The present invention relates to electrical appliances and components therefor, and particularly, although not exclusively, to cordless domestic appliances.
In a cordless kettle, a water reservoir includes a cordless connector that is operable to cooperate with a corresponding connector on a power base. Thus, when the water reservoir is mounted on the power base, power may be supplied to a heating element located in the kettle jug to allow water therein to be heated.
Such arrangements allow a power base to be connected to a domestic power supply (such as by a plug), whilst further allowing the kettle jug to be removed from the base after the water is heated to allow a user to more easily dispense the water as required.
Further advances on cordless connectors have led to 360° connectors, as described for example in WO 94/06185.
The above types of cordless electrical connectors have also found use on other domestic appliances, such as food processors, blenders and the like. This arrangement provides an advantage that the processed/blended food can be more easily dispensed by a user.
However, as will be appreciated, appliances such as food processors, blenders and, to a lesser extent kettle jugs, need regular cleaning. In particular, cordless appliances for containing food or liquids other than water require cleaning after each use. Such a task is time consuming and may be difficult to perform manually.
Accordingly, it would be desirable to provide an appliance that can be cleaned more easily. In particular, it would be desirable to provide a cordless appliance where the detachable part of the appliance can be washed in a dishwasher, by immersion in water or otherwise easily cleaned. Additionally or alternatively, it would be desirable to provide a discrete component that may be incorporated in such an appliance.
The applicant's patent publication WO 08/012,506 A1 discloses a cordless electrical connector having current-carrying components sealed therein, and a washable electrical appliance incorporating such a connector.
One approach to waterproofing an appliance would be to seal the electrical parts into a chamber. However, washing the chamber in a dishwasher will cause approximately a 20% increase in pressure within the chamber, for example when the temperature is raised from 15° C. to 75° C. A pressure difference between the chamber and the local environment may also occur if local air pressure is reduced, for example if the appliance is taken to high altitude.
Another problem is that ionisation may occur within the chamber, which cannot be dispelled by ventilation if the chamber is completely sealed.
Patent publication GB-A-2441628 proposes putting a valve in the base of a cordless appliance, which valve opens when the appliance is connected to a cordless power base to allow drainage, but closes when the appliance is removed from the power base, to avoid water ingress during washing.
The applicant's patent publication WO-A-07/096,630 discloses a heated liquid dispenser, improvements to which are disclosed in the present application.
According to one aspect of the invention, there is provided a heated liquid dispenser comprising a liquid heating portion including liquid heating means, a dispensing portion and an intermediate portion removably connectable between the heating portion and the dispensing portion.
According to another aspect of the invention, there is provided a heated liquid dispenser comprising a reservoir, heating means operable to heat the contents of the reservoir, and dispensing means for dispensing the contents of the reservoir, wherein a plurality of different said dispensing means are removably connectable to the reservoir or to the heating means.
According to another aspect of the invention, there is provided a heated liquid dispenser comprising a reservoir, heating means operable to heat the contents of the reservoir, and dispensing means for dispensing the contents of the reservoir, wherein the dispensing means includes a flexible conduit.
According to another aspect of the invention, there is provided a heated liquid dispenser comprising a reservoir, heating means operable to heat the contents of the reservoir, and dispensing means for dispensing the contents of the reservoir, wherein the reservoir is finable when inverted.
According to another aspect of the invention, there is provided a heated liquid dispenser comprising a reservoir, heating means operable to heat the contents of the reservoir, dispensing means for dispensing the contents of the reservoir, and means for stirring the contents of the reservoir.
According to another aspect of the invention, there is provided a heated liquid dispenser comprising a reservoir, heating means operable to heat the contents of the reservoir, and dispensing means for dispensing the contents of the reservoir, wherein the heating means comprises a heater and a liquid chamber for containing liquid heated by the heater, the liquid chamber being in thermal contact with the reservoir.
According to another aspect of the invention, there is provided a washable electrical appliance, or part thereof, having at least one electrical component sealed within a chamber substantially to prevent the ingress of water into the chamber during washing, wherein the chamber is able to withstand a pressure difference between the inside and the outside of the chamber caused by heating of the chamber associated with washing of the appliance.
According to another aspect of the invention, there is provided a washable electrical appliance, or part thereof, having at least one electrical component sealed within a chamber substantially to prevent the ingress of water into the chamber during washing, wherein the chamber has an internal vacuum.
According to another aspect of the invention, there is provided a washable electrical appliance, or part thereof, having at least one electrical component sealed within a chamber substantially to prevent the ingress of water into the chamber during washing, wherein the interior of the chamber is sealed at a pressure elevated above normal atmospheric pressure.
According to another aspect of the invention, there is provided a washable electrical appliance, or part thereof, having at least one electrical component sealed within a chamber substantially to prevent the ingress of water into the chamber during washing, wherein the volume of the chamber is variable so as to tend to equalise a pressure difference between the interior and the exterior of the chamber.
According to another aspect of the invention, there is provided a washable electrical appliance, or part thereof, having at least one electrical component sealed within a chamber substantially to prevent the ingress of water into the chamber during washing, wherein the chamber includes a membrane arranged to allow ventilation of the chamber while substantially preventing ingress of water during washing.
