The present application claims priority from Japanese Patent Application JP 2010-200845 filed on Sep. 8, 2010, the content of which is hereby incorporated by reference into this application.
1. Field of the Invention
The present invention relates to a semiconductor fabrication apparatus that fabricates semiconductor devices. More particularly, the present invention is concerned with a heat treatment apparatus that performs activation annealing or defect repair annealing, which is preceded by doping of an impurity and intended to control the conductivity of a semiconductor substrate, and oxidation or the like of the surface of the semiconductor substrate.
2. Description of the Related Art
In recent years, an expectation has been put on introduction of a novel material having a wide bandgap, such as, silicon carbide (SiC) (or gallium nitride (GaN)) as a substrate material of a power semiconductor device. Since SiC has a wider bandgap than silicon (Si) that is an existing material, if SiC is adopted for a switching device or a Schottky barrier diode that is used to construct an inverter or the like, a dielectric strength can be improved and a leakage current can be minimized accordingly. Eventually, power consumption can be reduced.
A process of fabricating various types of power devices using SiC as a substrate material is almost identical to a process in which Si is used as the substrate material, though the size or the like of the substrate is different between the SiC substrate and Si substrate. As a sole largely different process, a heat treatment process is cited. What is referred to as the heat treatment process is represented by activation annealing that is preceded by ion implantation of an impurity and intended to control the conductivity of the substrate. In the case of a Si device, the activation annealing is performed at the temperature ranging from 800° C. to 1200° C. However, in the case of SiC, the temperature ranging from 1800° C. to 2000° C. is necessary in terms of the material properties.
As an annealing apparatus, a resistive heating furnace described, for example, in Japanese Patent Application Laid-Open Publication No. 2009-32774 is known. Aside from the resistive heating furnace type, an annealing apparatus of an induction heating type described in, for example, Japanese Patent Application Laid-Open Publication No. 2010-34481 is known.
When the resistive heating furnace described in Japanese Patent Application Laid-Open Publication No. 2009-32774 is used to perform heating at 1800° C. or more, problems described below become severe.
A first problem lies in heat efficiency. Heat dissipation from a furnace body is dominated by radiation, and a radiant quantity increases in proportion to a biquadrate of temperature. Therefore, if a region to be heated is wide, energy efficiency necessary to heating markedly degrades. For a resistive heating furnace, a double-tube structure is usually adopted in order to avoid contamination caused by a heater. The region to be heated therefore gets wider. In addition, since a sample to be heated recedes from a heat source (heater) due to the presence of a double tube, it is necessary to set the heater to the temperature higher than the temperature of the sample to be heated. This also becomes a factor of largely degrading the efficiency. For similar reasons, the heat capacity of the region to be heated gets very large, and it takes much time to raise or lower the temperature. Accordingly, the time it takes to eject the sample to be heated after the sample to be heated is inputted gets longer. This becomes a factor of decreasing a throughput, or a factor of intensifying the surface roughness of the sample to be heated, which will be described later, because the time during which the sample to be heated stays in a high-temperature environment gets longer.
A second problem is concerned with wastage of a furnace material. Materials capable of coping with 1800° C. and being adopted as the furnace material are limited. A high-purity material of a high melting point is necessary. The furnace material capable of being used for SiC is graphite or SiC itself. In general, a sintered SiC compact or a material having the surface thereof coated with SiC according to a chemical vapor phase deposition method is adopted. These materials are usually expensive. If a furnace body is large, a considerable cost is necessary to replacement. The higher the temperature is, the shorter the service life of the furnace body is. The cost of replacement gets higher than that in the normal Si process.
In contrast, the induction heating method described in Japanese Patent Application Laid-Open Publication No. 2010-34481 is a method of heating an object of heating by feeding a high-frequency induction current to the object of heating or a placement member on which the object of heating is placed. Compared with the aforesaid resistive heating furnace method, the induction heating method enjoys high heat efficiency. However, in the case of induction heating, if the electric resistivity of the object of heating is low, a large induction current is necessary to heating. The absolute value of the heat efficiency of an entire heating system is not always high (a heat loss occurring in an induction coil or the like is large). The induction heating method is therefore confronted with a problem on heat efficiency.
Heating uniformity is determined with the induction current that flows into the object of heating or the placement member on which the object of heating is placed. The heating uniformity may not be sufficiently attained for a planar disk like the one employed in device fabrication. If the heating uniformity is poor, there is a fear that the object of heating may be broken due to a thermal stress during rapid heating. This becomes a factor of decreasing a throughput because of the necessity of lowering a speed of a temperature rise to such an extent that a stress is not generated. Further, similarly to the resistive heating furnace method, steps of producing and removing a cap film that prevents evaporation of Si from a SiC surface at the time of extremely high temperature are additionally necessary.
An object of the present invention is to provide a heat treatment apparatus that even when annealing SiC at high temperature, can exhibit a low heat capacity and perform uniform heating.
As an embodiment for accomplishing the above object, there is provided a heat treatment apparatus including a pair of parallel plate electrodes, a high-frequency power supply that applies a high-frequency voltage to the pair of parallel plate electrodes so as to discharge between the pair of parallel plate electrodes, a temperature measurement instrument that measures the temperature of a sample to be heated which is disposed in the pair of parallel plate electrodes, a gas introduction unit that introduces a gas into the pair of parallel plate electrodes, reflection mirrors that surround the pair of parallel plate electrodes, and a control unit that controls the output of the high-frequency power supply. The control unit references the temperature measured by the temperature measurement instrument, and controls the output of the high-frequency power supply so as to control the heat treatment temperature for the sample to be heated.
