None.
None.
1. Field of the Disclosure
The present disclosure relates generally to a fuser assembly for an electrophotographic imaging device and particularly to a fuser assembly which transfers excess heat from one location to another location in the fuser assembly.
2. Description of the Related Art
In a belt fuser assembly for an electrophotographic imaging device, an endless belt surrounds a ceramic heating element. The belt is pushed against the heating element by a pressure roller to create the fusing nip. The heating element, typically a thick-film resistor on a ceramic slab, extends the full width of the printing process in order to suitably heat and fuse toner to the widest media sheets used with the imaging device. The fusing heat is controlled by measuring the temperature of the ceramic slab with a thermistor that is held in intimate contact with the ceramic and feeding the temperature information to a microprocessor-controlled power supply in the imaging device. In addition, the temperature of the belt is measured by a non-contact thermistor which is used to control belt temperature. The power supply applies power to the thick-film resistor when the temperature sensed by the thermistor drops below a first predetermined level, and interrupts power when the temperature exceeds a second predetermined level. In this way, the fuser assembly is maintained at temperature levels suitable for fusing toner to media sheets without overheating.
When printing, the media sheet removes heat from the fuser assembly in the portion of the fuser that contacts the media. When printing on media sheets having widths that are less than the widest media width on which the image device is capable of printing, the portion of the fuser assembly beyond the width of the media sheet does not lose any heat through the sheet and becomes hotter than the portion of the fuser assembly which contacts the media sheet. In order to prevent thermal damage to components of the fuser assembly, steps are taken to limit the overheating of the portion of the fuser assembly which does not contact narrower media sheets. Typically, the inter-page gap between successive media sheets being printed is increased when media sheets less than the full width are used, thereby to decreasing the process speed of the imaging device.
As imaging device speeds increase, the tolerable range of media width variation at full speed becomes smaller. In the case of imaging devices operating at 60 pages per minute (ppm) and above, a media width difference of 3 mm to 4 mm is seen to cause overheating in the small portion of the fuser assembly which does not contact the media sheet. For example, because letter paper and A4 paper differ in width by 6 mm, with A4 paper being narrower, an imaging device designed for printing on letter width media sheets and operating at 60 ppm or greater is seen to cause the portion of the fuser not contacting the media sheet to overheat if A4 paper is used, with the result that a letter width imaging device will necessarily slow when printing A4.
One approach to print on both letter and A4 width media at full process speeds using a letter width imaging device is to have two different fuser mechanisms—one fuser mechanism having a heater of the correct length for A4 media, and a second fuser mechanism having a heater for letter width media. However, problems occur if the fuser mechanism selected for a print job does not match the media sheet width. If the fuser mechanism associated with letter width printing is used for a print job using A4 media sheets, the fuser assembly may overheat as explained above. Conversely, if the fuser mechanism associated with A4 width printing is used for a print job using letter width media, the toner on the outermost 6 mm (for a edge referenced imaging device) of the printed area is not sufficiently fused to the letter width media sheet.
Based upon the foregoing, a need exists for an improved fuser assembly for use with printing on narrower media sheets.
Example embodiments of the present disclosure overcome shortcomings in existing imaging devices and satisfy a need for a fuser assembly that transfers heat from a first portion of the fuser assembly having higher temperatures to a second portion of the fuser assembly having a lower temperature than the first portion.
According to an example embodiment, there is disclosed a fuser assembly including a heating member; a backup roll disposed proximate to the heating member so as to form a fuser nip therewith, wherein rotation of the backup roll causes the heating member to rotate; and a first roll in contact with the backup roll such that rotation of the backup roll to rotates the first roll. The first roll includes a heat pipe disposed therein. The heat pipe in the first roll transfers heat from a portion of the backup roll having higher temperatures, due to not contacting a narrower media sheet during a fusing operation, to a portion thereof having a lower temperature from contacting the media sheet. In this way, overheating of the backup roll and the heating member due to printing on narrower media sheets is substantially prevented.
In an example embodiment, the first roll is a metal roll and includes thermal grease disposed in a space between an inner surface of the metal roll and the heat pipe. The thermal grease ensures a thermal path exists between the metal roll and the heat pipe.
In another example embodiment, the fuser assembly includes a fuser housing and a positioning mechanism coupling the first roll to the fuser housing so that the first roll is movable via the positioning mechanism between a first position in which the first roll is rotatably engaged with and contacts the backup roll and a second position in which the first roll is disengaged and spaced apart therefrom. In this way, the first roll and heat pipe disposed therein can be moved into the first position to transfer heat from the backup roll and indirectly the heating member when overheating is either detected or suspected to occur.
