The principles disclosed herein relate generally to metallic heat transfer tubes including nucleate boiling sites on outer surfaces thereof and uses thereof in various heat transfer applications, particularly in humidification steam dispersion applications.
In submerged chiller refrigerating applications, the outside of a heat transfer tube is normally submerged in a refrigerant to be boiled, while the inside conveys liquid, usually water, which is chilled as it gives up its heat to the tube and refrigerant. In a boiling application such as a refrigerating application, it is desirable to maximize the overall heat transfer coefficient.
In order to maximize the heat transfer coefficient, it is known to make modifications to the outside surface of a heat transfer tube in order to take advantage of the phenomenon known as “nucleate boiling”. According to one example, the outer surface of a heat transfer tube may be modified to produce multiple pockets (i.e., cavities, openings, enclosures, boiling sites, or nucleation sites) which function mechanically to permit small vapor bubbles to be formed therein. The vapor bubbles tend to form at the base or root of the nucleation site and grow in size until they break away from the outer surface. Upon breaking away, additional liquid takes the vacated space and the process is repeated to form other vapor bubbles. In this manner, the liquid is boiled off or vaporized at a plurality of nucleate boiling sites provided on the outer surface of the metallic tubes.
According to one example, the external enhancement is provided by successive cross-grooving and rolling operations performed after finning of the tubes. The finning operation, in a preferred embodiment for nucleate boiling, produces fins while the cross-grooving and rolling operation deforms the tips of the fins and causes the surface of the tube to have the general appearance of a grid of generally flattened blocks. The flattened blocks are wider than the fins and are separated by narrow openings between the fins. The roots of the fins and the cavities or channels formed therein under the flattened fin tips are of much greater width than the surface openings so that the vapor bubbles can travel outwardly through the cavity and through the narrow openings. The cavities and narrow openings and the grooves all cooperate as part of a flow and pumping system so that the vapor bubbles can readily be carried away from the tube and so that fresh liquid can circulate to the nucleation sites.
It is desirable to use heat transfer tubes having surface enhancements in the form of nucleation sites in other types of heat transfer applications where maximizing the overall heat transfer coefficient is important.
The principles disclosed herein relate to a heat transfer system that includes a humidification steam dispersion system comprising a steam chamber configured to communicate in an open-loop arrangement with a first steam source for supplying steam to the steam chamber, wherein the steam chamber includes a steam exit for supplying steam to air at atmospheric pressure and a heat transfer tube configured to communicate in a closed-loop arrangement with a second steam source for supplying steam to the heat transfer tube, wherein the heat transfer tube is configured to vaporize condensate forming within the heat transfer system back to steam supplied to the air via the steam exit. The heat transfer tube is configured to contact the condensate and vaporize the condensate back into steam. The heat transfer tube includes a plurality of nucleation boiling sites that are formed by pockets defined on an outer surface of the tube, the pockets including pocket exit/entry portions (i.e., pores) having a smaller cross-sectional area than the cross-sectional area of the pockets at the root portions adjacent the outer surface of the tube.
According to another aspect of the disclosure, the disclosure is related to a heat transfer system that includes a humidification steam dispersion system that uses a higher pressure steam heat exchanger within a lower pressure steam humidification chamber to pipe unwanted condensate away from the steam humidification chamber, wherein the steam heat exchanger forms a closed loop arrangement with a pressurized steam source and the steam heat exchanger includes a heat transfer tube comprising nucleate boiling sites defined on the outer surface of the tube for boiling the condensate.
A variety of additional inventive aspects will be set forth in the description that follows. The inventive aspects can relate to individual features and combinations of features. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the broad inventive concepts upon which the embodiments disclosed herein are based.
A heat transfer system 5 having features that are examples of inventive aspects in accordance with the principles of the present disclosure is illustrated in
It is desirable in a system such as the steam dispersion system 10 shown in
It should be noted that a humidification steam dispersion system such as the one illustrated and described herein is simply one example of a heat transfer system wherein a heat transfer tube defining nucleate boiling sites on an outer surface thereof may be used for boiling or vaporizing condensate/water. Heat transfer systems having other configurations wherein tubes with nucleate boiling sites are used for condensate or water boiling purposes are certainly possible and are contemplated by the inventive features of the present disclosure.