According to another aspect of the invention, there is provided a washable electrical appliance, or part thereof, having at least one electrical component sealed within a chamber substantially to prevent the ingress of water into the chamber during washing, wherein the chamber includes a valve that seals the chamber during washing of the appliance or part. According to another aspect of the invention, there is provided a heated liquid dispenser having an electrically powered pump and a power supply within the appliance so that the pump is operable when the appliance is disconnected from a cordless power base.
According to another aspect of the invention there is provided a discrete electrical connector component that includes means to ventilate, seal and/or drain the interior of an appliance into which it is fitted.
According to another aspect of the invention there is provided a pair of cordless electrical connector components, respectively for a power base and appliance, that include means to ventilate, seal and/or drain the appliance when coupled together.
According to another aspect of the invention there is provided a heated liquid dispenser having means to equalise pressure caused by heating the reservoir.
According to another aspect of the present invention there is provided a washable electrical appliance having a housing with a discrete component assembled therein, the component being sealed against the housing by a seal compressed in the direction of insertion of the component into the housing.
According to another aspect of the present invention, there is provided a washable electrical appliance having a housing with a discrete component assembled therein and forming part of the external surface of the appliance, the component being sealed against the housing by a seal having one or more elongate portions extending between the component and the housing.
According to another aspect of the invention, there is provided a washable electrical appliance having a housing with a discrete component assembled therein, the component being sealed against the housing by a sealing member that retains the component against the housing.
According to another aspect of the invention, there is provided a washable electrical appliance having a housing with an external discrete component assembled therein and forming part of the external surface of the appliance, and an internal discrete component assembled therein and not forming part of the external surface of the appliance, the external component being sealed against the housing by a sealing member that also provides a seal around the internal component.
According to another aspect of the invention, there is provided a washable electrical appliance comprising a housing, an internal reservoir, an element plate forming at least part of a floor of the reservoir, a base portion forming at least part of an external base of the appliance, and an integral seal arranged both to seal the element plate in the reservoir and to seal the base portion against the housing.
According to another aspect of the invention, there is provided a method of sealing a component within a housing of a washable electrical appliance, the component and the housing having complementary formations that form a sealant channel when assembled together, the method comprising introducing sealant into the sealant channel and setting the sealant so as to form a seal between the housing and the component.
According to another aspect of the invention, there is provided a method of assembling a washable electrical appliance, comprising assembling and sealing together a discrete internal component and a discrete external component together with a housing of the appliance by means of a common sealant portion.
According to another aspect of the invention, there is provided a washable electrical appliance having a main housing and a discretely formed housing component attached to the main housing, wherein end surfaces of the main housing and the housing component are mutually abutting and an internal portion of one of the housing component and the main housing extends into the other one of the housing component and the main housing and seals against the other one of the housing component and the main housing.
According to another aspect of the invention, there is provided a washable electrical appliance having a main housing and a discretely formed housing component attached to the main housing, wherein edge portions of the main housing and the housing component comprise serrations engaged with one another.
According to another aspect of the invention, there is provided a method of assembling a component into a housing of a washable electrical appliance, the component and the housing having complementary formations, the method comprising welding said complementary formations together.
As will be appreciated, the above described arrangements overcome problems associated with the prior art by allowing an appliance comprising a cordless electrical connection to be easily cleaned, for example by putting, the appliance in a dishwasher.
Specific embodiments of the invention will now be described with reference to the accompanying drawings, a brief synopsis of which is set out below.
a to 1e show alternative embodiments to that of
a to 5c are axial cross-sections of a cordless connector sealed in an appliance housing, in variants of a fifth embodiment of the invention.
a is an axial cross-section of a cordless connector sealed in an appliance housing, in an eleventh embodiment of the invention.
b is a perspective view of a part of the appliance housing of the eleventh embodiment.
a is an axial cross-section of a cordless connector sealed in an appliance housing, in a thirteenth embodiment of the invention.
b is a perspective view of a securing ring for use in the thirteenth embodiment.
a is an axial cross-section of a cordless connector sealed in an appliance housing, in a fifteenth embodiment of the invention.
b is an axial cross-section of a cordless connector in the process of being sealed in an appliance housing, in a variant of the fifteenth embodiment of the invention.
a is a cross-section of a base component sealed against an appliance side wall, in a twenty-second embodiment.
b is a cross-section in the plane A-A of
a is a cross-section of an appliance side wall and a base component for attachment thereto, in a twenty-seventh embodiment.
b is a cross-section of an end portion of the base component, in a variant of the twenty-seventh embodiment.
a and 28b are perspective views from different azimuthal angles of a base component according to a twenty-eighth embodiment.
In the description of the embodiments, similar or analogous parts are identified by the same reference numerals between the different embodiments.
The first embodiment is described in relation to a modified version of the applicant's CP8 Series 360° waterproof cordless electrical connector. This embodiment can be supplied as a discrete component for fitting to any of a wide range of domestic electrical appliances designed to accommodate the connector. However, embodiments of the invention may also be applied to cordless electrical connectors that are integrated with a control such as a boil detector and/or dry boil control, such as in the applicant's A1 integrated control. The control may be an electromechanical or electronic control.