Further provided is a heat treatment apparatus including a high-frequency power supply, a lower electrode on which a sample to be heated is placed, an upper electrode to which the high-frequency power supply is connected and which is located at a position opposite to the position of the lower electrode, a gas introduction unit that introduces a gas, which is used to produce plasma due to discharge, into the space between the upper electrode and lower electrode, and upper and lower reflection mirrors that cover the upper and lower electrodes via a space.
Owing to adoption of glow discharge, there is provided a heat treatment apparatus that even when annealing SiC at high temperature, can exhibit a low heat capacity and achieve uniform heating. In particular, inclusion of reflection mirrors suppresses a radiation loss and permits high-temperature heat treatment.
In a mode for implementing the present invention, a sample to be heated is disposed in a pair of parallel plate electrodes in which a gap ranging from 0.1 mm or more to 2 mm or less is created, and the gap is filled with a gas that contains as a main raw material a rare gas (helium (He), argon (Ar), krypton (Kr), xenon (Xe), or the like) whose pressure is close to atmospheric pressure. A high-frequency voltage is applied to the pair of parallel plate electrodes in order to produce plasma. The gas is heated with the plasma, whereby the sample to be heated is thermally treated.
Owing to heating of a gas with plasma, a heat treatment apparatus can be provided for fabrication of semiconductor devices that needs extremely high temperature of about 2000° C. Eventually, heating efficiency can be improved, a throughput can be improved due to shortening of a heating treatment time, a cost of operation such as a cost incurred by wastage of a furnace material can be reduced, and the surface roughness of a sample to be heated caused by extremely high temperature can be suppressed.
Embodiments will be described below.
The sample to be heated 1 was placed on the lower electrode 3, and the gap 4 between the upper electrode 2 and lower electrode 3 was 0.8 mm. The sample to be heated 1 has a thickness ranging from 0.5 mm to 0.8 mm. A dent in which the sample to be heated 1 is locked is formed in the lower electrode 3 on which the sample to be heated 1 is placed, though it is not shown in the drawing. The circumferential corners of the upper electrode 2 and lower electrode 3 that are opposed to each other are tapered or rounded. This is intended to suppress localization of plasma due to concentration of an electric field at the corner of the electrode.
A high-frequency power is fed from a high-frequency power supply 6 to the upper electrode 2 over a feeder line 5. In the present embodiment, 13.56 MHz was adopted as the frequency of the high-frequency power supply 6. The lower electrode 3 is grounded over a feeder line 7. The feeder lines 5 and 7 are made of graphite that is a material made into the upper electrode 2 and lower electrode 3 alike. A matching circuit 8 (M.B in the drawing stands for matching box) is interposed between the high-frequency power supply 6 and upper electrode 2. A structure for efficiently feeding the high-frequency power from the high-frequency power supply 6 to the plasma produced between the upper electrode 2 and lower electrode 3 is thus realized.
To a container 9 in which the upper electrode 2 and lower electrode 3 are disposed, a He gas can be introduced at a pressure, which ranges from 0.1 atm. to 10 atm., by means of a gas introduction unit 10. The pressure of the gas to be introduced is monitored by a pressure detection unit 11. In addition, the gas can be exhausted from the container 9 by a vacuum pump connected to an exhaust vent 12. The container 9 is deaerated to be vacuum at a step preceding introduction of the He gas. After the container 9 is deaerated, the gas is introduced by the gas introduction unit 10 until the gas has a predetermined pressure. Thus, the atmosphere in the container 9 can be brought to an atmosphere of a desired pure gas (He in the present embodiment). In addition, the predetermined pressure can be retained by combining introduction of a certain amount of gas, which is performed by the gas introduction unit 10, with exhaustion thereof. The gas introduction unit can be controlled by the control unit 18.
The upper electrode 2 and lower electrode 3 in the container 9 are surrounded by reflection mirrors 13 each formed with a paraboloid of revolution. A protective quartz plate 14 is interposed between the upper electrode 2 and the reflection mirror 13 and between the lower electrode 3 and the reflection mirror 13. The reflection mirror 13 formed with the paraboloid of revolution is constructed by optically polishing the paraboloid of a metallic substrate, and plating or vapor-depositing gold on the polished surface. In addition, a coolant channel 15 is formed in the metallic substrate of the reflection mirror 13. Cooling water is poured into the channel so that the temperature of the metallic substrate can be held constant.
The upper electrode 2 or lower electrode 3 can be measured through a window 16 using a radiation thermometer 17. The radiation thermometer 17 is used to measure the temperature of the sample to be heated 1. The result of the measurement by the radiation thermometer 17 is processed by the control unit 18, and the output of the high-frequency power supply 6 is automatically controlled so that the temperature of the sample to be heated 1 becomes desired temperature. The temperature of the sample to be heated 1 can be considered to be identical to the temperature of the upper electrode 2 or lower electrode 3, or especially, to the temperature of the lower electrode 3.
