The present disclosure relates generally to a hair styling apparatus, and more particularly to a heated hair setter system having an array of vertically aligned hair setter assemblies.
Many different types of heated hair setter systems are available for use in styling hair, such as by curling, waving, or otherwise achieving a desired look. Common among such hair styling apparatus is the ability to apply heat to a hair setter and/or a hair retention clip associated with the hair setter. The hair setter and/or a hair retention clip provide one or more heated surfaces against which the hair to be styled is contacted during styling.
During use, at least some heated hair setter systems provide heat to the hair setter and the hair retention clip separately. These systems, however, may be large and require excess space for use and/or storage due to separately heating the hair setters and the hair retention clips, or to reduce the size of the system, the number of hair setters and the hair retention clips may be reduced. Other heated hair setter systems provide heat to the hair setters and the hair retention clips in combination. In particular, some heated hair setter systems heat the hair setter with the hair retention clip mounted to the hair setter. However, with these heated hair setter systems, a user can mount the hair retention clip to the hair setter such that the hair retention clip can directly contact the heating device. Thus, the hair retention clip can melt and/or otherwise become damaged by the heating device. There is a need, therefore, for a compact heated hair setter system that can rapidly heat a hair setter and hair retention clip assembly while preventing damage to the hair retention clip.
In one aspect, a hair setter apparatus generally comprises a housing comprising a base and a lid pivotally coupled to the base. The base generally comprises a top wall and a plurality of side walls together with the base and top wall defining an interior space of the housing. The base further comprises a plurality of access openings open to the interior space of the housing, with each access opening comprising an insert opening at the top wall and a vertical slot in at least one of the side walls and intersecting the insert opening at the top wall of the housing. A heater assembly is enclosed within the housing, with the heater assembly comprising a first heat delivery rail and a second heat delivery rail mounted in the housing in spaced parallel relationship to each other. Each heat delivery rail has a longitudinal edge extending parallel and generally adjacent to a respective one of the vertical slots and generally below a corresponding insert opening. The apparatus further comprises a plurality of hair setters, with each of the hair setters comprising a central body having opposing web plates spaced from each other to define a mounting slot extending longitudinally of the hair setter. The opposing web plates are configured to slidably couple the hair setter to one of the heat delivery rails along the longitudinal edge of one of the heat delivery rails. The hair setter is sized relative to the insert opening for insertion of the hair setter through the insert opening and onto the respective one of the heat delivery rails within the interior space of the housing.
In yet another aspect, a method of operating a hair setter apparatus generally comprises coupling a retention clip to a hair setter. The hair setter comprising a central body having opposing web plates spaced from each other to define a mounting slot extending longitudinally of the hair setter. The method further comprises inserting the hair setter through an access opening of a housing. The housing comprising a base and a lid, with the base comprising a top wall and a plurality of side walls together with the base and top wall defining an interior space of the housing. The base further comprising a plurality of the access openings open to the interior space of the housing, each access opening comprising an insert opening at the top wall and a vertical slot in at least one of the side walls and intersecting the insert opening at the top wall of the housing. The hair setter is sized relative to the insert opening for insertion of the hair setter through the insert opening and onto the heat delivery rail within the interior space of the housing. The method also comprises slidably coupling the hair setter onto a heat delivery rail mounted in the housing. The heat delivery rail has a longitudinal edge extending parallel and generally adjacent to the vertical slot and generally below the insert opening.
These and other features, aspects, and advantages of the present disclosure will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
Unless otherwise indicated, the drawings provided herein are meant to illustrate features of embodiments of the disclosure. These features are believed to be applicable in a wide variety of systems comprising one or more embodiments of the disclosure. As such, the drawings are not meant to include all conventional features known by those of ordinary skill in the art to be required for the practice of the embodiments disclosed herein.
In the following specification and the claims, reference will be made to a number of terms, which shall be defined to have the following meanings. The singular forms “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise. The terms “comprising,” “including,” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements. “Optional” or “optionally” means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where the event occurs and instances where it does not.