The electrical connector 1 comprises an upper end, and a lower end defined by an aperture into which the corresponding CS7 electrical connector fits. Earth pin 3 is formed in the centre of the aperture; an inner ring member 4 is formed in the aperture; a live contact spring 5 is formed on the inner surface of the inner ring member 4, and a neutral contact spring 6 is formed on the outer surface of the inner ring member 4.
The upper end of the connector 1 comprises an upper wall 7, within which are located an earth connector 8, a live connector 9 and a neutral connector 10, connected respectively to the earth pin 3, live contact spring 5 and neutral contact spring 6, and arranged for connection to power circuitry within the appliance 2. The earth connector 8, live connector 9 and neutral connector 10 are sealed within the upper wall 7 by liquid-tight seals 11, arranged to prevent ingress of water from the lower end of the connector.
The electrical connection terminals 3, 5 and 6 may be coated with an electrically conductive, relatively inert material, such as gold or silver plate, so as to reduce or overcome potential corrosion and/or galvanic reaction problems.
It will be appreciated that the present invention is not limited to such arrangements, and that more or fewer connectors could be provided. For example, in some arrangements the controls for the appliance may be housed in the power base, with sensors or other components being housed in the appliance proper. In these arrangements it may be necessary to provide additional contacts in the connector system to allow control or other signals to be passed between the appliance proper and the power base control system. Particulars of such a control arrangement may be found in GB-A-2228634.
Further details of the CP83 connector are disclosed in WO 08/012,506 A1 and will not be repeated herein. However, in the first embodiment the connector 1 is sealed within an aperture in the housing 2 by means of a seal 12, arranged between a housing side wall 13 and a connector side wall 14. The first to eighth embodiments relate to various different sealing arrangements of this type.
In the first embodiment, the seal 12 includes one or more relatively thin resilient radially extending circumferential fingers or fins 15 which extend between the housing side wall 13 and the connector side wall 14. The fingers or fins deform to take the shape of the wall against which they are fitted and allow a wide tolerance in the shape and dimensions of the space between the housing side wall 13 and the connector side wall 14. The seal 12 is retained in the axial direction between an inwardly projecting lip 16 at the lower end of the housing side wall 13 and an outwardly projecting rim 17 on the connector side wall. The side walls 13 and 14 are preferably dimensioned with sufficiently small tolerances to prevent angular movement between the connector and the base. The lower, end of the connector side wall 14 includes a portion of narrower outer diameter, into which an inwardly projecting portion of the seal 12 fits. The lower end of the seal 12 abuts the upper surface of the lip 16, which helps seal the void between the side walls 14 and 16.
a shows a variant of the first embodiment, in which the lower end of the seal 12 includes one or more axially projecting and radially spaced fingers or fins 18 which contact the upper surface of the lip 16.
b shows another variant of the first embodiment, in which the connector side wall 14 includes an axially extending channel 19, and the seal 12 includes a complementary portion 20 that extends into the channel 19; hence, the seal 12 is U-shaped in cross-section.
c shows another variant of the first embodiment, in which the fingers 15 extend radially inwardly into contact with the connector side wall 14.
The connectors 1 of
a shows a fifth embodiment, in which the seal 12 is an o-ring compressed axially between the rim 17 and the lower lip 16b, in order to seal radially between the housing side wall 13 and the connector side wall 14. The rim 17 abuts against the upper lip 16a.
b shows a variant of the fifth embodiment, in which the seal 12 is compressed axially between upper and lower rims 17a, 17b; the lower rim 17b abuts against the lip 16.
c shows another variant of the fifth embodiment, in which the seal 12 is compressed at an angle to the axial and radial directions, and is located against a chamfered surface of the rim 17 and the internal corner between the lip 16 and the housing side wall 13. The lip 16 is compressed against the seal by a securing ring 21 coupled to the connector side wall 14, for example by a screw thread or another axially loaded retention method.
The embodiments of
The eighth to sixteenth embodiments described below relate to various methods of retaining the connector 1 within the housing 2. In the eight to tenth embodiments the retention method has a joint function that may also be used to seal. The eleventh to sixteenth embodiments also show specific sealing methods, but any of the retention methods may be combined with any of the sealing methods, except where they are clearly incompatible.
a and 11b illustrate a retention mechanism according to an eleventh embodiment. A bayonet fitting between the connector 1 and the housing 2 comprises projections 23 extending radially outwardly from the connector side wall 14 and arranged to fit within recesses 24 in the housing side wall 13, and to lock within the recesses 24 by relative rotation between the connector 1 and the housing 2. The bayonet depth and angle may be arranged to apply axial compression for the seal and/or a downward or upward force to assist locking of the retention mechanism. The bayonet may take the form of a helical thread.
a and 13b illustrate a retention mechanism according to a thirteenth embodiment, in which a securing ring 26, having a plurality of circumferentially spaced resilient locking fingers 27, is fastened around the upper rim of the recess in the housing 2. The fingers 27 engage the upper wall 7 so as to compress the seal 12 in an axial direction between the rim 17 and the lip 16.
a and 15b show two alternative retention mechanisms of a fifteenth embodiment. In the alternative of
The seal 12 may comprise a two-part RTV (room temperature vulcanisation) silicone, such as RT772 with a T77 catalyst provided by Wacker Silicones, Wacker-Chemie GmbH, Hanns-Seidel-Platz 4, D-81737 Munchen DE (www.wacker.com). The seal may be formed as a discrete silicone rubber or other elastomer seal.
