Heated floor panels

Information

  • Patent Grant
  • 10920994
  • Patent Number
    10,920,994
  • Date Filed
    Tuesday, July 3, 2018
    6 years ago
  • Date Issued
    Tuesday, February 16, 2021
    3 years ago
Abstract
A heater panel includes a core and a heater/dielectric layer including a positive thermal coefficient (PTC) heater layer between a pair of dielectric layers. A structural facing is included, wherein the heater/dielectric layer is bonded directly between the core and the structural facing. A second structural facing can be bonded to the core opposite the heater/dielectric layer. An impact layer can be bonded to the structural facing, e.g., the first structural facing described above, opposite the heater/dielectric layer.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention

The present disclosure relates to heated panels, and more particularly to heated floor panels such in aircraft.


2. Description of Related Art

Positive thermal coefficient (PTC) materials increase in electrical resistance as their temperature rises. PTC materials are useful in heating panels such as used in heating air craft floors, due to their intrinsic limits on temperature. Carbon-based PTC heaters for aircraft floor panels are traditionally fabricated by screen printing a PTC-based ink in a desired heating element pattern as a layer in a series of layers making up the panel. Screen printing requires preparation of the screen, and an excess amount of ink is required for the screen printing process, i.e. more ink must go into the process than actually ends up in the floor panel. The balance of the ink used in the process must be disposed of.


Aircraft floor panels are subject to a wide variety of impacts from dropped objects both sharp and blunt in nature. A floor panel must also be resistant to knife cuts as part of installation and maintenance of the floor panel. A floor panel's ability to withstand both impact and knife cuts is important for promoting a robust floor panel. Traditional surface layer materials used in composite panels are usually unable to withstand repeated or high load impacts as well as knife cuts.


The conventional techniques have been considered satisfactory for their intended purpose. However, there is an ever present need for improved heated panels and process for making the same. This disclosure provides a solution for this need.


SUMMARY OF THE INVENTION

A heater panel includes a core and a heater/dielectric layer including a positive thermal coefficient (PTC) heater layer between a pair of dielectric layers. A structural facing is included, wherein the heater/dielectric layer is bonded directly between the core and the structural facing.


The core can include at least one of a honeycomb structure and/or a foam material. The structural facing can be a first structural facing, and a second structural facing can be bonded to the core opposite the heater/dielectric layer. The first structural facing and the second structural facing can each include carbon fiber impregnated with a resin, wherein the resin includes at least one of a thermoplastic material and/or a thermoset material.


An impact layer can be bonded to the structural facing, e.g., the first structural facing described above, opposite the heater/dielectric layer. The impact layer can include at least one of a monolithic metal, a monolithic polymer, a resin-impregnated metal, and/or a resin-impregnated polymer fabric. The heater/dielectric layer can be bonded directly to the core without any intervening layers aside from an adhesive or bonding agent, and the heater/dielectric layer can be bonded directly to the structural facing without any intervening layers aside from an adhesive or bonding agent


A method of making a heater panel includes bonding a heater/dielectric layer that includes a PTC heater layer to directly to a core. The method includes bonding a structural facing directly to the heater/dielectric layer opposite the core so the heater/dielectric layer is bonded directly between the core and the structural facing.


The structural facing can be a first structural facing, and the method can include bonding a second structural facing to the core opposite the heater/dielectric layer. The method can include bonding an impact layer to the structural facing opposite the heater/dielectric layer.


These and other features of the systems and methods of the subject disclosure will become more readily apparent to those skilled in the art from the following detailed description of the preferred embodiments taken in conjunction with the drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

So that those skilled in the art to which the subject disclosure appertains will readily understand how to make and use the devices and methods of the subject disclosure without undue experimentation, preferred embodiments thereof will be described in detail herein below with reference to certain figures, wherein:



FIG. 1 is a schematic cross-sectional view of an exemplary embodiment of a heater panel constructed in accordance with the present disclosure, showing the heater/dielectric layer between the core and the first structural facing;



FIG. 2 is a schematic cross-sectional view of the heater/dielectric layer of FIG. 1, showing the dielectric layers; and



FIG. 3 is a schematic planar view of a portion of the heater panel of FIG. 1, showing the heater element pattern of the heater/dielectric layer.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Reference will now be made to the drawings wherein like reference numerals identify similar structural features or aspects of the subject disclosure. For purposes of explanation and illustration, and not limitation, a partial view of an exemplary embodiment of a heater panel in accordance with the disclosure is shown in FIG. 1 and is designated generally by reference character 100. Other embodiments of heater panels in accordance with the disclosure, or aspects thereof, are provided in FIGS. 2-3, as will be described. The systems and methods described herein can be used to provide heater panels, e.g., for aircraft floors and other surfaces including contoured surfaces.