In
Still referring to
In the embodiment illustrated in
In accordance with the steam dispersion system 10 of
Although illustrated as being the same, it should be noted that the steam source supplying steam to the header 17 and the steam source supplying steam to the heat exchanger 20 may be two different sources. For example, the source that supplies humidification steam to the header 17 may be generated by a boiler or an electric or gas humidifier which operates under low pressure (e.g., less than 1 psi.). In other embodiments, the source that supplies humidification steam to the header 17 may be operated at higher pressures, such as between about 2 psi and 60 psi. In other embodiments, the humidification steam source may be run at higher than 60 psi. The humidification steam that is inside the header 17 ready to be dispersed is normally at about atmospheric pressure when exposed to air.
The pressure of the heat exchanger steam is normally higher than the pressure of the humidification steam. The heat exchanger steam source may be operated between about 2 psi and 60 psi and is configured to provide steam at a pressure higher than the pressure of the humidification steam to be dispersed. The heat exchanger steam source may be operated at pressures higher than 60 psi.
Although in the depicted embodiment, the internal heat exchanger 20 is shown as being utilized within a header, it should be noted that the heat exchanger 20 of the system 10 can be used within any type of a central steam chamber that is likely to encounter condensate, either from the dispersion tubes 18 or other parts of the system 10. A header is simply one example of a central steam chamber wherein condensate dripping from the tubes 18 is likely to contact the heat exchanger 20.
Still referring to
Although the heat exchanger 20 is depicted as a U-shaped tube according to one embodiment, other types of configurations that form a closed-loop with the steam source 14 may be used. Additionally, the tube 11 forming the heat exchanger 20 may take on various profiles. According to one embodiment, the tube of the heat exchanger 20 may have a round cross-sectional profile. The steam heat exchanger 20 may be made from various heat-conductive materials, such as metals. Metals such as copper, stainless steel, etc., are suitable for the heat exchanger 20.
As discussed above, according to the inventive features of the disclosure, the heat exchanger 20 is made from a tube that includes a plurality of nucleate boiling sites defining pockets on the outer surface of the tube. After formation, the pockets define pocket exit/entry portions 50 having smaller cross-sectional areas than the cross-sectional areas of the pockets at the root portions thereof, adjacent the outer surface of the tube 11. The nucleate boiling sites assist in vaporizing condensate at a higher efficiency than with tubes having smooth exterior surfaces.
One embodiment of a heat transfer tube 11 defining nucleate boiling sites on the outer surface that is suitable for use with the steam dispersion system 10 is shown in
Referring now to
According to the depicted embodiment, the inner surface 34 of tube 11 comprises a plurality of helically formed ridges, indicated by reference numerals 36, 36′, 36″ (generically referred to as ridges 36). Ridges 36 define a pitch “p”, a ridge width “b” (as measured axially at the ridge base), and an average ridge height “e”. A helix lead angle θ is measured from the axis of the tube.
According to one embodiment, the tube 11 shown in
As discussed above, the outer surface 32 of the tube 11 is deformed to produce nucleate boiling sites. In order to form the nucleate boiling sites, first, a plurality of fins 38 are provided on the outer surface 32 of tube 11. Fins 38 may be formed on a conventional arbor finning machine. The number of arbors utilized depends on such manufacturing factors as tube size, throughput speed, etc. The arbors are mounted at appropriate degree increments around the tube 11, and each is preferably mounted at an angle relative to the tube axis. The finning disks form a plurality of adjacent, generally circumferential, relatively deep channels 40 (i.e., first channels), as shown in
After fin formation, outer surface 32 of tube 11 is notched (i.e., grooved) to provide a plurality of notches 56 forming relatively shallow channels 42 (e.g., second channels), as shown in
After notching, fins 38 are compressed using a compression disk resulting in flattened fin heads 44. The appearance of the tube outer surface 32 after compression with flattened fin heads 44 is shown in a plan view in
According to one embodiment, a typical notch depth, into the fin tip, before any flattening is performed, is about 0.015 inches. According to the same embodiment, after flattening, the depth measured from the final outside surface is about 0.005 inches. According to one embodiment, the notches 56 are spaced around a circumference of each fin 38 at a pitch which is in a range of between 0.0161 to 0.03 (as measured along the circumference of fin 38 at a base of the notches), and preferably in a range of 0.020 inches to 0.025 inches. Adjacent notches 56 are non-contiguously spaced apart so that a flattened fin 44 is intermediate neighboring pores 50.
Referring back to
According to one embodiment, the pores 50 have a density of about at least 2000 per square inch of tube outer surface 32. Preferably, the pore density exceeds 3000 per square inch and is on the order of about 3112 pores per square inch according to a preferred embodiment. The number of pores per square inch depends on tube wall thickness under the fins. With the preferred 3112 number of pores, for example, a wall thickness of 0.025 inches may be present. If a tube with a 0.035 inch or heavier wall was manufactured, the fin count would tend to increase. In referring to pore average cross-sectional area, it is recognized that fabrication techniques such as finning may result in some pore sizes being greater than 0.00009 square inches. However, a vast majority of the pores depicted herein have an average area of less than 0.00009 square inches.
