Referring to
To turn the supply of power delivered from the docking station 12 to the bottle 14 on or off, a power switch 18 is provided. Additionally, the docking station includes a pair of indicator lights 20, 22 that are designed to indicate whether the docking station is currently delivering power that is consumed by the bottle 14 to heat a portion of the product or whether the docking station 12 is in a standby mode where no power is being delivered from the docking station 12. There may be other indicator lights as well (e.g. to indicate when the product is sufficiently heated).
For example, one indicator light 20 may be a green light that when lit indicates to its user that the docking station is not currently delivering power, such as might occur when a desired quantity of the product has reached a desired temperature or when the bottle 14 has been removed from the docking station. In this same regard, the other indicator light 22 may be a red light that when lit indicates to the user that the docking station 12 is currently delivering power to the bottle 14 to heat a portion of the products.
While the heating system will be described below in the context of electricity from the docking station preferably powering a resistance heater in a device linked to the bottle, the docking station could instead alternatively provide a magnetic field that induces a magnetic heating system located on a device linked to the bottle. Alternatively, energy could be supplied in other forms which ultimately leads to heating at the bottle. Hence, by describing the docking station as activating the heater, we are referring to supplying electrical power, or alternatively supplying other sources of energy causing the heater to heat.
It is contemplated that the product stored in the bottle 14 may take any of a variety of forms, provided that it be of a type suitable to be heated (e.g. ranging from a few degrees to as much as 30 or more Centigrade degrees of heating). Where the product is to be delivered to a hand or directly to other human skin the heating will be correspondingly limited to avoid discomfort. Particularly preferred products for use with the present invention are liquids or gels used for various skin care purposes such as shaving, moisturizing, cleaning, or massaging. However, the device could alternatively deliver a heated hard surface cleaner or other heated formulation (e.g. therapeutics, food items such as syrup, melted cheese or hot fudge, etc.).
In accordance with one preferred embodiment, the device can be configured to dispense a skin care lotion of the type commonly dispensed from heated dispensers. Alternatively, the devices of the present invention can dispense a shaving cream or lotion, or other product, of the type suitable to be dispensed from a heated dispenser. For example, a skin care lotion could have 80 to 90 percent water, 2 to 10 percent petrolatum, and heat activated proteins in the range of 1 to 10 percent.
Referring next to
The docking station 12 includes a portal 30 through which the outlet port 28 of the dispensing bottle 14 extends to provide a user with access to the outlet port 28 through which a product disposed within the dispensing bottle 14 is ejected when the dispensing bottle is engaged with the docking station. In this regard, the outlet port 28 forms a spigot from which the product is delivered as the bottom (now appearing as the top) of the bottle structure is pressed down on.
This arrangement of the dispensing bottle 14 within the docking station 12 is referred to as being “inverted” because the first end 26 of the bottle 14 from which the product stored therein is dispensed through outlet port 28 and is positioned downward from a second end 32 of the bottle 14 that forms a substantially flat surface upon which dispensing bottles of this sort are traditionally rested for storage and the like.
The dispensing bottle 14 includes a housing 34 that extends from a first end 36 proximate to which is formed the outlet port 28 to second end 38 that forms the second end 32 of the dispensing bottle 14. Arranged at the second end 38 of the housing 34 is a bottom cap 40. Arranged within the housing 34 is a piston 41 that, as is well known in the art, is designed to move from the second end 38 to the first end 36 as product is dispensed.
Coupled to the first end 36 of the housing 34 through a one way check valve 42 is a bellows 44. The bellows 44 forms a passage 46 extending from the one-way check valve 42 to a second one way check valve 48 arranged proximate to the first end 26 of the dispensing bottle 14. In this regard, the combination of the first check valve 42, the passage 46 formed in the bellows 44, and the second one way check valve 48 forms an evacuation passage extending from a hollow inner portion 50 of the housing 34 to a passage 52 leading to the outlet port 28.
