The present invention relates to internal combustion engines; more particularly, to means for vaporizing liquid fuels; and most particularly, to an apparatus and method for effectively and evenly heating fuel within a fuel injector for consumption by the engine.
Fuel-injected internal combustion engines fueled by liquid fuels, such as gasoline, diesel, and by alcohols, in part or in whole, such as ethanol, methanol, and the like, are well known. Internal combustion engines typically produce power by controllably combusting a compressed fuel/air mixture in a combustion cylinder. For spark-ignited engines, both fuel and air first enter the cylinder where an ignition source, such as a spark plug, ignites the fuel/air charge, typically just before the piston in the cylinder reaches top-dead-center of its compression stroke. In a spark-ignited engine fueled by gasoline, ignition of the fuel/air charge readily occurs except at extremely low temperatures because of the relatively low flash point of gasoline. (The term “flash point” of a fuel is defined herein as the lowest temperature at which the fuel can form an ignitable mixture in air). However, in a spark-ignited engine fueled by alcohols such as ethanol, or mixtures of ethanol and gasoline having a much higher flash point, ignition of the fuel/air charge may not occur at all under cooler climate conditions. For example, ethanol has a flashpoint of about 12.8° C. Thus, starting a spark-ignited engine fueled by ethanol can be difficult or impossible under cold ambient temperature conditions experienced seasonally in many parts of the world. The problem is further exacerbated by the presence of water in such mixtures, as ethanol typically distills as a 95/5% ethanol/water azeotrope.
In many geographic areas, it is highly desirable to provide some means for enhancing the cold starting capabilities of such spark-ignited engines fueled by ethanol or other blends of alcohol. There are currently several approaches to aid cold starting of such engines in cold ambients. For example, some engines are equipped with an auxiliary gasoline injection system for injecting gasoline into the fuel/air charge in cold ambient conditions. The use of such auxiliary system adds cost to the vehicle and to the operation of the vehicle and may increase the maintenance required for the engine.
Another approach to aid starting of spark-ignited engines, in cold ambient conditions, fueled by ethanol or other blends of alcohol is to pre-heat the fuel before being ignited in the combustion chamber. One such method is to provide a heat source, such as a thick film heater element, on the outside surface of a fuel injector body proximate the injector tip to pre-heat the fuel. The key to implementing this method is having sufficient heater power and heater surface area to transfer heat to the fuel. When electric current is passed through the electrically resistive material, heat is exchanged from the injector body to the fuel within the injector.
The amount of heat exchanged to the fuel within the injector is directly dependent on the heated surface area contacted by the fuel. Accordingly, it is advantageous to maximize the surface area contacted by the fuel. However, if the surface area of the heater is increased by increasing its diameter, the outside surface of the injector body needs to be increased too, which leads to an increased overall mass of the body. Notwithstanding the weight and size penalty associated therewith, if the overall mass of the body is increased, then the initial time delay to heat the fuel will also increase because the mass of the body has to be heated before its surface will heat the fuel.
Also, since a larger diameter fuel injector body causes an increased internal fluid volume, and the fuel itself is a relatively poor heat conductor, the larger volume of fluid does not transfer the heat well from the fluid near the heater surface area to the rest of the fluid. Moreover, the hollow valve assembly of prior art injectors allows fuel to pass through it, preventing the fuel passing through the valve assembly from picking up heat from the walls of the heated injector body.
Further, in prior art injectors, the heater is typically applied to the outside surface of the injector body, which is typically made of stainless steel. The heater is further typically overmolded with a plastic material in order to offer environmental protection to the electrical circuit. Stainless steel is known to be a poor heat conductor and, even when using a relatively thin injector body, most of the energy delivered by the heater is transferred to the external plastic overmold. Since the heat diffusivity of ethanol is very low, on the order of about 27 times below the one of stainless steel, this condition is worsened with the use of ethanol fuels.
What is needed in the art is a method to overcome the low heat diffusivity of ethanol and to increase the thermal efficiency of a heated fuel injector.
It is a principal object of the present invention to increase the area of the heated surface in contact with fuel flowing through the fuel injector to overcome the low heat diffusivity of ethanol fuels.
It is a further object of the invention to improve the heat transfer from the heated injector body to the fuel.
Briefly described, the thermal efficiency of a heated fuel injector is increased separately or in combination by directing the fuel flow along an inner circumferential contour of a heated injector body, by limiting the volume of fluid bypassing the heated inner surface of the injector body, by redirecting heat from the heated injector body to typically unheated portions of the fuel flow field within the fuel passage of the injector body, and by increasing the available contact surface area for heat transfer. Improved heat transfer from the heated injector body to the fuel flowing through the injector body is realized by integrating surface enlarging features into the inside surface of an injector body or by positioning an insulating spacer or a thermally conductive spacer within the fuel passage of the heated injector body. The thermally insulating spacer functions as a flow diverter and may be combined with an enlarged contact surface area and/or a plug that prevents fuel from flowing through a hollow pintle shaft. The thermally conductive internal spacer functions as a heat exchanger, has a relatively large surface area in contact with fuel flowing through the fuel injector, a relatively small mass, and maintains a tight fit with the internal surface of the heated fuel injector body for optimal heat transfer, which enables the heat to be readily transferred to the thermally conductive spacer.
