to the evaporation tank 15 at the ocean surface.
We may call this type of power generating plant “Ocean Power System” (OPS).
The heat channel pipe needs to be strong steel to sustain the ocean pressure at depth. However there must be excellent thermal insulation between the ocean and the transfer fluid vapor. The pipe should have a lighter insert pipe that may have an evacuated half-inch gap between it and the outer pipe. The inside of the main pipe and the outside of the insert should be highly reflective to reduce radiative heat loss. The buoyancy of the pipe should be matched by the weight of the pipe so that it would not be necessary to provide strong support for the pipe from above or to anchor it by cables from below. For a pipe with an internal cross sectional area of one square meter, a steel pipe would need to have a thickness of 4.05 cm (1.59 inches) to meet this criterion. That would probably provide sufficient strength so sustain the water pressure. If necessary, the pipe can be thin near the top and be thicker near the bottom.
The transfer fluid can be a liquid that has a fairly low boiling point. Calculations were made with a computer program called “Otec.exe,” which numerically follows the vapor from the top to the bottom of the long pipe. Some results are given in Table I. Since the viscosities and densities of vapors are much less than liquids, the velocities can be much higher than that of the cold water that would be pumped in ordinary OTEC plants. Since latent heats of evaporation and condensation are much greater than the heat capacity of water for the same mass, much less mass needs to be transferred.
For the calculations of Table I, I used 27° C. (300 K, 80.6° F.) for the starting temperature at the top, since it was easy to look up in a thermodynamics table. I assumed the vertical pipe to have an inside diameter of 1.128 meters (cross sectional area of 1 m2). I used a vapor velocity of 75 meters per second for all items, although this may be too high for some of the high-density vapors and too small for the low-density vapors. If, after closer examination, it is determined that the velocity is too high, we can double the inside diameter of the pipe, and that will reduce the velocity by a factor of 4 and will reduce the drag loss by a factor of 16, while still delivering the same amount of fluid. If it is difficult to find strong pipes of the larger diameter, bundles of smaller pipes may be used, especially at deep locations.
For this table, fluids were chosen to show a variety of different characteristics. Note that the temperature at the bottom of the heat channel pipe is hotter than the initial temperature (27° C.). That is because as the vapor flows downward, the weight of the vapor above it compresses it, increasing the temperature and the pressure.
Notice that for some of the fluids, there is considerable pressure at the bottom of the heat channel. That pressure assists in pumping the transfer liquid upward. This effect was included in the pump power calculations. In other liquids, the pressure provides insignificant lift.
The increase in temperature of the transfer vapor at the bottom is a significant aspect of the Ocean Power System. Whenever there is a heat engine that has a small temperature differential between the input and output temperatures, any small increase in that differential can dramatically improve the efficiency.
We can compare this with the OTEC design shown on slide 14 of the Sea Solar Power OTEC Presentation.ppt. There it shows 80° F. (almost 27° C.) input, but the boiler is operating at 73° F., and that is the temperature of the steam (or other working fluid) as it goes to the turbine. Even though the seawater is 40° F., the condenser is operating at 50° F. The temperature differential is 23° F. The theoretical efficiency is 4.3%. Of course, both the standard OTEC plant and the OPS will operate below the Carnot efficiencies, but the theoretical efficiencies provide a guide to which real system will perform more efficiently.
We should examine the reasons for the differences in efficiencies. At the top in the OPS plant, the heat transfer fluid evaporates at constant temperature. Since this heat is supplied from nearby ocean water, large quantities of water can be used so that there is a small drop in temperature of the water. The heat transfer vapor increases in temperature as it flows downward and condenses at constant temperature as it boils the working fluid in the boiler at constant temperature. That is, the heat transfer into the boiling working fluid occurs at the high temperature point of the cycle, and this temperature is higher than the temperature of the ocean at the surface. If, instead of using the heat channel, warm water from the ocean surface were pumped down to the boiler, the temperature of the water would drop down several degrees during heat exchange, and the temperature of the boiler working fluid would be that of the lowest temperature of the seawater from the surface. This means that the efficiency will be less. The other problem is that only a small fraction of the heat energy transported in the water is actually used. With the heat transfer fluid in the heat channel, nearly all the transported energy is used.
After the working fluid vapor leaves the turbine, it is condensed by cold seawater. If that water had to be pumped up one kilometer to a turbine at the ocean surface, it would be a precious commodity, and there would be a fairly large temperature change, meaning that the condensation temperature would be higher, again meaning that the efficiency would be lowered. If the turbine is at the bottom of the heat channel pipe, larger quantities of cold water could be used, the condensation temperature would be lower, and the efficiency would be higher.
Consider an example. If the ocean surface temperature is 27° C., and the warm water cools by 2° as it provides heat to evaporate the heat transfer vapor, the vapor would start out at 25° C. By the time the vapor reached the bottom, the temperature might be 35° C. If the seawater temperature there is 4° and it warms up to 6° as it condenses the working fluid from the turbine, the condensation temperature would be 6°. The Carnot efficiency would be 9.4% (compared to 4.3% for present designs).
One thing that should be considered when the transfer fluid is compressed and increases in temperature is that it departs slightly from saturation properties. That is, since it is compressed adiabatically, its temperature is increased and it is in a superheated state and will not condense unless it contacts a surface that has a temperature below its new saturation temperature. In a specially designed heat exchanger, the condensation of the fluid releases the heat to boil the working fluid while the initial cool-down energy could be used to superheat the working fluid.
Rather than having different fluids for the turbine working fluid and the heat transfer fluid, we can use the same fluid. This is illustrated in
The Carnot efficiency of this design is the same as the design of
The description above was used to explain the principle, and it has some thermodynamic advantages. Most people involved with OTEC would prefer to have the turbines and generators at the surface of the ocean.
If desalination is desired, a separate evaporator at the ocean surface could evaporate seawater, and it could be condensed in a heat exchanger that evaporates some heat transfer fluid, which would then flow down the heat channel to be condensed by cold seawater.
1. Higher efficiency.
2. Warm and cold water do not have to be moved very far.
3. Cold water does not have to be “dumped” near the ocean surface, which means less ecological effects.
4. Pipes are much smaller diameter.
5. Rather than having to pump 200 tons per second of cold water from one-kilometer depths, this method would require pumping about one ton of transfer fluid per second to produce 100 MW of power.
6. Rather than requiring 20% to 30% of the plant output to pump the water, it might require less than 10% to pump the transfer fluid.
This claims priority to and the benefit of Provisional U.S. patent application Ser. No. 60/804827, filed Jun. 15, 2006, the entirety of which is hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60804827 | Jun 2006 | US |