The invention relates generally to the intraluminal delivery of therapeutic devices which includes deploying the devices from delivery vehicles by remote activation of a detachment system closely proximal to the therapeutic device. The disclosure describes apparatuses and methods for accurately and rapidly delivering a therapeutic device at a desired location by applying heat to a thermally-responsive element, resulting in the disengagement of a retention element with the therapeutic device.
The use of catheters to insert and position therapeutic devices in the body has become a widely-used form of treatment for various conditions. Such devices are particularly useful in treating areas where traditional procedures are difficult such as in narrow cranial blood vessels. For example, vaso-occlusive devices such as embolic coils or wires are inserted at sites of aneurysm to occlude blood flow. The decreased blood flow reduces the pressure on the aneurysm and reduces the risk of a ruptured aneurysm. The coil also promotes thrombus formation. Embolic coils and wires can assume different shapes to better occlude a blood vessel. The coils can be coated with various materials to improve thrombogenicity. U.S. Pat. No. 6,723,108 describes some of the characteristics of different shapes of embolic coils. This patent and all other patents and patent application publications identified herein are hereby incorporated herein by reference.
Typically, procedures using a catheter involve inserting the distal end of the catheter into the vasculature of a patient and guiding it to a predetermined delivery site. A vascular occlusion device, such as an embolic coil, is attached to the end of a structure capable of manipulating the therapeutic device. This structure may, for example, be used to push the coil through the catheter and out of its distal end into the delivery site. The coil is then released from the pusher. The small size of some blood vessels requires that mechanism that releases the coil from the pusher be simple and not require complicated equipment. In addition, the release mechanism must accurately and rapidly place the therapeutic device at the determined site. Problems that have been associated with the release of the coil include the force of the coil exiting the delivery catheter causing the coil to overshoot the desired site or dislodge previously deployed coils.
In response to the above mentioned concerns, numerous devices and release mechanisms have been developed in an attempt to provide a delivery system which provides a rapid release or detachment mechanism to release the device at the correct location. One such device is disclosed in Geremia et al. U.S. Pat. No. 5,108,407, which shows a fiber optic cable including a connector device mounted to the end to the optic fiber. An embolic coil is attached to the connector device by a heat releasable adhesive. Laser light is transmitted through the fiber optic cable to increase the temperature of the connector device, which melts the adhesive and releases the embolic coil. One drawback to using this type of system is the potential risk of melted adhesives contaminating the blood stream.
Yet another embolic coil positioning and delivery system is described in Saadat et al. U.S. Pat. No. 5,989,242, which discloses a catheter having a shape memory alloy connector attached to the distal end of the catheter. The connector includes a socket having a pair of spaced-apart fingers which are responsive to a change in temperature. The fingers are bent towards each other and hold a ball which is connected to an end of an embolic coil. The connector absorbs laser light transmitted through an optical cable and transforms the light into heat energy. The heat energy raises the temperature of the connector and opens the fingers, thereby releasing the embolic coil. This type of ball and socket connection is rigid and causes the catheter to be stiff, making it difficult to guide the catheter through the vasculature of the body.
U.S. Patent application publication 2005/0113864 A1 by Gandhi et al describes an apparatus for the release and deployment of a therapeutic device where the therapeutic device is secured to the distal end of a pusher by a collar. When heated, the collar alters its configuration and releases the therapeutic device into the vasculature. The collar can be formed from shape memory metals or from thermoplastic polymers. In another embodiment found in the same disclosure, the therapeutic device is secured to the pusher by a connector fiber that can be broken by heating, releasing the therapeutic device. The connector fiber can be formed from a thermoplastic material or a biodegradable material that degrades or decomposes with heating. One difficulty associated with these arrangements is that the material forming the collar or fibre may fragment or dissolve when heated, releasing materials into the bloodstream. The Gandhi et al disclosure addresses this by performing the heating step completely within a catheter such that the pusher and therapeutic device become disengaged within the catheter. This approach is problematic because it may reduce the ability of the pusher to manipulate the therapeutic device to precisely the correct location in the vasculature.
In keeping with the invention, therefore, a need remains for a therapeutic device delivery apparatus which uses material that changes to effect therapeutic device release while remaining totally encapsulated, which has a reliable operating principle and is simple to use but still provides excellent control over the therapeutic device during the process of inserting and releasing it in the vasculature.
The invention concerns systems and methods for accurate and rapid delivery of a therapeutic device to a desired location in a body of a patient. A decoupling assembly is attached to the distal end of a pusher assembly. The decoupling assembly comprises a retention element and a thermally-responsive element. The thermally-responsive element maintains the retention element in a position where the retention element engages the therapeutic device. When energy is applied to an energy-responsive element, heat is transmitted to the thermally-responsive element and the thermally-responsive element changes its configuration such that the retention element is no longer engaged with the therapeutic device. Consequently, the therapeutic device is released at the desired site;
The energy-responsive element, which can take the form of a so-called heating element, may be heated using a variety of energy sources such as electrical energy, laser light, a radiofrequency source, or ultrasonic energy. The energy from these sources is transmitted to the energy-responsive element through conductors located in, at, or near the pusher element. In an alternative embodiment, energy to heat the energy-responsive element is provided without the use of conductors in, at or near the pusher. Energy from a radiofrequency source is one such energy source that can be transmitted through the body and direct its energy to the delivery device.
A general aspect of the present invention is to provide an apparatus for releasing a therapeutic device into the vasculature and methods for using same.
Another aspect of the invention is to provide devices capable of releasing embolic coils into the vasculature and methods for using such devices.
Other aspects, objects and advantages of the present invention will be understood from the following description according to the preferred embodiments of the present invention, specifically including stated and unstated combinations of the various features which are described herein, relevant information concerning which is shown in the accompanying drawings.
In describing the preferred embodiments of the present invention, reference will be made to the accompanying drawings, wherein:
    