Approximating language, as used herein throughout the specification and claims, may be applied to modify any quantitative representation that could permissibly vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term or terms, such as “about,” “approximately,” and “substantially,” are not to be limited to the precise value specified. In at least some instances, the approximating language may correspond to the precision of an instrument for measuring the value. Here and throughout the specification and claims, range limitations may be combined and/or interchanged; such ranges are identified and include all the sub-ranges contained therein unless context or language indicates otherwise.
Referring now to the drawings and in particular to
In the exemplary embodiment, the housing assembly 12 includes a base 20 and a lid 22 positionable in a closed configuration to facilitate holding the hair setter assemblies 14 and 16 within the housing 12, and an open configuration to facilitate access to and removal of the hair setter assemblies 14 and 16 from the housing 12. As illustrated in
As shown in
The base 20 is a hollow generally cuboid-shaped structure that broadly includes a front wall 30, a rear wall 32, a left end wall 34, and an opposing right end wall 36. In the exemplary embodiment, the base 20 is generally symmetrical about a central longitudinal axis 38 running substantially parallel to the front wall 30 and the rear wall 32. The base 20 also includes a top wall 40 and a bottom wall 42. An interior space 48 is defined by the defined by the walls 30, 32, 34, 36, 40, and 42. As described above, a plurality of access openings 18 are formed in the base 20. Each access opening 18 is open at the top wall 40 and extends downward toward the bottom wall 42 of the base 20. In the exemplary embodiment, the base 20 includes five access openings 18 arranged in a side by side configuration extending along a front half 44 of the base 20, and, with respect to central longitudinal axis 38, five access openings 18 extending along a back half 46 of the base 20. Alternatively, the base 20 may include any number of access openings 18 that enable the base 20 to function as described herein.
In the exemplary embodiment, each one of the access openings 18 include a generally curved shaped insert opening 50 that extends through the top wall 40 to the interior space 48. In addition, the access openings 18 include rectangular-shaped vertical slots 52 formed through one of the front wall 30 or the rear wall 32, depending on whether the respective access opening 18 is formed along the front half 44 or the back half 46 of the base 20. The vertical slots 52 are provided in positions that are symmetric to each other in relation to the central longitudinal axis 38. The vertical slots 52 are open at the top wall 40 of the base 20, connecting to a respective insert opening 50, and extend downward a predetermined distance “D” of the height of the respective front wall 30 or the rear wall 32. For example, in some embodiments, the distance “D” is configured such that the distance is less than a height of a heater assembly contained in the housing assembly 12. This enables a portion of the front wall 30 or the rear wall 32 to extend across a bottom portion of the heater assembly and cover a bottom portion thereof.
As shown in
In the exemplary embodiment, the insert openings 50 and vertical slots 52 are shaped to facilitate insertion of the hair setter assemblies 14 and 16 into the base 20. Referring to
As illustrated in
In the exemplary embodiment, each one of the heat delivery rails 64 is formed substantially identically. As illustrated in
In the exemplary embodiment, the heat delivery rails 64 include a hollow center portion 68 for enclosing a heating element (not shown) used for increasing the temperature of the heat delivery rails 64 during use of the heated hair setter system 10. The heating element is thermally coupled to the heat delivery rails 64 via the hollow center portion 68. In one embodiment, for example, the heating element is electrically coupled to a control system (not shown) via suitable wiring (not shown). The heating element may include, for example, electrical resistance heaters, coupled in thermal contact with the heat delivery rails 64 to heat the heat plate during use of the heated hair setter system 10.
In the exemplary embodiment, the heat delivery rails 64 may be fabricated from a metallic material to facilitate increased heat transfer between the heating element (not shown) and the heat delivery rails 64. Alternatively, the heat delivery rails 64 may be fabricated from any material that enables the heat delivery rails 64 to function as described herein. In addition, in the exemplary embodiment, the heat delivery rails 64 may be formed as a single piece extruded component. This facilitates manufacturing efficiencies by reducing the number of components used to fabricate the heat delivery rails 64. Alternatively, the heat delivery rails 64 may be fabricated in any manner that enables the heat delivery rails 64 to function as described herein, e.g., by welding and/or otherwise bonding two heat transfer components together to form the heat delivery rails 64.