In one aspect of the invention, the thermally insulating spacer is assembled within a heated body of the fuel injector surrounding a valve assembly that is free to move through a center opening of the spacer but without contacting the inner surface of the injector body. The spacer includes diversion slots to direct fuel away from the pintle valve and towards the inner surface of the heated injector body. By taking up some of the internal volume of the injector, the amount of fuel bypassing the heated surface at a time is limited and reduced compared to the fuel flow without an internal spacer and, as a result, the fuel flowing in the space between spacer and heater body is heated more evenly.
In addition to the thermally insulating spacer, a plug may be inserted in the hollow valve shaft preventing cold fuel from entering and flowing through the shaft. The combination of the flow diverter and the plug restricts cold fuel from flowing through the valve assembly enabling cold fuel, such as ethanol-fuel, to be heated more effectively within the fuel injector.
In another aspect of the invention, the area of the heated surface in contact with the fuel flowing through the injector body is increased by incorporating a variety of features, for example, a single helical channel, multiple helical channels, or an array of projecting pins, into the inside surface of the fuel injector body. The flow vortex created by these features during fuel flow increases the heat transfer to the fuel. Additionally, the increased surface area increases heat transferred from the heater to the fuel. The heated surface enlarging features may also be formed as a separate insert that is assembled into the injector body during injector manufacture. The features may be made of a heat conductive material, such as copper, aluminum, nickel, or other material compatible with the fuel used and suitable for efficient manufacturing. The enlarged internal surface area of the injector body may be used in conjunction with the non-conductive spacer as described above.
In still another aspect of the invention, the spacer may be made of a thermally conductive material and designed to contact the inner surface of the heated injector body in a thermally conductive manner to increase the thermal efficiency of the heated fuel injector. The thermally conductive internal spacer redirects heat energy from the heated injector body to otherwise unheated portions of the fuel flow field of the injector. Different materials optimized for the injector body and for the thermally conductive internal spacer can be used. In this manner, the spacer may be formed of a thermally conductive material, such as copper, while the body may be formed of stainless steel for structural purposes.
It may still further be possible to design the thermally conductive spacer to fill the space between the valve shaft and the inner surface of the heated injector body completely and to manufacture the spacer from a porous metal, such as open cell foam. The porous material permits the flow of fuel through it and increases the contact surface area for optimal heat transfer.
Furthermore, the thermally conductive spacer may be a ribbon fin heat exchanger positioned within the fuel passage of the fuel injector for transferring the heat from the heated injector body to the fuel. The ribbon fins may be formed, for example, from thin metal sheeting. This thin metal may be formed into a multitude of shapes to maximize the surface area and to optimize fuel flow. The outside of the ribbon fin may be formed into a cylinder and fixed in a thermally conductive manner, for example by brazing, to the inner surface of the injector body.
The present invention will now be described, by way of example, with reference to the accompanying drawing, in which:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate various possible embodiments of the invention, including one preferred embodiment in one form, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
Referring to
Body 108 of fuel injector 100 has a heater element 110 applied to an outside surface 142 of the body for transferring heat to the body by the heater element. Heater element 110 may be, for example, a thick film heater printed on the outside surface 142 of body 108. An overmold 112 or other type of protection covers body 108 and heater element 110. Fuel passage 102 is defined by an inside surface 144 of body 108 and an outside surface 119 of spacer 120. A valve assembly includes pintle shaft 114 and a valve 116. Valve 116 is attached to an end of pintle shaft 114 facing fuel outlet 106 for sealing against a valve seat 118. At least a portion of pintle shaft 114 may be hollow as shown in
Low thermal conductivity spacer 120, shown in detail in
A plug 132 may be disposed in pintle shaft 114 downstream of and preferably in close proximity to cross-hole 115. The combination of plug 132 and spacer 120 forces a substantial amount of the fuel to come in contact with inside surface 144 of body 108 where it is readily heated. Plug 132 prevents unheated fuel from entering a lower part of the hollow pintle shaft 114 and ensures that substantially all of the fuel flowing through injector 100 is diverted towards inside surface 144 of heated body 108. Internal space 134 of pintle shaft 114 below plug 132 is sealed by plug 132 and is typically filled with air.
Inner diameter 126 of spacer 120 is adapted to allow unrestricted reciprocating axial movement of pintle shaft 114. Inner diameter 126 is further adapted to allow minimal fuel flow through a clearance between pintle shaft 114 and spacer 120 without causing a significant drag on the moving pintle shaft. Outer diameter 128 of spacer 120 is adapted to provide a narrowed fuel passage 102 between heated body 108 and spacer 120. By doing so, the fuel volume within heated body 108 is reduced in order to heat the fuel flowing through body 108 more evenly and more effectively. Inner diameter 126 and outer diameter 128 of spacer 120 may be optimized for a specific application depending on parameters such as fuel viscosity and heating characteristics, fuel flow rate, and a desired temperature of the fuel.