Preferably, components may be selected for resistance to water ingress, for example as described in EP-A-1312290 or GB-A-2334822.
In a preferred arrangement the connector 1 may incorporate one or more drainage holes. Typically, when an appliance is washed in a dishwasher it is placed therein upside down. Accordingly, the lower end of the connector 1 may fill with water during the washing process. The incorporation of drainage holes allows water that would otherwise be collected in the connector 1 to drain away.
In all embodiments it is preferred that there is provided a removable sealing plug operable to cooperate with a portion of the cordless electrical connector 1. The plug preferably fits within the aperture of the connector 1 to prevent water collecting therein during washing. In some embodiments the plug may be connected to the appliance. However, it is equally preferred that the plug is provided as a separate integer. As an alternative to the plug, there may be provided other means to close the aperture of the electrical connector, such as a shutter or sliding cover.
The first to seventeenth embodiments have been described above with reference to the assembly of an electrical connector 1 within an appliance housing 2. However, it will be appreciated that aspects of the sealing and/or retention mechanisms may be applied to the assembly of other components within an appliance housing. In one alternative, the component may be a housing base that is attached to a housing side wall during manufacture, such as a kettle base that is formed as a discrete component and attached to a kettle side wall during manufacture. The side wall may be of polypropylene, stainless steel or glass, for example. The following embodiments show, purely by way of example, how sealing and/or retention mechanisms may be applied to a base component.
In the eighteenth embodiment shown in
In the nineteenth embodiment shown in
In this embodiment, the appliance includes a heated element plate 32 which forms all or part of a floor of a liquid heating reservoir; the element plate 32 may have a thick film, sheathed element or other heater formed on the underside thereof. The element plate 32 has a substantially perpendicular peripheral flange 33, from which a circumferential projection 34 extends in an outward radial direction. An inner seal portion 12b includes a circumferential groove which fits over the projection 34. The inner seal portion 12b forms a seal between the flange 33 and the side wall 13.
Preferably, the outer seal portion 12a and/or the inner seal portion 12b comprise one or more axially spaced circumferential fingers or fins 15, substantially as in one or more of the previous embodiments.
Preferably, the outer seal portion 12a and the inner seal portion 12b are integrally formed, such that a single seal 12 performs a sealing function both internally of the appliance, for the reservoir, and externally of the appliance, to prevent liquid ingress between the base component 31 and the appliance side wall 13.
The twentieth embodiment shown in
In the twenty-first embodiment shown in
In the twenty-second embodiment shown in
The surfaces of the side walls 13 and 14 that face into the channel include respective recesses 13b and 14b into which the sealant flows and sets, to provide retention of the base component 31 to the side wall 13. The recesses 13b, 14b are disposed circumferentially, and may be continuous recesses or discrete indentations as shown in
In the twenty-third embodiment shown in
In the twenty-fourth embodiment shown in
In the twenty-fifth embodiment shown in
In the twenty-sixth embodiment shown in
In the twenty-seventh embodiment shown in
The base component 31 of the eighteenth to twenty-seventh embodiments may further be arranged to receive a connector 1, for example according to any of the first to seventeenth embodiments. By way of example,
Additional means may be provided to assist in sealing an appliance against liquid ingress during washing. For example, the base component 31 shown in
A membrane may be provided to seal moving parts within the connector 1 or the base component 31. For example, in a mechanism in which a moving part such as a push rod is used to actuate a switch, the push rod may press against a membrane to actuate another part on the other side of the membrane. Possible applications include a lift-off switch-off mechanism in the electrical connector 1, a manual reset mechanism, a boil detector, a dry boil detector, or a user control.
Alternatively, a moving part outside the sealed area of the appliance may actuate a part within the sealed area by means of a magnetic link or a magnetically actuated switch.
Internal components may be sealed within a cover or enclosure applied before or during assembly. For example, a cover may be push-fitted or otherwise attached over a component. Alternatively, an expandable cover or enclosure may be shrunk onto a component; the cover or enclosure may be resilient, like a balloon, or shrinkable, such as by heat shrinking. A foamed sealant may be introduced into the base component after assembly, to provide additional sealing and/or noise reduction. Alternatively, a foam rubber seal may be preformed and located within the base component during assembly.
A pressure difference from the surroundings may occur if the internal components are completely sealed within a chamber or enclosure. According to the ideal gas law,
P∝T/V
where P=pressure, V=volume & T=temperature (in Kelvin)
So for constant volume:
P∝T
If an appliance with a sealed chamber is heated in a dishwasher from 15° C. to 75° C. (288K to 348K), the increase in pressure within the sealed chamber is (348−288)/288=20.8% so that the pressure increases for example from 1 bar to 1.208 bar; this has been confirmed experimentally. Alternatively, if the volume of the chamber is allowed to increase and the pressure remains equalised with the atmosphere, a 20% increase in volume would be required when the temperature is raised from 15° C. to 75° C. to maintain the same pressure constant (1 bar).
