The present invention relates to the field of heat management of light emitting diodes, and more specifically to a heat transferring arrangement for cooling a light emitting diode. The present invention also relates to a lighting assembly comprising the above heat transferring arrangement.
Light emitting diodes, LEDs, are employed in a wide range of lighting applications. As LEDs have the advantage of providing a bright light, being reasonably inexpensive and has low power consumption, it is becoming increasingly attractive to use LEDs as an alternative to traditional lighting. Furthermore, LEDs have a long operational lifetime. As an example, LED lamps may last 50 000 hours which is up to 50 times the operational life of an incandescent lamp.
To achieve such a long operational lifetime, one important aspect to consider is the heat management of the LEDs so in order to avoid overheating of the LEDs or the LED module. This is not an uncomplicated task since LEDs release heat backwards, i.e. in the opposite direction compared to the direction of the light beams, in comparison to traditional lighting which mainly transfer the generated heat by the radiation of the light. Especially, when LEDs are mounted in, for example, roofs or ceilings it may become complicated to provide sufficient cooling due to the reduced surrounding space of the LEDs. Moreover, when for example using LEDs for indoor applications, such as accent and down lighting applications, there is a need for compact and high lumen packages which allows the projection of tight light beam angles. In such cases, a plurality of LEDs are placed together in a small area which provides such an amount of heat that a standalone heat sink may not be able to provide sufficient cooling.
A solution to this problem is to provide an active cooling element, such as e.g. fans or membranes, in order to provide a sufficient amount of cooling. However, these types of solutions are expensive and sometimes unreliable due to their limited operational lifetime. There is hence a further need of improvement in regards to heat management for LEDs.
It is an object of the present invention to provide an improved heat transferring arrangement for a light emitting diode in order to at least partly overcome the above mentioned problems.
According to an aspect of the present invention there is provided a heat transferring arrangement for cooling at least one light emitting diode, wherein the heat transferring arrangement comprises a centre portion configured for mounting the light emitting diode and adapted to receive heat generated from the light emitting diode when emitting light, and a plurality of elongated heat transferring elements, each having a first end portion connected to the centre portion and a second end portion which when inserted in a housing is configured to be in abutment with an inner surface of the housing, so that the generated heat is thermally transferred to the housing.
The present invention is based on the insight that a heat transferring arrangement may be provided which, when inserted in a housing, can transfer heat generated by the LEDs to the housing, i.e. the housing thus acts as a heat sink for the LED or LED module. Moreover, as the LED in many applications is arranged at a centre of the housing, i.e. far away from the inner surface of the housing, the present invention is also based on the insight that by providing elongated elements, connected to the centre portion of the heat transferring arrangement and extending in a direction towards the inner surface of the housing, heat generated by the LEDs may be thermally transferred to the housing when being mounted thereto as the second end portion, when mounted to the housing, is in abutment with the inner surface of the housing such that there is a thermal connection between the housing and the heat transferring arrangement. The heat transferred to the housing may thereafter be dissipating to the surrounding environment. An advantage of the invention is thus, at least, that a passive heat transferring arrangement is provided which may reduce the need of an external fan or membranes to provide sufficient cooling. Also, another advantage of the present invention is that already existing lighting luminaire and lamp housings, used for classic lighting technology, such as e.g. incandescent lighting, CFL, HID, etc may be used as a heat sink by providing the elongated heat transferring elements to the LED module, thereby enabling for an improvement with regard to interchangeability of LEDs and classic lighting technology, as well as a reduction of the need of an extra heat sink for heat management. The elongated heat transferring elements should in the following and throughout the entire description be interpreted as elements which, when being placed in abutment with e.g. an inner surface of the housing, can bend and adjust to the specific geometry of the housing.
The first end portion of the elongated heat transferring elements may be connected to the centre portion in a plurality of ways. For example, the first end portion may be integrated with the centre portion. Hereby, the elongated heat transferring elements and the centre portion may be provided from one and the same sheet of material, such as e.g. a sheet of aluminum or graphite. The first end portions may also be separately provided to the centre portion i.e. connected to the centre portion by a connecting means. Such connecting means may, for example, be a screw joint, a weld, glue, etc. In the case of connecting the first end portions of the elongated heat transferring elements to the centre portion by means of a connecting means, the first end portion or the positions of the centre portion intended to receive the end portions may be provided with a thermal interface material, which will be described further below. Hereby, the thermal conductive characteristics between the centre portion and the elongated heat transferring elements may be improved compared to not having a thermal interface material.
