This disclosure relates to a process for heat treating and forming high strength 7xxx series aluminum alloy tubular vehicle body structure reinforcements.
High strength aluminum tubes including tempered 7xxx series alloys have very low room temperature formability. Most frequent tempers for high strength aluminum alloy tubes have the following designations: “F” As fabricated; “H” Strain hardened; “O” Full soft (annealed); “T” Heat treated (e.g., T6); and “W” solution heat treated. Aluminum alloys of the 7xxx series do not have a stable T4 temper and age harden shortly after solution heat treatment and quenching.
Applicants' assignee previously filed published application WO 2015/167588 A1 that discloses a method of forming vehicle rails from extruded 6xxx series aluminum tubes. However, the method disclosed is not amenable to 7xxx series aluminum tubes. 6xxx series aluminum alloys cannot obtain yield strengths approaching 500 MPa. Greater yield strength makes it possible to reduce weight while maintaining desired strength in tubular vehicle body structure reinforcements.
This disclosure is directed to solving the above problems and other problems as summarized below.
According to one aspect of this disclosure, a first method is disclosed for forming a tubular reinforcement that comprises the steps of: providing a 7xxx aluminum tube (of any temper); heating tube to at least 450° C.; quenching the tube in less than or equal to 20 seconds after heating with medium that consists of but is not limited to: water, oil, gas, air or contact pressure; and completing all of the forming processes on the tube from within 1 to 8 hours of quenching. The tube may be a seamless extrusion, a porthole extrusion, a roll formed seam-welded or a shaped porthole extrusion.
According to other aspects of the above first method, the method may further comprise hydroforming the tube to shape the circumference of the tube. The method may further comprise trimming the tube after hydroforming the tube. In addition, the method further comprises artificially aging the tube after trimming the tube to obtain a yield strength of more than 470 MPa.
According to the first method, the step of forming the tube may include pre-bending the tube and preforming the tube. The step of forming the tube may also include hydroforming the tube after pre-bending and preforming the tube within the 1 to 8 hours after solution heat treating and quenching.
According to the first method, the tube initially may be a round straight tube. Axial tension may be applied to the tube during the heating and quenching steps to reduce distortion of the tube. In the quenching step the temperature of the tube is reduced to less than 300° C. at a rate of at least 300° C. per second when cooling from 400° C. to 290° C.
According to one aspect of this disclosure, a second method is disclosed that comprises: providing a 7xxx-O temper aluminum tube; forming the tube into a predetermined shape; heating the tube to at least 450° C.; quenching the tube in a hydroforming die with a fluid such as but not limited to air or water after heating while hydroforming the tube.
According to the second method, the quenching step is performed during the hydroforming step in a water cooled hydroforming die to cool the tube to below 300° C. The quenching step may be performed during the hydroforming step in a hydroforming die having high contact pressure of more than 0.1 MPa to cool the tube to below 300° C. The contact pressure is created by hydroforming fluid injected under pressure inside the tube. The quenching step may be performed simultaneously during the hydroforming step in a water cooled hydroforming die that is maintained at a temperature of less than 50° C. to cool the tube.
According to the second method, the tube may be trimmed after hydroforming the tube and followed by artificially aging after trimming the tube that provides a minimum a yield strength of at least 470 MPa. The tube may have an outer diameter of less than 5 inches and a wall thickness greater than 1.5 mm and less than 4 mm.
The above aspects of this disclosure and other aspects will be described below with reference to the attached drawings.
The illustrated embodiments are disclosed with reference to the drawings. However, it is to be understood that the disclosed embodiments are intended to be merely examples that may be embodied in various and alternative forms. The figures are not necessarily to scale and some features may be exaggerated or minimized to show details of particular components. The specific structural and functional details disclosed are not to be interpreted as limiting, but as a representative basis for teaching one skilled in the art how to practice the disclosed concepts.
Referring to
The tube is then subjected to a solution heat treatment at 13 followed by a water quench step at 14. The 7xxx series tube supplied at an “F” temper is solution heat treated in either an induction heating system or a furnace that heats the tube to at least 450° C. and is then quenched at a rate of at least 300° C. per second. After quenching, the tube exhibits maximum formability for a period of up to 1 hour and substantially increased formability up to 8 hours after which the tube again becomes too brittle to be easily hydroformed. The pre-bending step at 16, preforming step at 18 and hydroforming step at 20 are preferably performed within 8 hours of quenching the tube after solution heat treating in step 14. The preforming step is performed at 18 with the tube being formed at least locally to change the cross-sectional shape of the tube from a round shape to a shape having indentations and cross-sections other than round cross-sections.
After preforming, the tube may be hydroformed in a hydroforming die at 20. The tube may be hydroformed by water or oil injected under pressure inside the tube. In the hydroforming step at 20, the tube may be hydroformed to a desired shape and also hydropierced to form openings in the side of the tube as required for a particular part. After the tube is hydroformed at step 20, it may be trimmed at step 22, if desired, to the specified length.
After trimming, the hydroformed tube is subjected to artificial aging at step 24 in which the tube heat treated process is performed to obtain the desired yield strength of more than 470 MPa. The age hardening heat treatment is performed according to industry standard T6 artificial aging practice for 7075 alloy that includes holding the alloy at a temperature of 110-126° C. for 24 hours. Alternatively, the age hardening may be performed according to any combination of heat treatment found in US published application number: 2015/0101718, artificial aging practice T6M, that includes holding the alloy at a temperature of 110° C. for 2 hours and 165 ° C. for 3 hours.
Referring to
The aluminum tube having “O” temper is subjected to a prebending operation at 34 to form the tube along its length to a desired shape. A preforming step may be performed at 36 in which the cross-section of the tube is formed to a desired shape including indentations, oblong or oval radial cross-sections. The tube is then subjected to a solution heat treatment at 38 either in an induction heater or a furnace to a temperature of at least 450° C.
The tube is then quickly quenched in the hydroforming die to a temperature of 300° C. at a rate of at least 300° C. per second. The tube is then simultaneously quenched within less than or equal to 20 seconds and subjected to a hydroforming operation at step 40 in which the tube is hydroformed to its desired shape and also may be hydropierced as previously described with reference to
The quenching may be performed by injecting water, oil, gas or air into the hydroforming dies or by using high-contact pressure quench dies for the hydroforming operation. The hydroforming operation in a high-contact pressure quench utilizes water, oil, gas or air that is supplied with more than 2 MPa of pressure pushing the tube against the wall of the hydroforming die. The hydroforming tool may be cooled to less than 50° C. to cool the tube as it is pressed against the inner surface of the hydroforming die. The pressure introduced into the interior of the tube can be induced by a fluid (either air, gas, oil or water) at an initial pressure of from 0 to 150 bar.
Following hydroforming, the tube is then trimmed at 42 and subjected to artificial aging or heat treatment at 44; T6M heat treatment for 7xxx alloys wherein the part is held at 100 to 150° C. for 0.2-3 hours and then is held at 150-185° C. for 0.5 to 5 hours.
Referring to
Referring to
The embodiments described above are specific examples that do not describe all possible forms of the disclosure. The features of the illustrated embodiments may be combined to form further embodiments of the disclosed concepts. The words used in the specification are words of description rather than limitation. The scope of the following claims is broader than the specifically disclosed embodiments and also includes modifications of the illustrated embodiments.