In the exemplary embodiment, the support plate 66 includes a plurality of rail seats 70, formed as elongate channels in support plate 66. The rail seats 70 are shaped to generally correspond to a cross-sectional shape of the heat delivery rails 64, thereby facilitating securely holding each heat delivery rail 64 in place when the heater assembly 60 is assembled. While the rail seats 70 are illustrated as being generally equispaced along a length of the support plate 66, it is contemplated that any spacing that enables the heater assembly 60 to function as described herein may be used. In the exemplary embodiment, the support plate is fabricated from a metallic sheet material capable of supporting the heat delivery rails 64 during operation. Alternatively, the support plate 66 may be fabricated from any material that can support the heat delivery rails 64 during operation, including, e.g., plastic, ceramic, and the like.
The brace 62 of the heater assembly 60 is generally configured to couple to an end of each heat delivery rail 64 when the heat delivery rails 64 are mounted to support plate 66. As illustrated, the brace 62 includes a central spine 72 having a plurality of equispaced, transverse rail supports 74. As illustrated in
In the exemplary embodiment, the brace 62 is a molded component. Accordingly, the features of the brace 62 described herein may have a draft angle associated with each wall and cavity to promote removal of the brace 62 from a mold. The brace 62 is fabricated by molding a thermoplastic synthetic resin suitable for use as an insulator in heated devices. However, the brace 62 may be fabricated from any material that enables the brace 62 to function as described herein. Furthermore, the brace 62 may be fabricated by methods other than molding, e.g., machining, and therefore may not have a draft angle associated with the features as described herein.
In the exemplary embodiment, the body 82 includes a slot 92 defined therein. The slot 92 extends longitudinally along the overall axial length of the body 82 and extends inward from an outer surface 94 of the outer tube 86 through an outer surface 96 of the inner tube 88. The slot 92 is defined by a pair of opposing radially extending web plates 90. The slot 92 forms a passageway in the body 82 that has an overall width that is slightly greater than the width of the heat delivery rail 64 between the grooves 122 and smaller than an inner diameter of the inner tube 88. This enables the body 82 to be slidably coupled to the heat delivery rail 64. In particular, the combination of the narrower width of the slot 92 and the larger diameter of the inner tube 88 is configured to only engage the curved end 120 and opposing grooves 122 on a side of the heat delivery rail 64 in an axial direction. Thus, the body 82 can be slidably coupled to the heat delivery rail 64, being oriented in the axial direction of the rail and slidably moveable along the axial direction thereof. The body 82 is otherwise inhibited from being coupled to and decoupled from the rail in a direction transverse to the rail—which is the manner of coupling common among known hair setter systems.
Furthermore, the slot 92 is configured to enable the inner tube 88 and the slot defining web plates 90 to directly engage one of the heat delivery rails 64 of the heater assembly 60. By providing direct engagement or contact between the inner tube 88 and the slot defining web plates 90 and the heat delivery rail 64, heat transfer between the heat delivery rail 64 and hair setter 80 is enabled. Thus, heat transfer from the heater assembly 60 to hair setter 80 is achieved, with the hair setter 80 being constructed to enable the heat generated by the heat delivery rails 64 of the heater assembly 60 to be absorbed by the inner tube 88 and the slot defining web plates 90, and delivered rapidly and directly to the radially extending web plates 90. The heat absorbed by the web plates 90 is rapidly transferred to the outer tube 86, thereby assuring rapid heating of hair setter 80 in its entirety.
In the exemplary embodiment, the body 82 is fabricated from a metallic material, e.g., from aluminum, to enable efficient heat transfer from the heat delivery rails 64 of the heater assembly 60 to the body 82. In addition, the body is fabricated by conventional extrusion equipment, facilitating the manufacturing of the body 82 in a generally inexpensive and rapidly-produced manner. Alternatively, the body 82 may be fabricated in any manufacturing operation that enables the body 82 to function as described herein, for example, by casting.