The expression “transfer heat” should in the following be interpreted as heat which is generated in the centre portion of the heat transferring arrangement and thereafter further transferred through the elongated heat transferring elements to the housing.
Moreover, the elongated heat transferring elements may preferably be made of a heat conductive material, such as aluminum. Other materials are of course conceivable such as for example copper or graphite, etc. Hence, it is an important aspect that the elongated heat transferring elements are susceptible for transferring heat in a desired manner when choosing material for the elongated heat transferring elements.
According to an example embodiment, the second end portions of the plurality of elongated heat transferring elements forms a geometric area which is larger than a cross sectional area of the inner surface of the housing, so that when the heat transferring arrangement is inserted in the housing, the plurality of elongated heat transferring elements are bended against the inner surface of the housing. The geometric area of the elongated heat transferring elements described above should be interpreted as a non-physical area delimited by the second end portions. For example, if the elongated heat transferring elements are formed on a generally circular centre portion, they may be curve-shaped and together form a flower-like configuration. In such a case, the geometric area is thus a substantially circular area delimited by the boundary of the second end portions and wherein the substantially circular area has a diameter that is larger than the diameter of the housing in which the heat transferring arrangement is adapted to be inserted in. On the other hand, if the elongated heat transferring elements are formed on a, for example, generally rectangular centre portion arranged for a generally rectangular housing, the second end portions of the elongated heat transferring elements may form a substantially rectangular geometric area, i.e. the geometric area is delimited by four “walls” formed by the second end portions of the elongated heat transferring elements. In the latter example, the area of the substantially rectangular area should hence be larger than the generally rectangular area of the housing. It is thus submitted from the above examples that the mutual configuration of the elongated heat transferring elements may be arranged differently depending on the specific housing in which the heat transferring arrangement is adapted to be fitted. It should however be noted that the rectangular form of the geometric area described above may be equally provided for a generally cylindrical centre portion, and vice versa. The above examples are only described for clarification.
An advantage of providing the above mentioned geometric area of the second end portions larger than the cross sectional area of the housing is, at least, that when the heat transferring arrangement is provided in the housing, the elongated heat transferring elements will be in contact with the inner surface of the housing and at the same time be slightly bended in relation to their previous configuration. A compression force between the second end portions of the elongated heat transferring elements and the inner surface of the housing will thus arise, i.e. the second end portions of the elongated heat transferring elements will be in abutment with the inner surface of the housing when assembled thereto, thereby enabling the heat to be transferred through the elongated heat transferring elements to the housing.
Moreover, the second end portions of the plurality of elongated heat transferring elements may comprise a thermal interface material having a lower friction coefficient than the remaining parts of the elongated heat transferring elements. Hereby, the interface between the elongated heat transferring elements and the housing in which the heat transferring arrangement is to be inserted may be provided with a thermally conductive material in order to further improve the transfer of heat to the housing. Also, by providing a material also having low friction characteristics, the assembly of the heat transferring arrangement in the housing may be further improved and simplified as the second end portions of the elongated heat transferring elements may slide more easily against the inner surface of the housing compared to having end portions in the same material as the remaining elongated heat transferring elements. The thermal interface material may comprise graphite. The graphite material is well known and is easy to apply since it can have an adhesive side for attachment to the second end portion, is relatively conformable and may be arranged with a relatively low friction coefficient on the side facing the housing, while also having good thermal characteristics. Other materials, or combination of materials, are of course also conceivable. For example, the second end portion may be provided with a conformable thermal pad having a thin plastic film on one side, together forming a sticky side for attachment to the second end portion, and a low friction side for the sliding contact against the housing. Hence, any material or material combination that may act as a thermal interface material with a sticky side in contact with the second end portions and a low friction side adapted to be in slidable contact with the inner surface of the housing may be used.
According to another example embodiment, an interface between the first end portion of the elongated heat transferring elements and the centre portion of the heat transferring arrangement may be provided with a second thermal interface material. Hereby, the thermal conductive characteristics between the elongated heat transferring elements and the centre portion may be improved. The second thermal interface material may be different compared to the thermal interface material provided at the second end portions of the plurality of elongated heat transferring elements. The second thermal interface material may, for example, be a thermal grease or a phase change material. The invention is, however, not limited to the use of these materials and graphite may also be used due to its beneficial thermal conductive characteristics. However, as the first end portion is more or less tightly fixated to the centre portion as described above, there is hence no particular need of a material having a lower friction coefficient than the remaining parts of the elongated heat transferring elements.
