Referring to
Considerable heat is lost through the water inlet and outlet piping of a water heater. The heat loss is due primarily to thermal circulation and not as a result of conduction through the piping itself.
In use, the hot water is turned on somewhere in the household, or wherever the tank is located. Almost simultaneously, hot water exits the hot water tank 12 through the hot water outlet pipe 16 and cold water enters the tank 12 through cold water inlet pipe 14. As cold water flows through the nipple 22, the water dislodges the ball 28 from the seat 24 and the ball moves toward the cage 26. The cage 26 catches the ball and retains the ball inside the nipple. The cage has openings to allow the water to flow around the ball and enter the tank 12. When the hot water is turned off, the ball 28 floats upwardly back towards and into engagement with the seat 24 trapping heat below it.
A similar hot water heat trap assembly 40 is provided on the hot water outlet pipe 16. The heat trap assembly 40 includes a nipple 42, a seat 44, a cage 46, and a ball 48. The nipple 42 is received in the inlet 50 of the hot water outlet pipe 16 and in the outlet 52 of the tank 12. The seat 44 and the cage 46 are of the same or similar construction of the seat 24 and the cage 26 of the cold water heat trap assembly 20. In the hot water heat trap assembly 40, the seat 44 and the cage 46 are disposed on opposite ends of the heat trap assembly as compared to the cold water heat trap assembly 20. The ball 48 of the hot water heat trap assembly 40 has a specific gravity greater than 1.0. Accordingly, when the hot water exits the tank 12 into the nipple 42, the ball 48 is dislodged from the seat 44 and retained by the cage 46. The cage has openings to allow water to pass around the ball and through the nipple. When the hot water is turned off in the household, no hot water is flowing through the nipple 42 and the hot water outlet pipe 16 so that the ball 48 sinks toward and into engagement with the seat 44 trapping heat below.
A problem with the above-mentioned energy saving device involves “chatter” of the balls 28 and 48 inside the nipples 22 and 42. Because the diameter of the nipple required to allow the ball to float freely inside the nipple and the influence of water flowing through the nipple, the balls tend to rotate at a relatively high speed. The high speed rotation of the balls allows the ball to contact the nipple and “chatter” making an audible sound that is noticeable to those standing near the water heater. To some consumers, this is considered objectionable, although it does not represent a defect in the heat trap. Accordingly, it is desirable to provide a heat trap assembly that provides the same or better energy efficiency of the prior art heat traps while also eliminating the “chatter” that accompanies such heat trap assemblies.
A heat trap assembly for a hot water tank includes a heat trap insert and a sealing member retained by the heat trap insert. The heat trap insert includes a seat having an opening that is dimensioned to be covered by the sealing member when no water is flowing through the assembly. The heat trap insert also includes a plurality of fingers to retain the sealing member when water is flowing through the heat trap assembly.
It is to be understood that the specific devices and processes illustrated in the attached drawings, and described in the following specification are simply exemplary embodiments of the inventive concepts. Hence, specific examples and characteristics relating to the embodiments disclosed herein are not to be considered as limiting. Furthermore, for ease of illustration and comprehension the orientation of the heat trap assemblies is disclosed for a hot water heater assembly having inlet and outlet pipes located at the top to the heater. The heat trap assembly can also be used on hot water heater assemblies where the water enters at an alternative location, however the orientation and configuration of the components may need to be altered. The flow of the water through the heat trap assembly will control the location of certain components and the description that follows should not be deemed limiting as to certain hot water or cold water heat trap assemblies.