In addition, the hair setter 80 includes an end cap 84 located at each end of the body 82. The end cap 84 includes a recess 100, which is sized and located so as to receive an end portion of the body 82. The end cap 84 also includes a plurality of ribs 102 extending radially inward from an outer edge 104 of the end cap a predetermined distance to facilitate engaging the outer surface 94 of the body 82 to locate the end cap 84 with respect to the outer tube 86 of the body 82. In addition, the end cap 84 includes an inner coupling component 106 configured to engage the inner tube 88 of the body 82 to facilitate locating the end cap 84 to the body 82. The end cap 84 includes a slot that substantially corresponds to the size and shape of the slot 92 of the body 82. To secure the end cap 84 to the body 82, the body 82 includes a tab (not shown) that engages with a portion of the end cap 84 to facilitate securing the end cap 84 in place. Alternatively, the end cap 84 may be secured to the body 82 by any means that enables the hair setter 80 to function as described herein.
In the exemplary embodiment, the end caps 84 are fabricated from an insulative material or other non-heat-conductive materials, for example, plastic, silicone-based material, resin, or the like, to facilitate reducing an amount of the heat generated by the heat delivery rails 64 from being conducted to the end caps 84. Alternatively, the end caps 84 may be fabricated from any material that enables the end caps to function as described herein. For example, in one, embodiment, the end caps 84 may be fabricated from a metallic material and coated with a heat-resistive material to reduced heat conduction to an outer surface of the end caps 84.
In the exemplary embodiment, as illustrated in
In the exemplary embodiment, the hair setter 80 is able to be quickly and easily mounted to the heat delivery rail 64 by axially aligning the hair setter 80 in longitudinally extending alignment with a curved end 120 of an edge of the heat delivery rail 64. By placing each additional hair setter 80, or large hair setter assembly 16, in a stacked arrangement on the heat delivery rail 64 in a substantially similar manner, a desired quantity (e.g., two in the exemplary embodiment) of hair setters 80 or large hair setter assemblies 16 can be placed on the heater assembly 60 to attain the desired heating effect of the hair setters 80.
During operation, with the inner tube 88 and the slot defining web plates 90 in direct engagement with the heat delivery rail 64 of the heater assembly 60, as is described herein, the heat generated by heat delivery rail 64 is quickly transferred directly to the inner tube 88 and the slot defining web plates 90, the other web plates 90, and the outer tube 86. Thus, the exemplary embodiment facilitates increasing the direct contact of hair setter 80 with the heat delivery rail 64, thereby achieving a hair setter 80 that is quickly heated to any desired temperature.
In addition, a further advantage of the illustrated embodiment is the ability to transfer heat to a hair retention clip 110. As shown in
In the exemplary embodiment, during heating of the hair setter 80, the retention clip 110 is coupled to hair setter 80, as shown in
The embodiments of the retention clip 110 described herein facilitate reducing the conductive heat transfer to the finger components 116 and 118, enabling a user to operate the retention clip 110 without discomfort. This results in the large hair setter assembly 16, including the hair setter 80 and the retention clip 110, being quickly and efficiently heated by the heater assembly 60. After a heating cycle is completed, the large hair setter assembly 16 is removed, i.e. slide axially off of the heat delivery rail 64 and positioned in a desired location on the hair of the user.
As illustrated in
In addition, as illustrated in
During operation, the user applies pressure to the finger components 116 and 118 to pivot them towards each other, which causes the curved grip components 112 and 114 to be pivoted away from each other. The retention clip 110 is positioned peripherally about the hair setter 80 and the pressure is removed from the finger components 116 and 118, which causes the curved grip components 112 and 114 to pivot towards each other. This enables the retention clip 110 to engage the outer surface 94 of the hair setter 80. The user couples the retention clip 110 the hair setter 80 such that the slot 92 of the hair setter 80 is generally aligned with the opening created between the grip components 112 and 114 of the retention clip 110. The combination of the retention clip 110 coupled to the hair setter 80 is described herein as the hair setter assembly 14 and/or 16.