    
    
    
    
    
As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention, which may be embodied in various forms. Therefore, specific details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present invention in virtually any appropriate manner.
As shown in 
  
The retention element 15 is formed from a material that is resilient; that is, the element will move from one configuration to another when permitted and is not susceptible to fracture when stressed or deformed. While shape memory materials such as Nitinol are suitable, it is not necessary that the material have shape memory properties. The retention element may, for example, be manufactured from spring steel or other resilient metals or polymers. As shown in 
The thermally-responsive element 18 is manufactured from a material that is thermally sensitive; that is, it assumes a different configuration when sufficient heat is applied. In its unheated configuration shown in 
The thermally-responsive element 18 can be made from a material that deforms, contracts or otherwise alters its configuration when heated. For example, the thermally-responsive element 18 may be formed from a material that changes from a solid to a flowable form, such as a liquid, when heat energy is applied above a selected temperature and a exceeding a selected time period. Suitable materials for the thermally-responsive element include low temperature solder, hot melt adhesives, waxes and low melting point metals. When the thermally-responsive element 18 assumes a liquid form, it is no longer able to maintain the retention element 15 in its expanded configuration and the retention element 15 assumes its collapsed configuration and disengages from the therapeutic device.
The change in form of the thermally-responsive element 18 should not occur spontaneously at body temperature and ideally should only occur when the thermally-responsive element 18 is exposed to heat produced by the energy-responsive element 17. In addition, the amount of heat and the length of exposure to heat produced by the energy-responsive element 17 should not exceed an acceptable level in a surgical context. For example, the heat produced should not cause unwanted adverse reactions in the patient, such as coagulation or denaturing of the blood or undesirable alterations in other tissues.
To ensure the thermally-responsive element 18 remains in its unaltered configuration before heating by the energy-responsive element 17, the thermally-responsive element should change from a solid to a flowable form above a temperature of at least about 40° C. and preferably from at least about 43° C. To reduce the risk of damage to the tissues of a patient, the thermally-responsive element should change its form at a temperature that does not exceed about 50° C. and preferably should not exceed about 47° C. That is, a preferred range for the change of form of the thermally-responsive element is from about 40° C. to 50° C. and a particularly preferred range is 43° C. to 47° C. However, a particular procedure may require different conditions. In such cases, temperatures greater than 50° C. may be acceptable when applied for a shorter time such that there is no significant alteration in tissues of the patient.
It may be necessary to include a membrane or the like to encapsulate a thermally-responsive element when it transforms to a flowable form, depending for example upon the encapsulating capabilities, if any, of the rest of the decoupling assembly. The encapsulating material serves a barrier function. Encapsulation prevents release of the material forming the thermally sensitive material when it is heated. In a preferred embodiment, the thermally-responsive element is encapsulated in a flexible membrane 23. The membrane should be flexible enough to accommodate the collapse of the retention element 15 when the thermally-responsive membrane 23 is heated. The integrity of the membrane 23 should not be compromised at the conditions used to heat the thermally-responsive element 18 to alter its configuration. For example, the membrane 23 should not undergo a phase transition from solid to liquid at the conditions used to heat the thermally-responsive element. A preferred material for the membrane is a silicone.
In the embodiment shown in 
The energy-responsive element 17 and the thermally-responsive element 18 are designed, sized and positioned such that the energy-responsive element 17 helps to transform energy applied to it into heat energy which then is transmitted to the thermally-responsive element 18. As shown in 
The retention element can be provided in any number of shapes with the only requirement being that it is capable of engaging the therapeutic device in at least one configuration and disengaging the therapeutic device in another configuration. For example, in the embodiment shown in 
In another embodiment, shown in 
  