Referring to
The nipple 102 receives the heat trap insert 104, the sealing member 106 and the liner 108. In a preferred embodiment, the nipple includes threads to attach the tank inlet 30 and the tank outlet 52 (
The heat trap insert 104 includes a flanged end 114, a tubular portion 116, a seat 118 and fingers 122. The heat trap insert can be made from one piece of material, for example the heat trap insert can be one molded piece of plastic. The flanged end 114 abuts an end of the nipple 102 (see
Referring to
Three fingers 122 extend from the tubular portion 116 of the heat trap insert 104 near the seat 118. The fingers 122 extend parallel to a longitudinal axis of the tubular portion 116 of the heat trap insert 104. Although three fingers are shown situated 1200 apart from one another, a greater or fewer number of fingers can be provided. The fingers 122 include catches 132 at an end of each finger opposite the seat 118 that extend toward the longitudinal axis of the tubular portion 116 of the heat trap insert 104. The catches 132 retain the sealing member 106 inside the heat trap insert 104 as water flows through the assembly. The catches can be triangular in shape or another suitable configuration. The fingers 122 are resilient so that the sealing member 106 can be inserted into the heat trap insert 104 prior to insertion of the heat trap insert 104 into the nipple 102 or other pipe. The nipple 102 or other pipe confines the movement of the fingers 122 so that the fingers retain the sealing member 106 as water flows through the assembly.
The sealing member 106 includes a substantially spherical portion 134 and a tail portion 136 giving the sealing member a generally tadpole-shaped configuration. The sealing member is designed so that it will rotate very little or not at all as water passes through the assembly. In a hot water heat trap assembly, the sealing member has a specific gravity greater than 1.0. In a cold water heat trap assembly the sealing member has a specific gravity less than 1.0. The spherical portion 134 of the sealing member has a diameter larger than the diameter of the opening 124 of the seat 118. The sealing member also has a substantially flat portion 138 axially aligned with the tail portion. In lieu of having a substantially spherical configuration, the spherical portion could take another configuration. An alternative configuration would allow the sealing member 106 to at least substantially cover the inlet or the outlet of the assembly 100 so that heat is not lost from the hot water tank into the water held in the attached piping.
The tail portion 136 extends from the spherical portion 134 of the sealing member 106. The tail portion 136 is frusto-conical in configuration tapering away from the spherical portion 134. Alternatively, the tail portion can be cylindrical, or another suitable shape. As seen in
The sealing member can also include a post so that the sealing member would be similarly shaped to the sealing member disclosed in co-pending U.S. patent application Ser. No. 10/644,201 filed on Aug. 20, 2003, which is incorporated herein by reference. The post can be positioned slightly off-center from a central axis of the sealing member 106. The post is a protruding stud disposed substantially opposite the tail portion 136. The length of the post is such that the post catches or engages one of the fingers 122 and/or catches 132 when water is flowing through the nipple 102. Referring to
Referring to
The sealing member 106 is restricted from rotation and inhibited from rattling against the heat trap insert 102 when water is flowing through the assembly. The tail portion 136 of the sealing member 106 restricts rotation about the Y-axis (which is coming out of the page in
The heat trap assembly need not include a nipple in every installation. As just one example, with reference to
A heat trap assembly having the desired energy efficiency is provided without having the accompanying unwanted “chatter”. The assembly has been described with reference to a preferred embodiment. Obviously, modifications and alterations will occur to others upon reading and understanding the preceding detailed description. It is intended that the invention described be construed to include all reasonable modifications and alterations that come within the scope of the appended claims and the equivalents thereof.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/523,852, filed Nov. 20, 2003, entitled “HEAT TRAP,” which is incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1173620 | Thompson | Feb 1916 | A |
1365856 | Sandlin | Jan 1921 | A |
3055086 | Hoganson | Sep 1962 | A |
3059667 | Coceano | Oct 1962 | A |
3796230 | Meripol | Mar 1974 | A |
4286573 | Nickel | Sep 1981 | A |
4465102 | Rupp | Aug 1984 | A |
4633853 | Prill et al. | Jan 1987 | A |
4741679 | Blassingame | May 1988 | A |
4964394 | Threatt | Oct 1990 | A |
5277171 | Lannes | Jan 1994 | A |
5577491 | Lewis | Nov 1996 | A |
5620021 | Hugo | Apr 1997 | A |
5794661 | Natalizia | Aug 1998 | A |
6269780 | Hughes | Aug 2001 | B1 |
6302063 | Schimmeyer | Oct 2001 | B1 |
6745723 | Hicks et al. | Jun 2004 | B1 |
6851395 | Knaus | Feb 2005 | B1 |
20040055544 | Knaus | Mar 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20050139171 A1 | Jun 2005 | US |
Number | Date | Country | |
---|---|---|---|
60523852 | Nov 2003 | US |