According to one embodiment, the spacing of the fins 38 of the tube 11 of
Factors such as the notch pitch and number of fins per inch influence the number of pores per square inch on the outside surface of the tube.
The tube 11 has mechanical enhancements which can individually improve the heat transfer characteristics of either the tube outer surface 32 or the tube inner surface 34, or which can cooperate to increase the overall heat transfer efficiency between the outer surface 32 and the inner surface 34. The tube internal enhancement, which comprises the plurality of closely spaced helical ridges 36, provides increased surface area. The tube external enhancement, which is provided by successive grooving and compression operations performed after a finning operation, assists in nucleate boiling. The finning operation produces fins 38 while the grooving (e.g., notching) and compression operations cooperate to flatten tips of fins 38 and cause the outer surface 32 of the tube 11 to have the general appearance of a grid of generally flattened ellipses, as shown in
Between pores 50, underneath flattened tips 44 of fins 38, each channel 40 defines a channel segment 40s, as shown in
Thus, in accordance with the present disclosure, a heat transfer tube is formed which includes surface enhancements of both its inner and outer tube surfaces, and which can be produced in a single pass in a conventional finning machine.
The heat transfer tube 11 illustrated in
Now referring back to
In the depicted embodiment, the heat exchanger 20 is shown to span generally the entire length of the header 17 so that it can contact condensate 30 dripping from all of the tubes 18. In other embodiments, the heat exchanger 20 may span less than the entire length of the header (e.g., its length may be ½ of the header length or less).
It should be noted that the heat exchanger 20 could be located at a different location than the interior of a header 17. The interior of the header 17 is one example location wherein condensate 30 forming within the steam dispersion system 10 may eventually collect. Other locations are certainly possible, so long as the steam within the heat exchanger 20 is at a higher pressure than atmospheric pressure and so long as the condensate forming within the heat exchanger 20 is able to contact the heat exchanger 20 for piping through the system 10. Please refer to U.S. Pat. No. 8,534,645, the entire disclosure of which is incorporated herein by reference, for further configurations of steam dispersion systems utilizing a heat exchanger such as the heat exchanger 20 shown in the present disclosure.
With the configuration of the steam dispersion system 10 of the present disclosure, the resulting condensate may be moved efficiently through the system 10 without the use of pumps or other devices.
As noted previously, a humidification steam dispersion system such as the one illustrated and described herein is simply one example configuration of a heat transfer system wherein a heat transfer tube defining nucleate boiling sites on an outer surface thereof may be used to boil or vaporize condensate/water. Other heat transfer system configurations are certainly possible and are contemplated by the inventive features of the present disclosure.
For example, according to another example heat transfer system, a heat exchanger defining nucleate boiling sites on an outer surface thereof may be used within a chamber that holds water, wherein the water would be boiled by steam running through the heat exchanger. The vaporized water would then be dispersed as humidification steam through a steam outlet of the chamber. In such a steam dispersion system, instead of the chamber receiving humidification steam directly from a steam source such as a boiler, clean, chemical-free water could be used within the chamber for creating the humidification steam.
Other systems such as those described above, wherein a heat transfer tube defining nucleate boiling sites on an outer surface thereof is used to boil or vaporize condensate/water are certainly possible and contemplated by the inventive features of the present disclosure.
The above specification, examples and data provide a complete description of the inventive features of the disclosure. Many embodiments of the disclosure can be made without departing from the spirit and scope thereof.
This application is a continuation of U.S. patent application Ser. No. 16/148,150, filed Oct. 1, 2018; which is a continuation of U.S. patent application Ser. No. 15/283,580, filed Oct. 3, 2016, now abandoned; which is a continuation of U.S. patent application Ser. No. 13/939,808, filed Jul. 11, 2013, now U.S. Pat. No. 9,459,055; which is a continuation of U.S. patent application Ser. No. 12/270,582, filed Nov. 13, 2008, now U.S. Pat. No. 8,505,497; which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/003,142, filed Nov. 13, 2007, which applications are hereby incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
61003142 | Nov 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16148150 | Oct 2018 | US |
Child | 17082289 | US | |
Parent | 15283580 | Oct 2016 | US |
Child | 16148150 | US | |
Parent | 13939808 | Jul 2013 | US |
Child | 15283580 | US | |
Parent | 12270582 | Nov 2008 | US |
Child | 13939808 | US |