Next, the basic actions of the heat treatment apparatus having the construction shown in
In a stage in which the pressure in the container becomes steady, a high-frequency power is applied from the high-frequency power supply to the upper electrode 2 via the matching circuit 8 through a power introduction terminal 19 over the feeder line 5. He plasma is produced in a glow discharge region in the gap 4. In the present embodiment, the high-frequency power to be fed to the upper electrode 2 was set to 2000 W. The high-frequency energy is absorbed by electrons contained in the plasma, and atoms or molecules of the raw gas are heated due to collision of the electrons. In the plasma produced under a pressure close to atmospheric pressure, the frequency of collision of the electrons with the gas atoms and molecules is so high that a thermal equilibrium state is established, that is, the temperature of the electrons and the temperature of the atoms and molecules become nearly equal to each other. The temperature of the raw gas can be readily raised to the temperature ranging from 1000° C. to 2600° C.
The sample to be heated 1 is heated due to contact of the heated high-temperature gas and radiation thereof. The temperature of the sample to be heated 1 can be raised from the temperature, which is 70% or more of the gas temperature, to the temperature nearly equal to the gas temperature. The surface of the upper electrode 2 opposed to the sample to be heated 1 is also heated and comes to have the temperature nearly equal to the temperature of the sample to be heated. As far as a solid whose temperature is 1000° C. or more is concerned, a percentage at which thermal energy is emitted due to radiation is high (a magnitude of radiation increases in proportion to the fourth power of temperature). Therefore, radiation from the upper electrode 2 contributes to heating of the sample to be heated. Owing to the foregoing principles, the sample to be heated 1 can be heated from several hundreds of degrees to the temperature necessary to activate SiC (ranging from about 1800° C. to about 2000° C.).
Since plasma is produced in a glow discharge region, the plasma can be formed to uniformly spread between the upper electrode 2 and lower electrode 3. The planar plasma is used as a heat source to heat the sample to be heated 1. This makes it possible to uniformly heat the planar sample to be heated 1. During the heating, a high-temperature portion is limited to the upper electrode 2 and the lower electrode 3 including the sample to be heated 1. The heat capacity of a region to be heated can be extremely reduced, and the temperature of the sample to be heated can be raised or lowered at a high speed. In addition, since the sample to be heated can be heated uniformly on a planar basis, even if the temperature thereof is raised rapidly, a risk that a break or the like may stem from non-uniformity in the temperature of the sample to be heated 1 is low. Therefore, the temperature of the sample to be heated can be raised or lowered at a high speed, and the time it takes to complete a series of heating treatment steps can be shortened. Owing to this advantage, a throughput of heating treatment can be improved. In addition, unnecessarily long stay of the sample to be heated 1 in a high-temperature atmosphere can be suppressed. Roughness on the SiC surface stemming from evaporation of Si from SiC heated at high temperature can be minimized.
Since the temperature of the sample to be heated 1 is nearly identical to the temperature of the lower electrode 3, when the temperature of the lower electrode 3 is measured with the radiation thermometer 17, the temperature of the sample to be heated 1 can be measured. Since the control unit 18 controls the output of the high-frequency power supply 6 by referencing the result of the measurement of the temperature of the sample to be heated 1 performed by the radiation thermometer 17, the temperature of the sample to be heated 1 can be highly precisely controlled (1800° C.±10° C. or less).
In the present embodiment, according to the foregoing operation, the sample to be heated 1 was heated up to 1800° C., which was necessary to activation of a SiC device succeeding ion implantation, and annealed for 1 min. As a result, uniformity represented by an in-plane resistivity of the sample to be heated that is ±3% or less was attained. During the heating, when glow discharge is sustained, heating can be achieved uniformly on a planar basis. When a transition is made from the glow discharge to arc discharge, formation of plasma is localized. Uniform heating becomes hard to do. At the same time, the temperature of the sample to be heated becomes several thousands of degrees or more, that is, becomes unnecessarily high, and it becomes hard to control the temperature. Therefore, in the present embodiment, the upper limit of a range of temperatures up to which the sample to be heated is heated is preferably about 2000° C. at which glow discharge can be sustained. When the temperature is equal to or larger than 2000° C., a quantity of thermal electrons emitted from the electrode surface increases to the gap 4. Eventually, a risk that a transition may be made to arc discharge gets higher.
A transition to arc discharge is, as mentioned previously, largely related to emission of thermal electrons deriving from a temperature rise at an electrode. Glow discharge is sustained with emission of secondary electrons from the electrode. However, when the quantity of thermal electrons exceeds that of secondary electrons, discharge becomes unstable and makes a transition to the arc discharge. The quantity of thermal electrons emitted from the electrode is expressed by the Richardson-Dushman's formula (1) presented below, and determined with the temperature of the electrode material and a work function.
In the formula (1), J denotes a quantity of emitted thermal electrons per unit area, m denotes a mass of electrons, k denotes a Boltzmann coefficient, e denotes an elementary electric charge, h denotes a Planck constant, T denotes an absolute temperature of an electrode, and W denotes a work function of an electrode material.
Assuming that the temperature determined with a quantity of thermal electrons emitted from carbon, which is identical to the quantity of thermal electrons emitted from tungsten at the time of a transition to arc discharge is the temperature at which a transition is made to arc discharge, the temperature ranges from about 2030° C. to about 2300° C. Therefore, when a carbon electrode is employed, glow discharge can be sustained at about 2000° C. or less, and heating based on glow discharge can be achieved. Likewise, for an electrode made of SiC or formed by coating a carbon substrate with SiC according to a chemical vapor deposition (CVD) method or the like, the temperature ranges from 1900° C. to 2200° C. Heating based on glow discharge can be achieved at about 1900° C. or so. In reality, emission of thermal electrons will not overwhelm sustention of discharge at a lower limit of temperatures at which glow discharge is sustained. Therefore, glow discharge can be sustained at about 2000° C. at most irrespective of whether it is caused by a carbon electrode or SiC electrode.