A first solution is to make the chamber strong enough to withstand a 0.2 bar pressure difference. Alternatively, the interior of the chamber could be pressurised to approximately the median pressure likely to be encountered, such as 1.1 bar; this would reduce the maximum pressure difference to which the chamber would be subjected to about 0.1 bar. However, the chamber may be subjected to a low pressure environment, for example if transported in an aircraft hold at 0.75 bar. In that case, pressurising the interior of the chamber would increase the pressure difference, for example from 0.25 to 0.35 bar.
A second solution is to seal the chamber in a vacuum. This overcomes the changes in pressure between the chamber and the external environment caused by heating or cooling the chamber, since there is effectively no gas within the chamber to expand or contract. Furthermore, this solution avoids ionisation within the chamber, as there is effectively no gas to ionise. However, this solution requires the chamber seal to be strong enough maintain the vacuum.
A third solution is to allow the volume of the chamber to vary so as to reduce the pressure difference between the chamber and ambient pressure. In one specific embodiment, as mentioned above, the chamber may be closed by a resilient enclosure, such as a diaphragm which expands and contracts so as to equalise the pressure difference. The resilient enclosure may be internal to the appliance. In another specific embodiment, the chamber may be closed by a component sealed into the chamber by a sliding seal, such as an ‘o’ ring, such that the component moves into or out of the chamber so as to equalise the pressure. The component may be a heating element plate that forms an upper wall of the chamber and is slidably sealed against the wall of a liquid reservoir of the appliance. In another specific embodiment, the chamber includes an expansion vessel that may comprise a diaphragm sealed within the appliance or vented externally of the appliance. The expansion vessel may comprise a resilient enclosure, like a balloon. The expansion vessel may form part of an outer skirt of the appliance or part of the appliance base.
If the chamber is not ventilated, ionisation may build up within the chamber. However, ventilation may allow water ingress into the chamber. A fourth solution is to fill the sealed chamber with an inert gas. A filth solution is to provide a ventilated membrane between the chamber and the exterior of the appliance, that allows pressure equalisation and ventilation but does not allow moisture ingress. The membrane may be made of a fluoropolymer fabric such as Gore-tex™. Alternatively, the membrane may be of a resilient material such as silicone having one or more small apertures such as holes or cross-cuts. Under normal conditions the resilient membrane is effectively water-tight but the apertures open when expanded under pressure. Alternatively, the aperture may be provided in a seal that seals against a component part, for example a part, such as a cordless contact member, a wire or a switch actuating member, that passes through an aperture in the membrane or seal. The aperture normally seals against the part, but opens to equalise the pressure when there is sufficient pressure difference across the seal, whether a positive or negative pressure difference. Alternatively, the seal may be designed so that its sealing face against a part of the appliance, such as a wall, opens under sufficient pressure difference in order to equalise the pressure; in other words, the seal reversibly fails when the pressure difference is above a threshold. These measures may be applied to any of the seals described above. However, there is a risk of water ingress through the aperture or ventilated membrane.
A sixth solution is to provide a valve that seals the chamber for washing of the appliance, but opens to ventilate the chamber during use. An example of this solution is the removable sealing plug or shutter disclosed above. Another example is an electrically operated valve that is opened automatically when the cordless appliance is placed on its power base, and closed automatically when the appliance is removed from the power base. The valve may be operated by a power supply within the appliance, so that the valve does not require power to be supplied from the power base in order to operate. The power supply may be rechargeable from the power base. The valve may be controlled by a humidity or water sensor within the chamber so that the valve opens when water ingress is sensed within the chamber.
Any of the above solutions could be incorporated in discrete electrical connector component, such as the Otter CP8 cordless connector. The discrete component may be designed to meet a predefined standard for waterproofing or pressure equalisation, so that when incorporated into an appliance that otherwise meets the standard, the component allows the appliance as a whole to meet the standard.
Additionally, venting and/or sealing features within the discrete connector component may cooperate with a corresponding cordless connector in the power base so that the component is sealed when removed from the power base connector but opens when connected to the power base connector. This solution provides an advantage over the valve disclosed in GB-A-2441628 in that the venting or sealing features are integrated within the connector component rather than being provided as a separate component. Any water ingress could be drained away through a drainage feature of the discrete connector component, such as the centre of the CP8 connector.
The above-described embodiments may allow the appliance, such as a food processor or kettle jug, to be placed into a dishwasher for cleaning.
It will be appreciated that aspects of the invention may be used in many different domestic appliances. Examples include without limitation food processors, blenders, kettles, irons, wasserkochers, coffee and espresso makers, juicers, smoothie makers, pans, sauce makers, steamers, chocolate fountains, fondues, slow cookers and milk frothers.
A heated liquid dispenser will now be described, both as an appliance in which one or more of the above-described embodiments may be incorporated, and as a novel appliance per se. Aspects of the heated liquid dispenser comprise developments of the heated liquid dispenser disclosed in WO-A-07/096630; part of the description is included below as background.