Referring next to
To drive the product from the portion 50 formed at the interior of the housing 34, a pumping system 64 is formed in the adaptor head 54 of the dispensing bottle 14. The pumping system 64 generally includes the check valves 42, 48 and the bellows 44 that work in concert with the remaining element of the pumping system 64, the piston 41 of
Referring now more generally to
Since the first check valve 42 is designed to only allow the product to flow from the portion 50 formed by the housing 34 into the passage 46 formed by the bellows 44 (and not vice versa), the product is forced toward the second one-way check valve 48. The second one-way check valve 48 is designed to permit the product to flow into the passage 52, past the baffling 62, where it is heated, and then out through the outlet port 28. Accordingly, by pressing down upon the second end 38 of the housing 34 and/or the bottom cap 40, a portion of the product stored within the housing 34 can easily be ejected from the outlet port 28 while the dispensing bottle 14 is engaged with the docking station 12.
Following a contraction of the pumping system 64 to dispensing a portion of the product, the bellows 44 is biased so as to return to an expanded state, as shown in
When a portion of the product stored within the portion 50 formed by the housing 34 is drawn through the first check valve 42 to compensate for the pressure drop formed in the passage 46 through the bellows 44, a corresponding pressure drop is created in the portion 50. Responsive thereto, the piston 41 is drawn down toward the first check valve 42 and air is pulled through the bottom cap 40 via a hole 66 formed therein to fill the void caused by the movement of the piston 41.
While the above-described pumping system is designed to advantageously operate when the dispenser bottle 14 is inverted and arranged in the docking station 12, the pumping system also works if the bottle is removed from the docking station. Hence, it can be brought into a shower or the like while sufficient heat remains in the heating unit to permit continued dispensing of heated product for some time.
The dispensing bottle 14 also includes an anti-drool system that is configured to substantially reduce the amount of product that is permitted to leak from the outlet port 28 after the bellows 44 has reached the expanded position shown in
While a bellows type pumping arrangement has been shown thus far, it should be appreciated that the bellows feature could be removed from the
Alternatively the
Still another alternative would be to use a Graham-type bag in a bottle structure, e.g. where the bag is blow molded along with the walls of the bottle. One could then attach the upper portion of the bag to a more traditional type push down pump, and then connect near the pump a heater such as one depicted in the drawings herewith or in a structure like U.S. Pat. No. 6,454,127, the latter being incorporated by reference as if fully set forth herein.
When using a bag in a bottle type construction, venting may be achieved by placing a hole in the outer wall of the bottle that feeds air outside of the bag as the bag collapses. If desired, that hole could be controlled by a valve, such as the one in U.S. Pat. No. 5,699,921, where a duckbill vent valve extends through a wall of a container to equalize pressure as a bag collapses. Alternatively a variety of other types of vent valves could let air in through a side or bottom wall of the bottle as the bag collapses (e.g. umbrella valves).
One can alternatively use a down tube for a vent path as taught in U.S. Pat. No. 6,394,315, where passage through the vent tube can be controlled by a variety of flap, ball, or other types of one-way valves. See e.g.
A variety of collapsible bag bottles are sold in the market, albeit without the heater function. See for example those of Owens-Brockway in U.S. Pat. Nos. 6,083,450, 6,238,201 and 6,719,173, these patents being incorporated by reference as if fully set forth herein. Other manufacturers of collapsible bag bottles include Graham and MegaPlast.
Referring next to
The valve 68 will remain in this position until the pressure within the passage 52 drops sufficiently to allow the disk 70 to return to its convex shape, thus, closing the slits 72, 74. In this regard, once the pumping process discontinues and the pressure within the passage 52 drops, the valve 68 serves to restrict any additional product from entering the outlet port 28. Thus, additional product is precluded from becoming drool from the outlet port 28.
Referring now to
Referring now to
When the dispensing bottle 14 is arranged in the docking station 12, the contacts 84, 86 meet with the fingers to complete an electrical connection that allows for power to flow from the docking station 12 to the dispensing bottle 14. In turn, the power is provided to the heating element 56, for example, a resistive heating element, that is energized to produce heat. As previously stated, a baffling 62 forms a tortured path 88 through the passage 52 leading to the outlet port 28. Accordingly, as the product is moved toward the outlet port 28, it is exposed to the baffling 62 and heated.
To protect against overheating that could negatively impact the desirability of the product, the temperature sensor 58 is arranged along a central portion of the passage 52 leading to the outlet port 28. In this regard, the temperature sensor 58 provides an indication of the approximate temperature of the product prior to being forced from the outlet port 28 and consumed by a user. The heating element 56 is designed to receive this temperature feedback from the temperature sensor 58 to determine whether the product currently located in the passage 52 leading to the outlet port 28 has been sufficiently heated.