In order to highly efficiently raise the temperature of the upper electrode 2 and lower electrode 3 (including the sample to be heated 1), it is necessary to suppress heat transfer over the feeder lines 5 and 7, heat transfer through an He gas atmosphere, and radiation from a high-temperature region (in the infrared spectrum and visible light region). In particular, in an extremely high-temperature state of 1800° C., heat dissipation due to radiation is quite dominant. Minimization of a radiation loss is essential to improvement of heating efficiency. In the present embodiment, the minimization of the radiation loss is implemented by the reflection mirrors 13. The reflection mirror 13 is formed by coating a paraboloid of revolution, which is optically polished, with gold that upgrades the reflectance of infrared light. The reflection mirrors 13 are disposed to cover the upper electrode 2 and lower electrode 3 with the paraboloids of revolution with which the reflection mirrors are formed. Thus, radiant light can be reflected to the perimeters of the upper electrode 2 and lower electrode 3 that are regions to be heated. This permits the minimization of the radiation loss.
The mirror surfaces of the reflection mirrors 13 exhibit the reflectance of about 90% with respect to radiant light. However, since the reflection mirrors 13 provide multipath reflection, absorbed radiant energy causes the temperature of the reflection mirrors 13 to rise. A heat loss transferred from the upper electrode 2 and lower electrode 3 through a He gas atmosphere leads to a rise in the temperature of the reflection mirrors 13. When the temperature of the reflection mirrors 13 becomes several hundreds of degrees or more, there arises a possibility that the sample to be heated 1 may be contaminated due to a decrease in the reflectance, which derives from deterioration of the mirror surfaces, and emission of an impurity. In the present embodiment, the coolant channel 15 is formed in the metallic substrate of each of the reflection mirrors 13 so that cooling water can flow through the channel. Thus, the temperature rise at the reflection mirrors 13 themselves is suppressed. The protective quartz plates 14 are interposed between the reflection mirrors 13 and the upper electrode 2 or lower electrode 3. The protective quartz plates 14 have the capability to prevent contamination of the surfaces of the reflection mirrors 13 by an entity emitted from the upper electrode 2 and lower electrode 3 that have extremely high temperature (a sublimate of graphite or a product of an added gas), or to prevent invasion of a contaminate, which has a possibility of being mixed in the sample to be heated, 1 from any of the reflection mirrors 13. Incidentally, even when the reflection mirrors 13 are not included, a heat treatment apparatus that can exhibit a low heat capacity and perform uniform heating can be provided.
The basic actions of the heat treatment apparatus using plasma and being shown in
In the basic construction of the heat treatment apparatus shown in
For the basic actions of the heat treatment apparatus shown in
Assume that a potential difference ranging from, for example, several tens of volts to about 100 V occurs in the ion sheath. The thickness of the ion sheath usually ranges from several tens of micrometers to several hundreds of micrometers. In contrast, the mean free path of He ions is 20 μm or less in an He atmosphere of 0.1 atm. or less and 1800° C. This raises the possibility that: the number of times of collision in the ion sheath may range about 1 to 10; a percentage by which ions are accelerated with a voltage close to a voltage equivalent to the potential difference may get larger; and ions having energy which exceeds 10 eV may enter the sample to be heated.
For the basic actions of the heat treatment apparatus shown in
In the aforesaid embodiment, graphite coated with silicon carbide according to a chemical vapor deposition (CVD) method is used to form the upper electrode 2 and lower electrode 3. Alternatively, even when graphite alone, a member produced by coating graphite with thermolytic carbon, a member produced by vitrifying a graphite surface, a compound of carbon and a high-melting point metal (tantalum (Ta), tungsten (W), or the like), or SiC (sintered compact, single crystal, or polycrystalline material) is adopted, the same advantages can be exerted. Needless to say, that is a base material of the upper electrode 2 and lower electrode 3, and a coating to be applied to the graphite surface are both requested to exhibit high purity in terms of contamination prevention. At extremely high temperature, contamination may affect the sample to be heated 1 over the feeder lines 5 and 7. Therefore, in the present embodiment, the feeder lines 5 and 7 are, similarly to the upper electrode 2 and lower electrode 3, made of graphite. Heat dissipated from the upper electrode 2 and lower electrode 3 is transferred over the feeder lines 5 and 7 and then lost. Therefore, it is necessary to limit heat transfer over the feeder lines 5 and 7 to a minimal necessary level. Therefore, the sectional area of the feeder lines 5 and 7 made of graphite has to be as small as possible, and the length thereof has to be as long as possible. However, if the sectional area of the feeder lines 5 and 7 is made extremely small and the length thereof is made too long, a high-frequency power loss on the feeder lines 5 and 7 increases. This invites degradation in heating efficiency for the sample to be heated 1. In the present embodiment, from the foregoing viewpoints, the sectional area of the feeder lines 5 and 7 made of graphite is set to 12 mm2, and the length thereof is set to 40 mm. The same advantages can be exerted as long as the sectional area ranges from 5 mm2 to 30 mm2 and the length ranges from 30 mm to 100 mm.