A first example, shown in
When the piston is pushed within the cylinder, fluid is forced out of the pump mechanism 116. When the trigger 114 is released, the piston 120 moves out of the cylinder 22 (while still being retained within the cylinder housing), thus causing fluid liquid from the reservoir 110 to be drawn up the tube 118.
The pump mechanism 116 further comprises two one-way valves 124, 126—one located between the cylinder 122 and the reservoir 110, and one between the cylinder 122 and the nozzle 112. This ensures that the liquid drawn from the reservoir 110 is forced out of the nozzle 112 and cannot flow back into the reservoir 110.
The nozzle 112 is rotatable such that a user may select between a concentrated jet and a dispersed spray. Such nozzles are known on existing spray bottles, and will not be described in depth here.
A heating element such as a thick film element plate 32, is disposed in the base of the reservoir 110, together with a thermostat 128 to de-energise the element 32 when a predetermined temperature is reached. For example, the predetermined temperature may be 60° C., which is a suitable temperature for defrosting windscreens, or for use in cleaning operations using heated detergents for example. More generally, the predetermined temperature may be in the range 40° C. to 70° C.
The heating element 32 may include a keep-warm element that is energised after the predetermined temperature is reached, so as to keep the liquid warm at a temperature below the predetermined temperature. Alternatively, the thermostat 128 may switch on the heating element 32 when the temperature of the liquid falls below a predetermined lower temperature.
There may also be provided an overheat control 130 for protecting the heating element 32 from overheating should the thermostat 128 fail. The overheat control 130 may switch off power to the heating element 32 when an overheat temperature significantly higher than the predetermined temperature is detected. The overheat temperature may be between 70° C. and 90° C., and most preferably 80° C.
A temperature control suitable for use in this embodiment is described in GB-A-0329636, and shown in
In the present example, the first thermal actuator 128 is typically configured to undergo its snap transformation at the predetermined temperature, such as 60° C. The second thermal actuator 130 is configured to activate at the overheat temperature, for example 80° C.
The power base 113 is operable to provide power to the heating element 32 to heat the liquid in the reservoir 110 to a temperature below boiling. In one embodiment, the base 113 comprises a 360° electrical connector of the type described in, for example, EP-A-0 922 426. This arrangement is particularly advantageous in that the user may use the heated spray bottle without having to carry the weight of the power base 113.
In an alternative example, the thermostat 128 may be included within the power base 13, and may be connectable to a temperature sensor located within the reservoir portion.
A vent 140 is provided in a wall of the reservoir 110 to ensure that the pressure inside the reservoir 110 does not rise significantly due to the increase in the temperature of the contents of said reservoir 110. The vent 140 may be of any suitable configuration, such as an aperture in the wall of the reservoir 110, or a valve such as a slit valve or spring-loaded pressure relief valve.
The wall of the reservoir 110 may comprise a thermally insulated portion 144, so that a user may hold the reservoir 110 without discomfort when the liquid has reached the desired temperature. The thermally insulated portion 44 need only extend over a portion of the wall arranged for holding by the user. Alternatively, the entire wall may be thermally insulated, although this may add to the weight of the heated spray bottle.
Indication means, such as a light 142 (for example an LED), may be provided to indicate when the thermostat 128 has been activated, and hence when the temperature of the liquid contained in the reservoir 110 has been heated to the predetermined temperature limit.
Furthermore, it is preferred that the indication means 142 is located within the power base 113, as such arrangement allows for the reservoir portion of the apparatus to be easily washed in, for example, a dishwasher. Accordingly a washable connector, such as one that is described in GB 2387523 is preferable over a standard connector used on a typical electric jug.
This example provides advantages in providing more efficient cleaning when using detergents, and in an alternative use, is safer than using, for example, a kettle of boiling water when de-icing a car windscreen. It is more convenient and safer than having to heat water in a kettle and then pour the water into a spray bottle. It also uses less power, and does not use the chemicals present in conventional spray de-icers.
A second example comprises a heated sauce dispenser as shown diagrammatically in
In an alternative embodiment, the power base 113 comprises an induction heater and the heating element 32 comprises a plate that is inductively heated by the induction heater when the reservoir 110 is mounted on the power base 113.
The main body of the liquid heating appliance disclosed in WO-A-07/096630 comprises two separable parts: a heated reservoir 110 and a dispensing part comprising the nozzle 112. The main body may be connected to a power base 113.
In an embodiment of the present invention, the main body of a heated liquid dispenser comprises at least three separable portions: a dispensing portion, a heating portion and an intermediate portion connectable between the heating portion and the dispensing portion. The heating portion contains a heating element 32, and optionally electrical components such as a thermal control and/or a cordless connector, and may or may not include the reservoir 110. The reservoir 110 may be defined by one or more of these portions, and may for example extend from the heating portion to the intermediate portion. Different sizes of intermediate portion may be used to allow the volume of the reservoir to be varied. A low profile appliance may comprise a heating portion not including the reservoir, and a low profile intermediate portion.