If the feedback from the temperature sensor 58 indicates that the product has reached a desired temperature, the heating element 56 turns off. Thereafter, should the temperature of the product drop below a predetermined threshold, such as when the dispensing bottle 14 is pumped and the heated product is replaced by a new quantity of product or when the product simply cools below the given threshold, the heating element 56 turns back on to deliver heat to the product through the baffling 62.
Other electrical controls may also be provided. For example, while we do not use a timer to shut off the device after a fixed period once activation has occurred, the control circuitry could instead be designed to automatically shut off after a certain amount of power is used, or after a specific number of temperature variation cycles, absent further initiation by the consumer, to avoid keeping the device on perpetually if the consumer forgets to turn it off.
Of course, the adapter may take other configurations. For example, in
Referring next to
Referring now to
In any case, the applicator 90 is configured to engage a valve 102 forming a passage from the dispensing bottle 14 through which to receive the product. Optionally the valve 102 could be removed. Once the product has passed through the valve 102 (or adjacent pathway if there is no valve 102), it enters the applicator 90. It is contemplated that the applicator 90, like the adaptor head 54 described above, may include a tortured path 104 formed by baffling 105 that is heated by a heating element 106 powered by way of a contact designed to engage a corresponding contact in a docking station. In a manner similar to that described above, when the heating element 106 is powered, the baffling 105 is heated. If desired, the mass of the walls of the path can be thickened to provide an even greater heat source, with a material such as textured aluminum providing the walls of the path.
However, according to this configuration, the heating element 106 is also configured to heat an applicator surface 110 of the applicator 90. Accordingly, this arrangement significantly improves over traditional heating systems that include applicators that typically fail to heat the actual applicator surface 110 and, as such, often defeat the purpose of heating the product because the user is subjected the discomfort of a cool applicator surface 110.
Another alternative is that the applicator feature could be integrally formed with the cap. This might render heat transfer even more efficient, albeit it might complicate modification of the applicator surface.
Ways to further enhance heat efficiency and retention include incorporating high heat conductive materials such as graphite or aluminum. Also, heat storage can be prolonged by incorporation phase change materials into the system.
Regardless of the nature of the adaptor it is desirable that the pathway through the adaptor for the product to be long enough for the product to heat up to a desired temperature before exiting. Further, especially prolonged pathways may permit the canister to be used remotely from the base for especially prolonged periods. Hence, particularly serpentine, tortuous, or spiral pathways may be desirable through the adaptor to optimize thermal storage.
Note that in replacement for a single serpentine pathway through the heater, a solid heater block can be used which has multiple through pathways aligned with the multiple apertures of the surface 110. This may have certain advantages in avoiding venting issues, depending on the nature of the product.
It is also contemplated that various other systems may be utilized to drive the product from the dispensing bottle 14. For example, referring to
When the bottle 200 is in the docking station 206 part of the flip cap 202 rests on a ledge 207 of the station. However, a spring 208 forces the cap 202 such that the cap's outlet 210 is closed off by part of the adaptor 212. When, as shown in
There can be a bead 225 on the flip cap 202 which can snap past a ridge 226 on the adaptor. This position can be reached via sufficient manual pressure so that the cap doesn't have to be held open through manual use. However, the docking station and adaptor are configured to prevent axial movement to that extent. Thus, the cap can be locked open during manual use in this form, but not while in the base.
A variety of additional changes can be made to these devices without departing from the spirit of the invention or the scope of the claims. For example, depression 29 (see
Moreover, where bellows are around the exterior of the bottle they may be formed far enough away from the bottle ends that the bottle can either be axially compressed or have its ends squeezed (e.g. near bottle numeral 14 in
Further, other features can be incorporated with this product such as a clock timer that starts the heating system automatically at a particular time (e.g. morning), or multiple receiving cavities so as to warm multiple products at the same time (e.g. cosmetic lotion and shaving lotion).
Thus, the claims, when presented, should not be construed as being limited to just the disclosed preferred embodiments.
The present invention provides devices for delivering heated products (such as personal care products or heated cleaners), and bottles useful therewith.
Priority is claimed based on U.S. provisional application 60/791,864 filed on Apr. 13, 2006.
Number | Date | Country | |
---|---|---|---|
60791864 | Apr 2006 | US |