In the present embodiment, heat dissipation from the upper electrode 2 and lower electrode 3 which determines heating efficiency is, as mentioned above, dominated mainly by (1) radiation, (2) heat transfer through a gaseous atmosphere, and (3) heat transfer over the feeder lines 5 and 7. Among the dominators, the primary one is (1) radiation. The reflection mirrors 13 are used to suppress the radiation. Heat dissipation over the feeder lines 5 and 7 is minimized by, as mentioned above, optimizing the sectional area of the feeder lines and the length thereof. (2) Heat transfer through the gaseous atmosphere is suppressed by controlling an electrothermal distance of a gas (a distance from each of the upper electrode 2 and lower electrode 3, which are regarded as a high-temperature portion, to one of the reflection mirrors 13 or the wall of the container 9 which is regarded as a low-temperature portion). The percentage of heat dissipation due to heat transfer through a gas gets relatively high in a He atmosphere under atmospheric pressure (because the thermal conductivity of He is high). Therefore, the present embodiment adopts a structure in which 30 mm or more is preserved as the distance from each of the upper electrode 2 and lower electrode 3 to one of the reflection mirrors 13 or the wall of the container 9. The longer distance is more advantageous for suppression of heat dissipation. However, unfavorably, the size of the container 9 becomes too large for a region to be heated. Once the distance of 30 mm or more is preserved, while the size of the container 9 is suppressed, heat dissipation due to heat transfer through a gaseous atmosphere can be suppressed. Needless to say, when Ar or the like exhibiting low thermal conductivity is adopted or a gas pressure is decreased (0.1 atm. or more), heat transfer through the gaseous atmosphere can be further suppressed.
In the first embodiment, 13.56 MHz is employed in bringing about electric discharge. This is because since 13.56 MHz is a frequency for industrial use, a power source is available at a low cost. In addition, a criterion for leakage of an electromagnetic wave is so low that the cost of the apparatus can be lowered. However, needless to say, heating can be achieved at any other frequency under the same principles. In particular, a frequency that is equal to or larger than 1 MHz and falls below 100 MHz is preferred for the present invention. At a frequency lower than 1 MHz, a high-frequency voltage needed to feed power necessary to heating gets higher. This is unfavorable because abnormal discharge (unstable discharge or discharge occurring other than the space between the upper electrode and lower electrode) occurs and it becomes hard to perform stable actions. A frequency exceeding 100 MHz is not preferred because the impedance in the gap between the upper electrode 2 and lower electrode 3 is low and it becomes hard to develop a voltage necessary to produce plasma.
In relation to the first embodiment, a description has been made of a construction in which the one sample to be heated 1 is placed on the lower electrode 3 disposed inward the sole reflection mirror 13. Alternatively, the reflection mirrors 13, upper electrode 2, and lower electrode 3 may be made large in size, and the plural samples to be heated 1 may be disposed on the lower electrode 3. Thus, the number of samples to be heated capable of being treated at a time may be increased. In this case, a high-frequency power suitable for the size of the upper electrode 2 and lower electrode 3 (nearly proportional to the area of the upper electrode 2 and lower electrode 3) has to be fed.
Likewise, in relation to the first embodiment, a description has been made of such a construction that a pair of the reflection mirrors 13 and a pair of the upper electrode 2 and lower electrode 3 (including the sample to be heated 1) are disposed in the container 9. Needless to say, a large container may be used, and plural pairs of the reflection mirrors 13, and plural pairs of the upper electrode 2 and lower electrode 3 may be disposed. Thus, needless to say, the number of samples to be heated capable of being treated at a time may be increased.
In the first embodiment, a member on which gold is plated or vapor-deposited is adopted as the surfaces of the reflection mirrors 13. Needless to say, even when aluminum, an aluminum alloy, silver, a silver alloy, or a stainless steel is adopted as the material of the mirror surfaces, the same advantages can be exerted. In addition, although the reflection mirrors 13 are formed with paraboloids of revolution, even when planar reflection mirrors are disposed on the perimeters of the upper electrode 2 and lower electrode 3, the same advantages are exerted.
As mentioned above, according to the present embodiment, owing to inclusion of a temperature measurement instrument that measures the temperature of a sample to be heated (lower electrode) which is heated with plasma generated through glow discharge formed in a pair of parallel plate electrodes, and a control unit that controls the output of a high-frequency power supply using the temperature measured by the temperature measurement instrument,
a heat treatment apparatus that can exhibit a low heat capacity and perform uniform heating can be provided. In addition, when reflection mirrors that minimize a radiation loss are further included, even when SiC is annealed at high temperature, there is provided the heat treatment apparatus that can exhibit a low heat capacity and perform uniform heating.
A second embodiment will be described in conjunction with
Even the present embodiment provides the same advantages as the first embodiment does. Further, when the second gas introduction unit 22 is included, both improvement of heating efficiency and stabilization of plasma production can be accomplished.
A third embodiment will be described in conjunction with
The advantages of the present invention described in relation to the first, second and third embodiments will be summarized below. According to the present technology, heating of a gas due to glow discharge formed at atmospheric pressure in the narrow gap is used as a heat source to heat the sample to be heated 1. Based on the principles, four advantages unavailable in related arts and described below are provided.
A first advantage lies in heating efficiency. Since the gas in the gap between the upper electrode and lower electrode as well as the upper electrode and lower electrode (sample stand) should merely be heated, the heat capacity can be drastically lowered. In addition, the upper electrode 2 and lower electrode 3 including the sample to be heated 1 are covered by the reflection mirrors formed with paraboloids of revolution. Therefore, since the sample to be heated 1 can be heated in a system in which a heating loss caused by radiation is very small, high energy efficiency can be realized and high-temperature heating can be achieved.