In alternative embodiments, energy is provided to the energy-responsive or heating element through different means and using different types of energy sources. For example, as shown in 
In another embodiment, the energy-responsive or heating element is heated by light energy, preferably laser light. As shown in 
Alternatively, the pusher may contain materials that conduct ultrasonic energy from an ultrasonic energy source (not shown). The ultrasonic energy conductor may be placed in the lumen of the pusher. In this approach, the energy responsive element 55 transforms the ultrasonic energy to thermal energy to collapse the thermally-responsive element 56.
In the embodiment shown in 
Typically, energy source 67 is a radiofrequency (RF) source of the type generally known in the art. As in previous embodiments, heat alters the configuration of the thermally-responsive element 66 (shown encapsulated in membrane 61) such that it no longer maintains the retention element 64 in an expanded, offset position. The retention element 64 moves from an expanded, offset position to a generally collapsed or somewhat more straight-line position along the lines of 
It will be understood that the embodiments of the present invention which have been described are illustrative of some of the applications of the principles of the present invention. Numerous modifications may be made by those skilled in the art without departing from the true spirit and scope of the invention. Various features which are described herein can be used in any combination and are not limited to procure combinations that are specifically outlined herein.
| Number | Name | Date | Kind | 
|---|---|---|---|
| 5108407 | Geremia et al. | Apr 1992 | A | 
| 5224954 | Watts et al. | Jul 1993 | A | 
| 5250071 | Palermo | Oct 1993 | A | 
| 5520697 | Lindenberg et al. | May 1996 | A | 
| 5578074 | Mirigian | Nov 1996 | A | 
| 5746769 | Ton et al. | May 1998 | A | 
| 5814062 | Sepetka | Sep 1998 | A | 
| 5895391 | Farnholtz | Apr 1999 | A | 
| 5911737 | Lee | Jun 1999 | A | 
| 5989242 | Saadat et al. | Nov 1999 | A | 
| 6102917 | Maitland et al. | Aug 2000 | A | 
| 6102933 | Lee et al. | Aug 2000 | A | 
| 6149664 | Kurz | Nov 2000 | A | 
| 6165198 | McGurk et al. | Dec 2000 | A | 
| 6238415 | Sepetka | May 2001 | B1 | 
| 6277125 | Barry | Aug 2001 | B1 | 
| 6296622 | Kurz et al. | Oct 2001 | B1 | 
| 6723108 | Jones et al. | Apr 2004 | B1 | 
| 6849081 | Sepetka et al. | Feb 2005 | B2 | 
| 20030176877 | Narciso, Jr. | Sep 2003 | A1 | 
| 20040106933 | Barry | Jun 2004 | A1 | 
| 20040172053 | Barry et al. | Sep 2004 | A1 | 
| 20040204701 | Cox | Oct 2004 | A1 | 
| 20050113864 | Gandhi et al. | May 2005 | A1 | 
| 20050149108 | Cox | Jul 2005 | A1 | 
| Number | Date | Country | |
|---|---|---|---|
| 20070203518 A1 | Aug 2007 | US |