Furthermore, an area of the centre portion may be smaller than an area of an LED module comprising the light emitting diode, wherein the LED module is adapted to be connected to the area of the centre portion. The area of the center portion should be interpreted as the area delimited by the boundaries formed by the first end portions of the elongated heat transferring elements. Hereby, when the LED module is connected to the centre portion by means of, for example, screws or the like, the LED module is pressing against the first end portions of the elongated heat transferring elements which thereby are flexing outwardly from the centre portion. An advantage is, at least, that an increased pressure will be provided between the second end portions of the elongated heat transferring elements and the housing when the heat transferring arrangement is arranged in the housing.
According to another example embodiment of the present invention, at least one of the elongated heat transferring elements may comprise elongated recesses extending from the second end portions in a direction towards the centre portion. An advantage is, at least, that the flexibility of the elongated heat transferring elements may be further improved. For example, in the case the housing to which the heat from the LED module is to be transferred is a glass housing, e.g. an MR16 Halogen reflector housing, the inner surface of such a housing may be double curved to form a parabolic reflector. Hereby, the elongated heat transferring elements may be aimed towards either a base or an optical exit window on the lighting assembly, for example, depending on whether the optical solution is a single collimator, multi-collimator, reflector, etc. and also depending on the available space within the glass housing. The elongated heat transferring elements having elongated recesses arranged thereto may thus, when inserted into the housing, touch the inner surface of the housing and hence conformably be in abutment with the double curved surface. Furthermore, the elongated heat transferring elements may each be provided with a plurality of elongated recesses. This may even further improve the flexibility. Also, a plurality of elongated recesses may reduce the plastic deformation of each elongated heat transferring element, thus increasing the possibilities of providing already used heat transferring elements into new housings, i.e. the recycling possibilities of heat transferring elements is increased. Further, reducing the plastic deformation may also increase the contact forces between the second end portions and the inner surface of the housing.
According to another example embodiment of the present invention, the elongated heat transferring elements may be formed by brushes having a heat conductive material. The wording “brushes” should be interpreted such that the elongated heat transferring elements are formed by brush-like straws, each transferring heat, generated by the LED module, to the housing. The brushes are advantageous since they may conform to almost any possible geometry configuration of the housing.
According to another aspect of the present invention there is provided a lighting assembly comprising at least one light emitting diode, the above described heat transferring arrangement, and a housing for receiving the heat transferring arrangement. The at least one light emitting diode may, for example, be a LED module.
Furthermore, the lighting assembly may further comprise a shaping element configured to receive light emitted by the light emitting diode and to provide a light beam according to a predetermined form. Still further, the shaping element may be at least one of a reflector, a collimator, or a lens. Hereby, the light emitted by the light emitted diode may be arranged in a specific desired form. Effects and features of this aspect are largely analogous to those described above in relation to the other aspects of the present invention.
According to an example embodiment, the lighting assembly may further comprise a pressure disc arranged on top of the heat transferring arrangement. Hereby, the pressure disc can be arranged to provide an extra pressure on the elongated heat transferring element, in order to further secure that the elongated heat transferring elements are in abutment with housing. This may be especially beneficial in a case where the heat transferring arrangement is made of a graphite material having less flexible properties than e.g. aluminum. However, a pressure disc may be beneficial for all material used for the heat transferring arrangement, not only graphite, since it provides for the extra contact pressure between the heat transferring arrangement and e.g. the inner surface of the housing. Accordingly, in such a case, the pressure disc provides a pressure on to the graphite heat transferring arrangement so that a relatively sufficient abutment between the heat transferring arrangement and the housing is achieved. Hereby, the transfer of heat from the centre portion towards the housing may be further secured. It should also be noted that the lighting assembly may comprise more than one heat transferring arrangement, such as e.g. two heat transferring arrangements positioned on top of each other. In such a case, the pressure disc may e.g. be provided in between the two heat transferring elements.
Furthermore, the lighting assembly may comprise a compressible pressure element, wherein the heat transferring arrangement is arranged between the housing and the compressible pressure element. The compressible pressure element may, for example, be a sponge-like disc which has a relatively soft surface in comparison with, for example, a pressure plate made of a metal material. An advantage is, at least, that pressure between the compressible pressure element and the heat transferring arrangement may be more uniformly applied since the sponge-like disc may smoothly conform to the elongated heat transferring elements of the heat transferring arrangement. Also, wear of the heat transferring element may be reduced in comparison to e.g. a metallic non-elastic pressure plate.