A second advantage lies in heating responsiveness and uniformity. Owing to the aforesaid construction, the heat capacity of a heating unit is so small that a rapid temperature rise and a rapid temperature drop can be achieved. Since heating of a gas due to glow discharge is used as a heat source, heating can be achieved uniformly on a planar basis owing to a spread of the glow discharge. The temperature uniformity is so high that a variance in device characteristics on the surface of the sample to be heated 1, which derives from heat treatment, can be suppressed. At the same time, a damage caused by a thermal stress deriving from a temperature difference on the surface of the sample to be headed 1 occurring when a rapid temperature rise is attained can be suppressed.
A third advantage lies in minimization of the number of parts wasted during heating treatment. In the present technology, since a gas that comes into contact with the sample to be heated 1 is directly heated, a region in which the temperature rises is limited to a member disposed very close to the sample to be heated 1, and the temperature in the region is equal to or lower than the temperature of the sample to be heated 1. Therefore, the service life of the member is long, and a region in which a part has to be replaced with a new one because of deterioration is limited.
A fourth advantage lies in suppression of surface roughness of the sample to be heated 1. According to the present technology, since the temperature rise time and temperature drop time can be shortened according to the foregoing advantages, even if the sample surface is bared, the time it takes to expose the sample to be heated 1 to a high-temperature environment is shortened to be a minimal necessary time. Accordingly, the surface roughness can be suppressed. In addition, according to the present technology, the sample to be heated is exposed to plasma due to atmospheric-pressure glow discharge and is thus heated. In the stage of heating, plasma produced from a rare gas is employed. A reactive gas is added to the rare gas in the course of a temperature rise or drop, whereby formation of a protective film and removal thereof can be consistently performed during heating. Therefore, the steps of forming and removing the protective film which are performed in an apparatus other than the heat treatment apparatus become unnecessary. This leads to a reduction in a cost of fabrication.
In the first to third embodiments, the reflection mirrors 13 are used to improve the efficiency in heating the upper electrode 2, lower electrode 3, and sample to be heated 1. For example, when treatment is performed at relatively low temperature of, for example, 1200° C. or less, the reflection mirrors 13 are not always necessary. The reflection mirrors are intended to minimize a heat loss caused by radiant emission. At 1200° C. or less at which a radiation loss is not very large, a structure devoid of the reflection mirrors 13 can fulfill the required role. In this case, the basic construction includes the upper electrode 2 and lower electrode 3 which include the sample to be heated 1, the high-frequency power supply 6 that feeds a high-frequency power to the electrodes, an instrument that monitors the temperature of any of the sample to be heated 1 and the upper and lower electrodes (radiation thermometer 17), a unit that controls the power of the high-frequency power supply 6 by referencing the monitored value of the temperature, and a mechanism that controls a region to be discharged in an atmosphere of a rare gas whose pressure ranges from 0.1 atm. to 10 atm. or a gas to be added to the rare gas in order to form a protective film or remove the protective film.
As mentioned above, even the present embodiment can provide the same advantages as the first embodiment can. When the up-and-down driving mechanism that moves the reflection mirrors up and down is further included, a temperature rise/drop speed can be raised.
The present invention has been described so far. The major modes of the present invention will be listed below.
(1) A heat treatment apparatus including:
Herein, the control unit references the temperature measured by the temperature measurement instrument, and controls the output of the high-frequency power supply so as to control the heat-treatment temperature for the sample to be heated.
(2) A heat treatment apparatus including:
Herein, the control unit references the temperature measured by the temperature measurement instrument, and controls the output of the high-frequency power supply so as to control the heat-treatment temperature for the sample to be heated.
(3) In the heat treatment apparatus as set forth in paragraph (2), the gas introduction unit includes a first gas introduction unit and a second gas introduction unit. The first gas introduction unit has a gas introduction port thereof located outside a gap created in the pair of parallel plate electrodes, while the second gas introduction unit has a gas introduction port thereof located within the gap in the pair of parallel plate electrodes. The first and second gas introduction units introduce a gas independently of each other.
(4) In the heat treatment apparatus as set forth in paragraph (2), as the pair of parallel plate electrodes, plural pairs of electrodes are included.
(5) In the heat treatment apparatus as set forth in paragraph (2), the control unit controls the gas introduction unit so that before heat treatment is performed on the sample to be heated or while the temperature is rising, a carbon-containing molecular gas can be added to plasma stemming from discharge in order to form a protective film, which is a carbon-series coating, on the surface of the sample to be heated.
(6) In the heat treatment apparatus as set forth in paragraph (5), after heat treatment is performed, the control unit extends control so that oxygen can be added to the plasma, which stems from discharge, in order to remove the protective film.
(7) A heat treatment apparatus including:
Herein, the control unit controls the gas introduction unit so that a protective film can be formed on the surface of the sample to be heated, controls the output of the high-frequency power supply so that the sample to be heated can be heated with the surface thereof coated with the protective film, and controls the gas introduction unit so that the protective film can be removed.
(12) In the heat treatment apparatus as set forth in paragraph (2), the reflection members are disposed above and below the pair of parallel plate electrodes, and the heat treatment apparatus further includes a driving mechanism that drives the reflection mirrors in up-and-down directions.
(13) The heat treatment apparatus as set forth in paragraph (7) further includes a driving mechanism that drives the upper and lower reflection mirrors in up-and-down directions.