The heater panel 100 includes a core 102 and a heater/dielectric layer 104. The core 102 includes at least one of a honeycomb structure and/or a foam material. As shown in FIG. 2, the heater/dielectric layer 104 is an assembly that includes a positive thermal coefficient (PTC) heater layer 106 between a pair of dielectric layers 108. FIG. 3 shows an exemplary heating element pattern for the PTC heater layer 106, which has multiple redundant electrical pathways for current to flow from one bus bar 116 to the other bus bar 118.


Referring again to FIG. 1, a first structural facing 110 is included, wherein the heater/dielectric layer 104 is bonded directly between the core 102 and the first structural facing 110, e.g., with no intervening layers aside from an adhesive or bonding agent. A second structural facing 112 is bonded to the core 102 opposite the heater/dielectric layer 104. The first structural facing 110 and the second structural facing 112 each include carbon fiber impregnated with a resin, wherein the resin includes at least one of a thermoplastic material (such as PEEK, PC, PPS, and PEI) and/or a thermoset material (such as epoxy, phenolic, bis-maleimide resins (BMI), and benzoxazine).


An impact layer 114 is bonded to the first structural facing 110 opposite the heater/dielectric layer 104. The impact layer 114 includes at least one of a monolithic metal such as aluminum or titanium, a monolithic polymer, a resin-impregnated metal, and/or a resin-impregnated polymer fabric. Suitable monolithic polymer materials include thermoplastics such as polyetheretherketone, polyaryletherketones, polycarbonate, polyphenylene sulfide, polyetherimide, polyimide, polymethylmethacrylate (acrylic), polyvinylchloride, polyurethane, polyamideimide and thermoset materials such as epoxy, phenolic, BMI, benzoxazine, and polyurethane. The foregoing polymers can be mixed, and can have reinforcement such as aramids (such as Kevlar fibers and Nomex fibers available from DuPont of Wilmington, Del.), fiberglass, basalt, carbon fiber, carbon nanotube, nano steel, steel wire, and titanium wire. Any of the foregoing polymers can be impregnated into the reinforcements assuming temperature compatibility.


A method of making a heater panel, e.g., heater panel 100, includes bonding a heater/dielectric layer, e.g., heater/dielectric layer 104, that includes a PTC heater layer, e.g., PTC heater layer 106, to directly to a core, e.g., core 102. The method includes bonding a structural facing, e.g., structural facing 110, directly to the heater/dielectric layer opposite the core so the heater/dielectric layer is bonded directly between the core and the structural facing.


The method includes bonding a second structural facing, e.g., second structural facing 112, to the core opposite the heater/dielectric layer. The method includes bonding an impact layer, e.g., impact layer 114, to the first structural facing opposite the heater/dielectric layer.


As shown in FIG. 2, with the heater element pattern, there are places in the heater/dielectric layer 104 where the dielectric layers 108 directly contact one another, and other places where the actual heater element of the PTC heater layer 106 is sandwiched between the dielectric layers 108. Those skilled in the art will readily appreciate that heater element pattern shown in FIG. 3 is exemplary only, and that any other suitable pattern can be used without departing from the scope of this disclosure. Other layers such as the impact layer 114 and the second structural facing 112 can be bonded to the respective surfaces of the heater panel 100 as required using film adhesives or the like.


The methods and systems of the present disclosure, as described above and shown in the drawings, provide for heater with superior properties relative to traditional heater panels including lighter weight, longer life, improved thermal efficiency, and improved robustness. While the apparatus and methods of the subject disclosure have been shown and described with reference to preferred embodiments, those skilled in the art will readily appreciate that changes and/or modifications may be made thereto without departing from the scope of the subject disclosure.