In an alternative embodiment, the order of connection of the portions may be different; for example, the heating portion may be connectable to the dispensing portion, and a reservoir portion may be connected to the dispensing portion or to the heating portion; all three portions may be connected together via a common single connector. All that is required is that the heating portion heat liquid in the reservoir before or during dispensing.
Specific embodiments are shown in
In the embodiment of
The embodiment of
The different portions may be separably connectable by means of any suitable coupling, such as a screw or bayonet fitting. Where rotational alignment is required between the different portions, this may be facilitated or enforced by the coupling; for example, a bayonet coupling that allows coupling in only one rotational orientation.
An advantage of the division of the appliance into at least three separate portions is that the portions may be more easily cleaned. For example, at least one opening of a portion may be large enough to facilitate internal cleaning.
The heating portion may be washable in a dishwasher, for example using any of the means discussed above for rendering components dishwashable. Alternatively, the dispensing portion and/or the intermediate portion may be dishwashable, but the heating portion may be cleanable by wiping, to avoid ingress of water into electrical parts; this is particularly suitable for embodiments where the heating portion comprises a detachable floor of the reservoir 110, since the floor is easily accessible for wiping clean.
The intermediate portion and/or the dispensing portion may be disposable if too difficult to clean. In this way, at least part of the appliance, such as the heating portion, may be reused.
Alternatively, any one of the separate components could be fitted with a disposable sleeve, insert or liner containing a substance to be dispensed, so that the sleeve or insert can be disposed without requiring the separate component to be cleaned. The disposable sleeve, insert or liner may be provided pre-filled with the liquid to be dispensed, or as a separate consumable to be filled with the liquid by the user.
Another advantage is that each portion may be constructed so as to optimise the function thereof; for example, the intermediate portion may be constructed from a material that is thermally insulating and/or comfortable to hold, while the heating portion may be constructed of heat-resistant material. The heating portion may also be made of thermally insulating material, to reduce heat loss. The appliance may be suitable for use at table, for dispensing heated liquids, and may therefore have an insulated base to avoid damaging the table.
The heating portion may be interchangeably connectable to any one of a plurality of different portions, such as intermediate portions and/or dispensing portions. In the embodiment shown in
Alternative dispensing portions may be used, which may be interchangeably connectable to the intermediate portion and/or to the heating portion. In one embodiment,
The intermediate portion or dispensing portion containing a reservoir may be interchangeable so that different liquids may be dispensed in turn. For example, a reservoir 110 containing a first liquid may be detached from the heating portion and replaced by a reservoir 110 containing a second liquid. This is particularly advantageous for example when applying liquids of different types, such as different coloured paints or coatings, different colours or consistencies of icing, different cleaning fluids or different oils in aromatherapy, where contamination between the different liquids should be avoided. The reservoir 110 should be removable from the heating portion without spilling the contents thereof. One or more supports or housings may be provided for storage of interchangeable portions so that the liquid may be kept within those portions when removed from other portions. The supports or housings may each include a cover to prevent leakage or drying of the liquid contained within the respective portion.
The reservoir 110 may be fillable in an inverted position. In the embodiment of
Where the reservoir is formed by both the heating portion and intermediate portion, the reservoir 110 may be filled by assembling the heating portion and intermediate portion, filling the reservoir 110, and then attaching the dispensing portion.
Where the liquid comprises a two part mixture, one part of the mixture may be placed in the heating portion and the intermediate portion may then be connected to the heating portion. The other part of the mixture is then poured into the intermediate portion to the desired level. This allows the proportions of the parts of the mixture to be determined accurately.
The liquid or solid to be heated may be supplied in a pre-packed container that forms the intermediate portion and is assembled to the heating portion before use; this assembly may pierce the container or otherwise cause it to open so that the contents can be heated by the heating element 115.
The heated liquid dispenser may include a stirrer 136 or other means for mixing the contents of the reservoir 110, for example to avoid separation or to promote emulsification of the contents. As shown in
Alternatively, as shown in
The stirrer 136 may be driven from the bottom, top or side of the appliance, and the dispensing portion may be arranged accordingly. For example, the dispensing portion may be mounted on the side of or below the reservoir 110.
The stirrer 136 may be centrally mounted in the reservoir 110 or offset from the centre of the reservoir 110. The stirrer 136 may take any one of a variety of forms, such as a rotatably inner wall of the reservoir 110, optionally with one or more inward projections such as fins, to promote mixing of the contents. Instead of stirring the contents of the reservoir 110, the contents may be agitated for example by causing part or all of the reservoir, or a part within the reservoir, to vibrate or oscillate.
The substance to be dispensed may be viscous or a solid or gel at room temperature, but may become less viscous, liquefy or melt when heated by the heating element 32 so that it can be dispensed more easily; examples include glue or silicone sealant. As shown in
In an alternative embodiment of the invention, the substance to be dispensed is provided as a gel that liquefies when stirred or agitated. In that case, the appliance need not include a heater, but instead includes a stirrer or agitator as described above.