Number | Date | Country | Kind |
---|---|---|---|
2010-200845 | Sep 2010 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
2485140 | Cordero | Oct 1949 | A |
2519616 | Watkins | Aug 1950 | A |
2920234 | Luce | Jan 1960 | A |
3109118 | Spacil et al. | Oct 1963 | A |
3405052 | Schirmer | Oct 1968 | A |
3494852 | Doctoroff | Feb 1970 | A |
3705975 | Wolf et al. | Dec 1972 | A |
4267211 | Yajima et al. | May 1981 | A |
4292276 | Enomoto et al. | Sep 1981 | A |
4341947 | Komura et al. | Jul 1982 | A |
4390504 | Enomoto et al. | Jun 1983 | A |
4410792 | Komura et al. | Oct 1983 | A |
4521286 | Horwitz | Jun 1985 | A |
4535225 | Wolf et al. | Aug 1985 | A |
4609428 | Fujimura | Sep 1986 | A |
4654106 | Davis et al. | Mar 1987 | A |
4657617 | Johnson et al. | Apr 1987 | A |
4657618 | Spencer et al. | Apr 1987 | A |
4657620 | Davis et al. | Apr 1987 | A |
4657621 | Johnson et al. | Apr 1987 | A |
4659413 | Davis et al. | Apr 1987 | A |
4661196 | Hockersmith et al. | Apr 1987 | A |
4695700 | Provence et al. | Sep 1987 | A |
4832777 | Davis et al. | May 1989 | A |
4849014 | Mizutani et al. | Jul 1989 | A |
4891087 | Davis et al. | Jan 1990 | A |
4910436 | Collins et al. | Mar 1990 | A |
5133986 | Blum et al. | Jul 1992 | A |
5242561 | Sato | Sep 1993 | A |
5380409 | Munir et al. | Jan 1995 | A |
5444207 | Sekine et al. | Aug 1995 | A |
5464667 | Kohler et al. | Nov 1995 | A |
5556501 | Collins et al. | Sep 1996 | A |
5561829 | Sawtell et al. | Oct 1996 | A |
5641975 | Agarwal et al. | Jun 1997 | A |
5660744 | Sekine et al. | Aug 1997 | A |
5685949 | Yashima | Nov 1997 | A |
5688331 | Aruga et al. | Nov 1997 | A |
5689215 | Richardson et al. | Nov 1997 | A |
5695597 | Fujiwara | Dec 1997 | A |
5770324 | Holmes et al. | Jun 1998 | A |
5877515 | Ajit | Mar 1999 | A |
5888414 | Collins et al. | Mar 1999 | A |
5889252 | Williams et al. | Mar 1999 | A |
5893643 | Kumar et al. | Apr 1999 | A |
5942454 | Nakayama et al. | Aug 1999 | A |
5970907 | Takai et al. | Oct 1999 | A |
6068784 | Collins et al. | May 2000 | A |
6095084 | Shamouilian et al. | Aug 2000 | A |
6110813 | Ota et al. | Aug 2000 | A |
6112697 | Sharan et al. | Sep 2000 | A |
6145469 | Teranishi et al. | Nov 2000 | A |
6207922 | Dumitriu et al. | Mar 2001 | B1 |
6245190 | Masuda et al. | Jun 2001 | B1 |
6274889 | Ota et al. | Aug 2001 | B1 |
6280496 | Kawai et al. | Aug 2001 | B1 |
6369361 | Saito et al. | Apr 2002 | B2 |
6403475 | Tanabe et al. | Jun 2002 | B1 |
6437290 | Shao et al. | Aug 2002 | B1 |
6448536 | Li et al. | Sep 2002 | B2 |
6461581 | Eguchi et al. | Oct 2002 | B1 |
6507641 | Kondo et al. | Jan 2003 | B1 |
6545420 | Collins et al. | Apr 2003 | B1 |
6558507 | Teranishi et al. | May 2003 | B1 |
6690764 | Kondo | Feb 2004 | B2 |
6705914 | Tsutatani et al. | Mar 2004 | B2 |
6734461 | Shiomi et al. | May 2004 | B1 |
6755932 | Masuda et al. | Jun 2004 | B2 |
6852952 | Kihara et al. | Feb 2005 | B1 |
6900596 | Yang et al. | May 2005 | B2 |
6923885 | Masuda et al. | Aug 2005 | B2 |
6936865 | Tonooka | Aug 2005 | B2 |
6972109 | Spowart et al. | Dec 2005 | B1 |
7022175 | Marten | Apr 2006 | B2 |
7107929 | Horsky et al. | Sep 2006 | B2 |
7141757 | Hoffman et al. | Nov 2006 | B2 |
7169254 | Masuda et al. | Jan 2007 | B2 |
7185602 | Horsky et al. | Mar 2007 | B2 |
7280184 | Hasegawa et al. | Oct 2007 | B2 |
7297892 | Kelley et al. | Nov 2007 | B2 |
7323255 | Tanaka et al. | Jan 2008 | B2 |
7360366 | Namba | Apr 2008 | B2 |
7364692 | Spowart et al. | Apr 2008 | B1 |
7372582 | Negishi et al. | May 2008 | B2 |
7373899 | Sumiya et al. | May 2008 | B2 |
7442651 | Mori et al. | Oct 2008 | B2 |
7513215 | Vijayen et al. | Apr 2009 | B2 |
7553373 | Otsuki et al. | Jun 2009 | B2 |
7589004 | Usov et al. | Sep 2009 | B2 |
7641736 | Hirooka | Jan 2010 | B2 |