In operation, fuel enters inlet 104 and flows through cross-hole 115 in pintle shaft 114 where it is directed by slots 130 to flow along fuel passage 102. The fuel makes contact with inside surface 144 of body 108, which is heated by heater element 110, and with surface 119 of spacer 120 which limits the transfer of heat from the heated fuel to pintle valve 114. Heated fuel then flows though slots 131 toward valve 116 and valve seat 118.
Referring to
Referring to
Helical channel 246 may be formed directly within inside surface 244 and, therefore, may be integral with body 208 or may be formed as a separate piece, such as an insert, that is assembled within body 208 in a thermally conductive manner. Single helical channel 246 not only increases the surface area of inside surface 244 of body 208 but also, by narrowing the flow path, creates a flow vortex which increases the amount of heat transferred to the fuel by the heated body.
In addition to increasing the surface area of inside surface 244 by single helical channel 246, spacer 120 of low thermal conductivity may be conjunctively used in body 208 to surround pintle shaft 114, to limit the transfer of heat from the fuel to the pintle shaft as described above. Plug 132 may also be inserted into pintle shaft 114 to further improve the fuel heat efficiency as described above.
Referring to
Referring to
The features for increasing the heated surface area contacted by the fuel as described above, such as single helical channel 246, multiple helical channels 346, and pins 546, are preferably made of a material having a relatively good heat conductivity, such as, for example, copper, aluminum, nickel, or other materials compatible with the type of fuel used and suitable for efficient manufacturing.
Referring to
Spacers 620, 720, and 820 may be formed of a material different from the material of the heated body. This allows greater latitude for selecting one material best for the injector body and another material best suited for the heat transfer characteristics of the spacer. For example, the body of a fuel injector is typically made of stainless steel for its inherent corrosion resistance. By designing a spacer to be comprised of a thermally conductive material, such as copper, aluminum, or nickel, for example, superior heat transfer may be realized without compromising the structural benefits of a stainless steel body. By assembling the spacer into the body with a tight thermally conductive press fit, the undesirable welding together of dissimilar materials can be avoided.
Specifically referring to
In operation, fuel from inlet 104 enters the heated porous metal spacer 620 through cross-hole 115 of pintle shaft 114 and flows through the porous structure of spacer 620 towards valve seat 118. The porous structure of spacer 620 slows the rate of fuel flow through the spacer 620 and provides a relatively large heated contact surface area. Therefore, the amount of heat transferred to the fuel from the heated body 608 and heated spacer 620 is substantially increased. The efficiency of heat transfer may further be improved by inserting plug 132 in pintle shaft 114, as described above.
Referring to
Thermally conductive spacer 720 has a generally cylindrical shape including radially extending features 748 formed as a single helix and extends axially preferably over the entire length of the heated portion of a heated body 708. Spacer 720 further includes a center hole 724 designed to surround pintle shaft 114 such that unrestricted reciprocating axial movement of pintle shaft 114 within spacer 720 is enabled. Center hole 724 is designed to allow minimal fuel flow through a clearance between pintle shaft 114 and spacer 720 without causing a significant drag on the moving pintle shaft 114.
Radially extending features 748 are adapted to contact an inside surface of a heated injector body 708 at contact points 749, in a thermally conducting matter. As a result, spacer 720 is heated through heat transfer from the heated body. Features 748 extend within the fuel passage 702, thereby heating the fuel more evenly and more effectively. Radially extending features 748 may be formed as a helix wound around a core 750, as shown in
Other configurations of features 748 are possible such as, for example, a double helix wound in the same or opposite directions.
Referring to
Ribbon fin heat exchanger 820 has a generally cylindrical shape and extends axially preferably over the entire length of the heated portion of heated body 808. The formed ribbon fin may be of thin metal sheeting. The metal sheeting may be formed into a multitude of shapes to maximize the surface area of ribbon fin heat exchanger 820 and is not limited to the serpentine shape illustrated in
While the first, second, and third embodiment of the invention have been described as being advantageous for application in a heated fuel injector to increase the thermal efficiency of such heater fuel injector, the thermally non-conductive spacer (
It should be understood that numerous changes may be made within the spirit and scope of the inventive concepts described, including but not limited to other configurations, materials, and locations of vaporization elements. Accordingly, it is intended that the invention not be limited to the described embodiments, but will have full scope defined by the language of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
6592052 | Hokao | Jul 2003 | B2 |
7472839 | Yasukawa et al. | Jan 2009 | B2 |
20010052553 | Hokao | Dec 2001 | A1 |
20020139871 | Hokao et al. | Oct 2002 | A1 |
20070080239 | Yasukawa et al. | Apr 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20090294552 A1 | Dec 2009 | US |