The above-mentioned and other features and advantages of the disclosed example embodiments, and the manner of attaining them, will become more apparent and will be better understood by reference to the following description of the disclosed example embodiments in conjunction with the accompanying drawings, wherein:
It is to be understood that the present disclosure is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The present disclosure is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless limited otherwise, the terms “connected,” “coupled,” and “mounted,” and variations thereof herein are used broadly and encompass direct and indirect connections, couplings, and positionings. In addition, the terms “connected” and “coupled” and variations thereof are not restricted to physical or mechanical connections or couplings.
Spatially relative terms such as “top”, “bottom”, “front”, “back” and “side”, and the like, are used for ease of description to explain the positioning of one element relative to a second element. Terms such as “first”, “second”, and the like, are used to describe various elements, regions, sections, etc. and are not intended to be limiting. Further, the terms “a” and “an” herein do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item.
Furthermore, and as described in subsequent paragraphs, the specific configurations illustrated in the drawings are intended to exemplify embodiments of the disclosure and that other alternative configurations are possible.
Reference will now be made in detail to the example embodiments, as illustrated in the accompanying drawings. Whenever possible, the same reference numerals will be used throughout the drawings to refer to the same or like parts.
Each developer unit 104 is operably connected to a toner reservoir 108 for receiving toner for use in a printing operation. Each toner reservoir 108 (108Y, 108C, 108M, 108K) is controlled to supply toner as needed to its corresponding developer unit 104. Each developer unit 104 is associated with a photoconductive member 110 that receives toner therefrom during toner development to form a toned image thereon. Each photoconductive member 110 (110Y, 110C, 110M, 110K) is paired with a transfer member 112 for use in transferring toner to ITM 106 at first transfer area 102.
During color image formation, the surface of each photoconductive member 110 is charged to a specified voltage, such as −800 volts, for example. At least one laser beam LB from a printhead or laser scanning unit (LSU) 130 is directed to the surface of each photoconductive member 110 and discharges those areas it contacts to form a latent image thereon. In one embodiment, areas on the photoconductive member 110 illuminated by the laser beam LB are discharged to approximately -100 volts. The developer unit 104 then transfers toner to photoconductive member 110 to form a toner image thereon. The toner is attracted to the areas of the surface of photoconductive member 110 that are discharged by the laser beam LB from LSU 130.
ITM 106 is disposed adjacent to each of developer unit 104. In this embodiment, ITM 106 is formed as an endless belt disposed about a drive roller and other rollers. During image forming operations, ITM 106 moves past photoconductive members 110 in a clockwise direction as viewed in
ITM 106 rotates and collects the one or more toner images from the one or more developer units 104 and then conveys the one or more toner images to a media sheet at a second transfer area 114. Second transfer area 114 includes a second transfer nip formed between at least one back-up roller 116 and a second transfer roller 118.
Fuser assembly 120 is disposed downstream of second transfer area 114 and receives media sheets with the unfused toner images superposed thereon. In general terms, fuser assembly 120 applies heat and pressure to the media sheets in order to fuse toner thereto. After leaving fuser assembly 120, a media sheet is either deposited into output media area 122 or enters duplex media path 124 for transport to second transfer area 114 for imaging on a second surface of the media sheet.
Image forming device 100 is depicted in
Image forming device 100 further includes a controller 140 and memory 142 communicatively coupled thereto. Though not shown in
With respect to
Belt 210 is an endless belt that is disposed around housing 206 and heater element 208. Belt 210 may include a flexible thin film, and specifically includes a stainless steel tube; an elastomeric layer, such as a silicone rubber layer covering the stainless steel tube; and a release layer, such as a PFA (polyperfluoroalkoxy-tetrafluoroethylene) sleeve or coating covering the elastomeric layer. The release layer of belt 210 is formed on the outer surface of the elastomeric layer so as to contact media sheets passing between the heating member 202 and backup roll 204.
Backup roll 204 may include a hollow core 212 covered with an elastomeric layer 214, such as silicone rubber, and a fluororesin outer layer (not shown), may be formed, such as, for example, by a spray coated PFA (polyperfluoroalkoxy-tetrafluoroethylene) layer, PFA-PTFE (polytetrafluoroethylene) blended layer, or a PFA sleeve. Backup roll 204 may have an outer diameter between about 30 mm and about 46 mm and may be driven by a fuser drive train (not shown) to convey media sheets through the fuser assembly 120. Belt 210 contacts backup roll 204 such that belt 210 rotates about housing 206 and heater element 208 in response to backup roll 204 rotating. With belt 210 rotating about housing 206 and heater element 208, the inner surface of belt 210 contacts heater element 208 so as to heat fuser belt 210 to a temperature sufficient to perform a fusing operation for fusing toner to sheets of media.