The user slides the hair setter assembly 14 and/or 16 on the heater assembly 60 contained in the housing 12. More specifically, the user grasps the finger components 116 and 118 and inserts the hair setter assembly 14 and/or 16 into the insert opening 50 of the access opening 18, taking care to axially align the hair setter slot 92 in longitudinally extending alignment with the curved end 120 and the grooves 122 located at an edge of the heat delivery rail 64. The user slides the hair setter assembly 14 and/or 16 along the heat delivery rail 64 such that the finger components 116 and 118 are positioned in the vertical slot 52 of the insert opening. The hair setter assembly 14 and/or 16 slides along the heat delivery rail 64 until the end cap 84 comes into contact with the support plate 66 of the heater assembly 60. The user may then slide a second hair setter assembly 14 and/or 16 on the same heat delivery rail 64 until its end cap 84 contacts the first hair setter assembly 14 and/or 16, thereby stacking vertically two hair setter assembly 14 and/or 16 in a single access opening 18. As described herein, the vertical slot 52 cooperates with the retention clip finger components 116 and 118 to prevent the retention clip curved grip components 112 and 114 from making contact with the heat delivery rail 64.
The apparatus, system, and methods described in detail herein enable a user to achieve a rapidly heated hair setter that is capable of being easily employed for rapidly absorbing heat from the heat delivery rail 64. Once hair setter 80 has been heated to a desired level, the hair setter 80 is removal from the heat delivery rail 64 and used in the conventional manner. If the embodiment employing the hair retention clips 110 is employed, the heated hair clip 110 is also used in a generally conventional manner, further improving and enhancing the heat being delivered to the rolled hair fibers on the hair setter 80.
Exemplary embodiments of an apparatus, system, and methods for a heated hair setter system are described above in detail. The apparatus, system, and methods described herein are not limited to the specific embodiments described, but rather, components of apparatus, systems, and/or steps of the methods may be utilized independently and separately from other components and/or steps described herein. For example, the methods may also be used in combination with other heated hair styling apparatuses, systems, and methods, and are not limited to practice with only the apparatuses, systems, and methods described herein. Rather, the exemplary embodiments can be implemented and utilized in connection with many heated hair styling applications.
Although specific features of various embodiments of the disclosure may be shown in some drawings and not in others, this is for convenience only. In accordance with the principles of the disclosure, any feature of a drawing may be referenced and/or claimed in combination with any feature of any other drawing.
This written description uses examples to disclose the embodiments, including the best mode, and also to enable any person skilled in the art to practice the embodiments, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the disclosure is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
As various changes could be made in the above embodiments without departing from the scope of the disclosure, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
This application is a divisional of U.S. patent application Ser. No. 16/096,584, filed on Oct. 25, 2018, which claims priority to International Application PCT/US2017/032621, filed on May 15, 2017, which claims priority to U.S. Provisional Application No. 62/336,992, filed on May 16, 2016. These applications are incorporated herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2824367 | Mcwilliams | Feb 1958 | A |
3089236 | Galvao | May 1963 | A |
3116551 | Anton | Jan 1964 | A |
3119180 | Bruecker | Jan 1964 | A |
3261091 | van den Driest | Jul 1966 | A |
3710442 | Meyer | Jan 1973 | A |
5301425 | Ferraro | Apr 1994 | A |
5408749 | Momose | Apr 1995 | A |
6084210 | Glucksman | Jul 2000 | A |
6114661 | Leung | Sep 2000 | A |
6499195 | Wong | Dec 2002 | B1 |
7178242 | Okabe | Feb 2007 | B2 |
7665214 | Okabe | Feb 2010 | B2 |
8327860 | Flowers | Dec 2012 | B2 |
20050056297 | Maione | Mar 2005 | A1 |
20100116286 | O'Rourke | May 2010 | A1 |
Number | Date | Country |
---|---|---|
0611043 | Aug 1994 | EP |
1884331 | Feb 2008 | EP |
2036629 | Jul 1980 | GB |
Number | Date | Country | |
---|---|---|---|
20200093239 A1 | Mar 2020 | US |
Number | Date | Country | |
---|---|---|---|
62336992 | May 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16096584 | US | |
Child | 16696413 | US |