7649186 | Kabuki et al. | Jan 2010 | B2 |
7686917 | Masuda et al. | Mar 2010 | B2 |
7696598 | Francis et al. | Apr 2010 | B2 |
7712434 | Dhindsa et al. | May 2010 | B2 |
7750351 | Sazawa et al. | Jul 2010 | B2 |
7768017 | Nakayama et al. | Aug 2010 | B2 |
7781312 | Matocha et al. | Aug 2010 | B2 |
7816619 | Jaksic | Oct 2010 | B2 |
7846491 | Masuda | Dec 2010 | B2 |
7888256 | Abagnale et al. | Feb 2011 | B2 |
7939778 | Larson et al. | May 2011 | B2 |
8012306 | Dhindsa | Sep 2011 | B2 |
8083888 | Usui et al. | Dec 2011 | B2 |
8186300 | Ichino et al. | May 2012 | B2 |
20010010307 | Saito et al. | Aug 2001 | A1 |
20010015175 | Masuda et al. | Aug 2001 | A1 |
20020001363 | Kondo | Jan 2002 | A1 |
20020040982 | Uemura | Apr 2002 | A1 |
20030013280 | Yamanaka | Jan 2003 | A1 |
20030045098 | Verhaverbeke et al. | Mar 2003 | A1 |
20030072080 | Ariyoshi et al. | Apr 2003 | A1 |
20030137251 | Mitrovic et al. | Jul 2003 | A1 |
20030213889 | Miura | Nov 2003 | A1 |
20040118348 | Mills | Jun 2004 | A1 |
20040118517 | Masuda et al. | Jun 2004 | A1 |
20040118518 | Masuda et al. | Jun 2004 | A1 |
20040159287 | Hoffman et al. | Aug 2004 | A1 |
20040177925 | Masuda et al. | Sep 2004 | A1 |
20040188019 | Lopes Cardozo et al. | Sep 2004 | A1 |
20050051096 | Horsky et al. | Mar 2005 | A1 |
20050110972 | Tsuji et al. | May 2005 | A1 |
20050162762 | Novak | Jul 2005 | A1 |
20050259716 | Ito et al. | Nov 2005 | A1 |
20050264218 | Dhindsa et al. | Dec 2005 | A1 |
20060141795 | Negishi et al. | Jun 2006 | A1 |
20060169410 | Maeda et al. | Aug 2006 | A1 |
20060193065 | Novak | Aug 2006 | A1 |
20060236932 | Yokogawa et al. | Oct 2006 | A1 |
20060254717 | Kobayashi et al. | Nov 2006 | A1 |
20060288938 | Veerasamy et al. | Dec 2006 | A1 |
20070023398 | Kobayashi et al. | Feb 2007 | A1 |
20070075051 | Morrisroe | Apr 2007 | A1 |
20070107841 | Horsky et al. | May 2007 | A1 |
20070131354 | Yokogawa et al. | Jun 2007 | A1 |
20070169888 | Lai | Jul 2007 | A1 |
20070181254 | Iida et al. | Aug 2007 | A1 |
20070235135 | Nishio et al. | Oct 2007 | A1 |
20080011422 | Masuda et al. | Jan 2008 | A1 |
20080017318 | Kobayashi et al. | Jan 2008 | A1 |
20080029682 | Binnard | Feb 2008 | A1 |
20080105069 | Binnard et al. | May 2008 | A1 |
20080121824 | Kabuki et al. | May 2008 | A1 |
20080145987 | Shima | Jun 2008 | A1 |
20080202422 | Choi et al. | Aug 2008 | A1 |
20080223522 | Kobayashi et al. | Sep 2008 | A1 |
20080226838 | Nishimura et al. | Sep 2008 | A1 |
20080236748 | Kobayashi et al. | Oct 2008 | A1 |
20080310042 | Suzuki et al. | Dec 2008 | A1 |
20090134405 | Ota et al. | May 2009 | A1 |
20090149028 | Marakhtanov et al. | Jun 2009 | A1 |
20090159211 | Usui et al. | Jun 2009 | A1 |
20090229855 | Fredenberg et al. | Sep 2009 | A1 |
20090229856 | Fredenberg et al. | Sep 2009 | A1 |
20090229857 | Fredenberg et al. | Sep 2009 | A1 |
20090301655 | Yokogawa et al. | Dec 2009 | A1 |
20090321391 | Ichino et al. | Dec 2009 | A1 |
20100163184 | Ichino et al. | Jul 2010 | A1 |
20100203659 | Akaike et al. | Aug 2010 | A1 |
20100319854 | Yokogawa et al. | Dec 2010 | A1 |
20100326957 | Maeda et al. | Dec 2010 | A1 |
20110253672 | Kamibayashi et al. | Oct 2011 | A1 |
20110284506 | Yokogawa et al. | Nov 2011 | A1 |
20120285935 | Miyake et al. | Nov 2012 | A1 |
20130199728 | Kobayashi et al. | Aug 2013 | A1 |
Number | Date | Country |
---|---|---|
61-128519 | Jun 1986 | JP |
62-221116 | Sep 1987 | JP |
9-17740 | Jan 1997 | JP |
2003-307458 | Oct 2003 | JP |
2004-6885 | Jan 2004 | JP |
2005-79533 | Mar 2005 | JP |
2009-32774 | Feb 2009 | JP |
2010-34481 | Feb 2010 | JP |
Entry |
---|
Office Action issued in Japanese Patent Application No. 2010-200845 on May 27, 2014. |
Number | Date | Country | |
---|---|---|---|
20120055915 A1 | Mar 2012 | US |