Heating member 202 and backup roll 204 may be constructed from the elements and in the manner as disclosed in U.S. Pat. Nos. 7,235,761 and 8,175,482 the contents of which are incorporated by reference herein in their entirety. It is understood, though, that fuser assembly 120 may have a different architecture than a fuser belt based architecture. For example, fuser assembly 120 may be a hot roll fuser, including a heated roll and a backup roll engaged therewith to form a fuser nip through which media sheets traverse.
Heating member 202 and backup roll 204 of fuser assembly 120 may be dimensioned to suitably fuse toner on sheets of media having a wide range of widths. As described above, when printing on media sheets having widths that are narrower than the widest sheet width on which image forming device 100 is capable of printing (hereinafter “narrower media sheet”), heat appearing on the portion of backup roll 204 and belt 210 which does not contact the narrower media sheet is not removed thereby, resulting in either such portion of backup roll 204 and belt 210 becoming overheated during a printing operation or requiring the process speed be substantially slowed. According to example embodiments, fuser assembly 120 may include a heat transfer mechanism for transferring excess heat from the portion of backup roll 204 and belt 210 which does not contact narrower media sheets.
Referring to
Referring to
With roll 220 contacting backup roll 204 and rotating therewith, excess heat appearing on the portion of backup roll 204 which does not contact narrower media sheets is transferred therefrom, with the excess heat first passing through roll 220 to heat pipe 230 and then being transferred to the portion of backup roll 204 which contacts the media sheets. By transferring heat from an overheated portion of backup roll 204 to the portion contacting media sheets, not only is the portion of backup roll 204 which does not contact the narrower media sheet sufficiently maintained within an acceptable operating temperature range but also less energy may be needed to heat the portion of backup roll which contacts the narrower media sheet.
In an example embodiment roll 220 is disposed to contact backup roll 204 and rotate therewith. This is illustrated in
In another example embodiment, roll 220 is movable between a first position in which roll 220 contacts backup roll 204 and rotates therewith, and a second position in which roll 220 does not contact backup roll 204. Specifically, fuser assembly 120 may include a positioning mechanism for moving roll 220 between the first and second positions. In one example embodiment, the positioning mechanism pivots roll 220 into and out of contact with backup roll 204. Referring to
The positioning mechanism may further include a first bias member 320 (
The positioning mechanism for moving roll 220 into and out of contact with backup roll 204 may further include first coupling members 330, each of which may be positioned to engage with a bell crank 310. Referring to
The positioning mechanism may further include second coupling members 340, each of which engages with a first coupling member 330. Referring to
With reference to
The positioning mechanism of fuser assembly 120 may further include a second bias member 360 having a first end which engages with aperture 340C of second coupling member 340 and a second end which engages with pivoting arm 370 (
As shown in the
In addition, the positioning mechanism may include a crossbar member 430. As illustrated in
Fuser assembly 120 may include a latching mechanism for latching roll 220 in the second position, spaced from backup roll 204. Referring to
As shown in
Second member 920 is generally elongated having a first end portion which is pivotably coupled to first member 910 and a second end portion which engages with plunger 930A of solenoid 930. Specifically, second member 920 may include an extension 920A (best seen in
Solenoid 930 is disposed along frame 960 of fuser assembly 120. Solenoid 930 includes a winding and control wires (not shown) for energizing and de-energizing same. to When solenoid 930 is energized, solenoid plunger 930A moves away from second member 920. When solenoid 930 is de-energized, bias member 940 urges plunger 930A towards second member 920 until contact is made therewith. A cap 980 may be placed over the distal end of plunger 930A to reduce friction between solenoid plunger 930A and second member 920. Solenoid 930 may be controlled by controller 140.
It is understood that devices other than solenoid 930 may be used, such as a servo.
As mentioned, controller 140 controls fuser assembly 120. Specifically, controller 140 may control the position of roll 220 relative to backup roll 204. For example, when controller 140 determines that a portion of heater element 208, backup roll 204 and/or fuser belt 210 are or will be at a temperature above an acceptable fuser temperature range, which may be due to printing on narrower media sheets, controller 140 may control fuser assembly 120 so that roll 220, having heat pipe 230 therein, is positioned against backup roll 204. Controller 140 may make this determination by measuring the temperature of heater element 208 or backup roll 204, or determining that narrow media will be used in an upcoming print job from user input or sensing media sheet width within an input tray or in the media path. When roll 220 is in contact with backup roll 204, heat pipe 230 transfers heat from the portion of backup roll 204 that is above the acceptable temperature range to a second portion of backup roll 204 which is at a lower temperature. When controller 140 determines that heater element 208, backup roll 204 and/or fuser belt 210 are at an acceptable fusing temperature, controller 140 may control fuser assembly 120 so that roll 220 no longer contacts backup roll 204.