Claims
  • 1. A heater panel comprising: a core;a heater/dielectric layer including a positive thermal coefficient (PTC) heater layer between a pair of dielectric layers; anda structural facing, wherein the heater/dielectric layer is bonded directly between the core and the structural facing, wherein the heater/dielectric layer is bonded directly to the core without any intervening layers aside from an adhesive or bonding agent, and wherein the heater/dielectric layer is bonded directly to the structural facing without any intervening layers aside from an adhesive or bonding agent.
  • 2. The heater panel as recited in claim 1, wherein the core includes at least one of a honeycomb structure and/or a foam material.
  • 3. The heater panel as recited in claim 1, wherein the structural facing is a first structural facing, and further comprising a second structural facing bonded to the core opposite the heater/dielectric layer.
  • 4. The heater panel as recited in claim 3, wherein the first structural facing and the second structural facing each include carbon fiber impregnated with a resin, wherein the resin includes at least one of a thermoplastic material and/or a thermoset material.
  • 5. The heater panel as recited in claim 1, further comprising an impact layer bonded to the structural facing opposite the heater/dielectric layer.
  • 6. The heater panel as recited in claim 5, wherein the impact layer includes at least one of a monolithic metal, a monolithic polymer, a resin-impregnated metal, and/or a resin-impregnated polymer fabric.
  • 7. The heater panel as recited in claim 1, wherein the structural facing is a first structural facing and further comprising: a second structural facing bonded to the core opposite the heater/dielectric layer; andan impact layer bonded to the first structural facing opposite the heater/dielectric layer.
  • 8. A method of making a heater panel comprising: bonding a heater/dielectric layer that includes a PTC heater layer 4e-directly to a core;bonding a structural facing directly to the heater/dielectric layer opposite the core so the heater/dielectric layer is bonded directly between the core and the structural facing, wherein bonding the heater/dielectric layer directly to the core includes bonding directly without any intervening layers aside from an adhesive or bonding agent, and wherein bonding the structural facing directly to the heater/dielectric layer directly includes bonding without any intervening layers aside from an adhesive or bonding agent.
  • 9. The method as recited in claim 8, wherein the core includes at least one of a honeycomb structure and/or a foam material.
  • 10. The method as recited in claim 8, wherein the structural facing is a first structural facing, and further comprising bonding a second structural facing to the core opposite the heater/dielectric layer.
  • 11. The method as recited in claim 10, wherein the first structural facing and the second structural facing each include carbon fiber impregnated with a resin, wherein the resin includes at least one of a thermoplastic material and/or a thermoset material.
  • 12. The method as recited in claim 8, further comprising bonding an impact layer to the structural facing opposite the heater/dielectric layer.
  • 13. The method as recited in claim 12, wherein the impact layer includes at least one of a monolithic metal, a monolithic polymer, a resin-impregnated metal, and/or a resin-impregnated polymer fabric.
US Referenced Citations (49)
Number Name Date Kind
545174 Roadhouse Aug 1895 A
554773 Cook Feb 1896 A
580679 Davenport Apr 1897 A
6429157 Kishi et al. Aug 2002 B1
6519835 Von Arx et al. Feb 2003 B1
6611659 Meisiek Aug 2003 B2
6825137 Fu et al. Nov 2004 B2
6834159 Schramm Dec 2004 B1
7087296 Porter Aug 2006 B2
7247822 Johnston Jul 2007 B2
7800028 Wang Sep 2010 B2
8158245 Pratte et al. Apr 2012 B2
8286919 Gerken et al. Oct 2012 B2
8523113 Atkinson Sep 2013 B2
8752279 Brittingham et al. Jun 2014 B2
8772676 Augustine et al. Jul 2014 B2
9161393 Kaiserman et al. Oct 2015 B2
9427940 Bremmer et al. Aug 2016 B2
9493894 Butler et al. Nov 2016 B2
9550330 Pratte et al. Jan 2017 B2
9593917 Pilpel Mar 2017 B2
9630701 Hu Apr 2017 B2
9736888 Duce et al. Aug 2017 B2
9782944 Martin et al. Oct 2017 B2
9855721 Drexler et al. Jan 2018 B2
9914522 Nehring Mar 2018 B2
9939087 Kolarski et al. Apr 2018 B2
20060138279 Pisarski Jun 2006 A1
20080210820 Boeing Sep 2008 A1
20090011210 Gao et al. Jan 2009 A1
20090236327 Everly et al. Sep 2009 A1
20090266810 Chivers Oct 2009 A1
20120234819 Berger Sep 2012 A1
20140044914 Kurtz et al. Feb 2014 A1
20140071216 Hu et al. Mar 2014 A1
20160007474 Dardona et al. Jan 2016 A1
20160121993 Nehring May 2016 A1
20160297509 Estadieu et al. Oct 2016 A1
20160340020 Owens et al. Nov 2016 A1
20160361889 Bartolome Dec 2016 A1
20170050395 Vos et al. Feb 2017 A1
20170158898 Xiao et al. Jun 2017 A1
20170238369 Owens et al. Aug 2017 A1
20170254065 Hegenbart et al. Sep 2017 A1
20180050523 Pilpel et al. Feb 2018 A1
20180057748 Hochstetter et al. Mar 2018 A1
20180124874 Dardona et al. May 2018 A1
20180127081 Zquez et al. May 2018 A1
20180176989 Hu et al. Jun 2018 A1
Foreign Referenced Citations (9)
Number Date Country
1638371 Mar 2006 EP
2113456 Nov 2009 EP
3015360 May 2016 EP
3095690 Nov 2016 EP
3339013 Jun 2018 EP
1444718 Aug 1976 GB
H0732518 Feb 1995 JP
4862913 Jan 2012 JP
2012087294 Jun 2012 WO
Non-Patent Literature Citations (5)
Entry
Extended European Search Report dated Oct. 31, 2019, issued during the prosecution of corresponding European Patent Application No. EP 19183864.8.
Extended European Search Report issued during the prosecution of European Patent Application No. 19183891.1 dated Nov. 4, 2019. (7 pages).
Extended European Search Report issued during the prosecution of European Patent Application No. 19184091.7 dated Nov. 28, 2019. (6 pages).
Extended European Search Report issued during the prosecution of European Patent Application No. 19182513.2 dated Nov. 28, 2019. (6 pages).
Extended European Search Report for EP Application No. 19183876.2, dated Oct. 25, 2019, pp. 5.
Related Publications (1)
Number Date Country
20200011542 A1 Jan 2020 US