According to an example embodiment of the present invention, the lighting assembly may further comprise a heat sink plane located optically in the lighting assembly and configured to dissipate heat, generated by the at least one light emitting diode, in an optical direction of the lighting assembly. Accordingly, the heat sink plane can be located in an opposite direction compared to the normal heat dissipation direction of an LED lamp. The heat sink plane may be mechanically connected to e.g. the second end portions of the elongated heat transferring elements. This may be accomplished by, for example, providing the second end portions in abutment with the heat sink plane, bending or folding a portion of the second end portions around the heat sink plane, etc. Hereby, a further improvement in dissipating heat from the LED module may be achieved since heat may be transferred both to the housing and to the heat sink plane, where the heat thereafter is dissipated to e.g. the ambient air.
Further features of, and advantages with, the present invention will become apparent when studying the appended claims and the following description. The skilled addressee realize that different features of the present invention may be combined to create embodiments other than those described in the following, without departing from the scope of the present invention.
These and other aspects of the present invention will now be described in more detail, with reference to the appended drawings showing example embodiments of the invention, wherein:
The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which currently preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided for thoroughness and completeness, and fully convey the scope of the invention to the skilled addressee. Like reference characters refer to like elements throughout.
Referring now to the drawings and to
Furthermore, each of the elongated heat transferring elements 104 also comprises a second end portion 108 arranged at an opposite side of the elongated heat transferring elements 104 compared to the first end portion 106. In the example embodiment of
Still further, according to an example embodiment of the present invention and as is illustrated in
In order to describe the invention in yet more detail, the following description will mainly be focused on the elongated heat transferring elements 104. The elongated heat transferring elements 104 are, as described above, connected to the centre portion 102 of the heat transferring arrangement 100 and extend outwardly there from and, as illustrated in e.g.
Reference is now made to
Furthermore, when the LED module 300 is fixated to the heat transferring arrangement 100, which is inserted in the housing 200, the LED module 300 is connected to an external power source (not shown here) in order to provide the LEDs 302 with power. The LEDs 302 may then transmit light in a direction towards the opening 204 of the housing 200. The heat generated by the LEDs 302 when emitting light is then transferred to the centre portion 102 of the heat transferring arrangement 100, i.e. released in an opposite direction compared to the light beams if the LEDs. Thereafter, the heat is transferred through the elongated heat transferring elements 104, which are in abutment with the inner surface 202 of the housing 200 as described above, such that the heat is further transferred from the elongated heat transferring elements 104 to the housing 200, via the second end portions 108. The heat received by the housing 200 is thereafter then released to the ambient environment, i.e. released from the lighting assembly. It should however be understood that the invention is not limited to a housing 200 releasing the heat directly to the ambient environment, the housing 200 may of course in turn be connected, directly or indirectly, to an external heat transferring element, such as for example a heat sink or the like, which in turn releases the generated heat.
Reference is now made to
According to still further example embodiments of the heat transferring arrangement 100, reference is now made to
Reference is now made to
Attention is now drawn to
Furthermore, the compression disc 702 is configured to provide an additional pressure onto the elongated heat transferring elements of the heat transferring arrangement 100 so that a sufficient pressure between the elongated heat transferring elements and the inner surface 202 of the housing 200 is achieved. More specifically, in a case where the heat transferring arrangement 100 is made of graphite, which is less flexible than e.g. aluminum, the compression disc 702 may be of particular importance in order to achieve a desirable contact between the elongated heat transferring elements and the inner surface 202 of the housing 200.
Although the embodiment depicted in
Moreover, the configuration of the lighting assembly 700 depicted in
Variations to the disclosed embodiments can be understood and effected by the skilled addressee in practicing the claimed invention, from a study of the drawings, the disclosure, and the appended claims. For example, a centre portion of the heat transferring arrangement, for insertion in a generally rectangular shaped housing, may be circularly shaped having its elongated heat transferring elements in a generally rectangular shape instead of the circular shape described above. Furthermore, in the claims, the word “comprising” does not exclude other elements or steps, and the indefinite article “a” or “an” does not exclude a plurality.
Number | Date | Country | |
---|---|---|---|
61620479 | Apr 2012 | US | |
61588737 | Jan 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14373046 | Jul 2014 | US |
Child | 16043407 | US |