In another embodiment, shown in
As shown in
The first chamber 110a need not contain a liquid, but may instead comprise a solid thermal mass that is heated by the heater 32 and releases heat into the liquid to be dispensed. Instead of a thermal mass, a material may be used to exhibits a reversible exothermic reaction that absorbs heat from the heater 34 and releases heat into the liquid to be dispensed.
The vent 140 in the reservoir 110 may be sealed by a ventilated membrane that allows pressure equalisation when gas within the reservoir 110 is heated. The membrane may be made of a fluoropolymer fabric such as Gore-tex™. Alternatively, the membrane may be of a resilient material such as silicone having one or more small apertures such as holes or cross-cuts. Under normal conditions, the resilient membrane is effectively watertight but the apertures open when expanded under pressure.
Alternatively, the reservoir 110 may have a variable volume, such as by means of a piston or expansion chamber, so that the volume thereof increases as gas within the reservoir 110 is heated.
The dispensing portion may be arranged to dispense a predetermined quantity of liquid in response to a single user actuation, for example by the arrangement of the pump 116. The amount of liquid dispensed by a single user actuation, or the rate of dispensing, may be adjustable by the user.
The dispensing portion may include an interlock so that liquid cannot be dispensed unless above a first predetermined temperature and/or below a second predetermined temperature. The appliance may include a temperature indicator to indicate whether the temperature of the liquid contents is above a first predetermined temperature and/or below a second predetermined temperature. The temperature indicator may be thermochromic, electronic, electrical or mechanical.
The appliance may include means to show the user how long the liquid has been in the appliance, for example to advise if the constituents need remixing or are no longer fit for use. The means may comprise a timing mechanism, counter or indicator, such as a chemical indicator involving a slow reaction that changes colour or other discernible properties over a length of time.
The dispensing portion may include a ratchet type dispenser so that liquid is dispensed as the dispenser is progressively actuated, and the dispenser must then be reset.
The appliance may include means for illuminating certain portions for improved operation; for example, the area around or in front of the nozzle or tube 112 may be illuminated. The reservoir 110 may be illuminated internally, and/or may have a transparent or translucent wall or wall portion so that the contents can be easily seen, for example to judge the level or condition of the contents. The reservoir 110 may have visible level markings so that the volume of liquid present in the reservoir 110 can be easily determined by the user. In the case of a cordless appliance, the means for illuminating may be powered by a power supply contained within the body of the appliance so that illumination may be provided when the appliance body is disconnected from the cordless base. The power supply may comprise a rechargeable battery or capacitor that is recharged when the appliance body is connected to the power base. Alternatively, the power supply may comprise a non-rechargeable battery.
The appliance may be a cordless appliance connectable to a cordless power base, or may have a permanently connected power cord. The cordless base may be a 360° cordless base.
The reservoir 110 may be made of stainless steel, plastic, glass, or ceramic. The sides of the reservoir 110 may be parallel, concave or convex. The reservoir 110 may be rectangular or oval in horizontal cross-section for easier storage, or may be circular in cross-section. The reservoir may be double walled, with both walls of one material or made of two different materials. The double wall assembly could provide thermal insulation or the materials may be selected for a specific property. The thermal insulation may comprise a vacuum or thermally insulating material between the walls.
The heating element may be an underfloor element plate, an immersed element, or an element incorporated into or formed on a wall of the reservoir 110. The heating element may be a resistance heater, a self-regulating PTC heater, a trace heater, an ohmic heater, an induction heater, a radiant heater or an ultrasonic heater. The underfloor element plate may have a thick film, diecast or sheathed element. The thick film element may include overheat protection, such as the E-fast™ protection disclosed in WO-A-2006083162. The element plate may be laser-welded onto the base of the reservoir 110, for example as disclosed in WO-A-2007136256.
In an alternative embodiment, the heater may be a flow-through heater arranged to heat liquid as it is dispensed, rather than heating the contents of the reservoir before dispensing.
Applications of the heated liquid dispenser in embodiments of the invention include: dispensing heated fragrances such as perfume or air freshener; dispensing heated detergent solution for improved cleaning, such as for ovens and/or barbeques; dispensing heated insecticide for greater efficacy; dispensing liquids that are solid or viscous at room temperature but dispensable when heated; applications that require two or more constituents to mix or react together before dispensing; dispensing heated glue or sealant, such as silicone, sealant; dispensing paint; dispensing liquids comprising components that tend to separate; dispensing liquids that require heating, stirring or agitation to cause a reaction required to achieve a desired effect; dispensing liquid shoe polish; dispensing waterproofing treatment; dispensing wax polish for cars and the like; dispensing cleaning fluid for example for alloy wheels; dispensing heated cooking oil for improved coverage; dispensing warm water for hairdressing applications; and dispensing heated massage or aromatherapy oil.
The above specific embodiments are described by way of reference only, and that many modifications and variations are possible within the scope of the enclosed claims.
Number | Date | Country | Kind |
---|---|---|---|
0804299.6 | Mar 2008 | GB | national |
0818545.6 | Oct 2008 | GB | national |
This is a continuation of U.S. patent application Ser. No. 12/921,372, filed Dec. 6, 2010, the disclosure of which is incorporated herewith in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 12921372 | Dec 2010 | US |
Child | 13953575 | US |