The operation of fuser assembly 120 will be described with reference to
When controller 140 determines that backup roll 204 is or will soon be within the acceptable temperature range for a fusing operation, controller 140 will cause drive gear 352 to rotate so that cam 358 is positioned as shown in
During this time, first bias members 320 urge crossbar member 430 against ledge 910B with a force (downward as viewed in
When controller 140 later determines that heat pipe 230 is needed during a fusing operation for fusing toner to narrow media, controller 140 positions cam 358 as shown in
The example embodiments described above describe roll 220 in contact with backup roll 204. It is understood that roll 220 may instead contact fuser belt 210. In the event fuser assembly 120 utilizes a hot roll architecture, i.e., heating member 202 is a hot roll, roll 220 may be configured to contact the hot roll.
In addition, the example embodiments are described as controller 140 being separate from but communicatively coupled to fuser assembly 120. In an alternative embodiment, controller 140 is mounted on or within fuser assembly 120 and may form part thereof.
The description of the details of the example embodiments have been described in the context of a color electrophotographic imaging devices. However, it will be appreciated that the teachings and concepts provided herein are applicable to monochrome electrophotographic imaging devices and multifunction products employing electrophotographic imaging.
The foregoing description of several example embodiments of the invention has been presented for purposes of illustration. It is not intended to be exhaustive or to limit the invention to the precise steps and/or forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. It is intended that the scope of the invention be defined by the claims appended hereto.
The present application is related to and claims priority under 35 U.S.C. 119(e) from U.S. provisional application No. 61/834,869, filed Jun. 13, 2013, entitled, “Heat Transfer System for a Fuser Assembly,” the content of which is hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4050803 | Mccarroll | Sep 1977 | A |
4145181 | Edwards et al. | Mar 1979 | A |
4392739 | Brown et al. | Jul 1983 | A |
4869707 | in 't Zandt et al. | Sep 1989 | A |
5212528 | Matsuda | May 1993 | A |
5384630 | Nakamura et al. | Jan 1995 | A |
5534984 | Inoue | Jul 1996 | A |
5629755 | Ohtsuka | May 1997 | A |
5638158 | Sanpe et al. | Jun 1997 | A |
6157806 | Elbert et al. | Dec 2000 | A |
6253046 | Horrall et al. | Jun 2001 | B1 |
6345169 | Haneda et al. | Feb 2002 | B1 |
7349660 | Domoto et al. | Mar 2008 | B2 |
7398028 | Nakagaki | Jul 2008 | B2 |
7925198 | Urano | Apr 2011 | B2 |
7995957 | Sone et al. | Aug 2011 | B2 |
8180269 | Beach et al. | May 2012 | B2 |
8200137 | Foster et al. | Jun 2012 | B2 |
8238770 | Shimizu | Aug 2012 | B2 |
20040120741 | Kim et al. | Jun 2004 | A1 |
20050025511 | Watabe | Feb 2005 | A1 |
20050089343 | Mathers | Apr 2005 | A1 |
20060291919 | Domoto et al. | Dec 2006 | A1 |
20100054828 | Urano | Mar 2010 | A1 |
20100329705 | Cao et al. | Dec 2010 | A1 |
20110222933 | Maruyama et al. | Sep 2011 | A1 |
20130058673 | Kikkawa | Mar 2013 | A1 |
20130251392 | Ueda et al. | Sep 2013 | A1 |
20140369725 | Bayerle et al. | Dec 2014 | A1 |
20140369730 | Bayerle et al. | Dec 2014 | A1 |
20150063857 | Bayerle et al. | Mar 2015 | A1 |
Number | Date | Country |
---|---|---|
01121883 | May 1989 | JP |
01266557 | Oct 1989 | JP |
06317994 | Nov 1994 | JP |
Entry |
---|
File History for U.S. Appl. No. 14/024,980, including Non-final Office Action dated Mar. 3, 2015. |
File History for U.S. Appl. No. 14/137,407, including Non-final Office Action dated Feb. 5, 2015. |
International Search Report and Written Opinion of the International Searching Authority for PCT application PCT/US2014/042323, Oct. 31, 2014. |
File History for U.S. Appl. No. 14/137,609, including Non-final Office Action dated Dec. 19, 2014. |
Notice of Allowance for U.S. Appl. No. 14/137,407, dated Sep. 21, 2015. |
Notice of Allowance for U.S. Appl. No. 14/024,980, dated Oct. 13, 2015. |
Notice of Allowance for U.S. Appl. No. 14/137,609, dated Jun. 24, 2015. |
Number | Date | Country | |
---|---|---|---|
20140369729 A1 | Dec 2014 | US |
Number | Date | Country | |
---|---|---|---|
61834869 | Jun 2013 | US |