Heated nanowells for polynucleotide synthesis

Abstract
Devices for the manufacturing of high-quality building blocks, such as oligonucleotides, are described herein. Nano-scale devices allow for selective control over reaction conditions. Further, methods and devices described herein allow for the rapid construction of large libraries of highly accurate nucleic acids.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Oct. 16, 2018, is named 44854-744_201_SL.txt and is 685 bytes in size.


BACKGROUND

De novo gene synthesis is a powerful tool for basic biological research and biotechnology applications. While various methods are known for the design and synthesis of relatively short fragments in a small scale, these techniques often suffer from predictability, scalability, automation, speed, accuracy, and cost.


BRIEF SUMMARY

Provided herein are devices for polynucleotide synthesis comprising: a solid support comprising a surface; a plurality of structures for polynucleotide extension located on the surface, wherein each structure has a width of about 10 nm to about 1000 nm, wherein each structure is in contact with a heating unit, and wherein the heating unit comprises at least one electrode; and a solvent distributed across the surface, wherein the solvent is a polar solvent. Further provided herein are devices wherein the surface comprises at least 30,000 loci for nucleic acid synthesis. Further provided herein are devices wherein the surface comprises at least 50,000 loci for nucleic acid synthesis. Further provided herein are devices wherein the surface comprises at least 100,000 loci for nucleic acid synthesis. Further provided herein are devices wherein the surface comprises at least 200,000 loci for nucleic acid synthesis. Further provided herein are devices wherein the surface comprises at least 1,000,000 loci for nucleic acid synthesis. Further provided herein are devices wherein the one or more electrodes are addressible electrodes that heats one or more individual loci. Further provided herein are devices wherein the solid support further comprises a cooling unit. Further provided herein are devices wherein the distance between the centers of any two structures is about 10 nm to about 1000 nm. Further provided herein are devices wherein the distance between the centers of any two structures is about 100 nm to about 500 nm. Further provided herein are devices wherein the distance between the centers of any two structures is about 20 nm to about 300 nm. Further provided herein are devices wherein the distance between the centers of any two structures is about 100 nm. Further provided herein are devices wherein the distance between the centers of any two structures is about 200 nm. Further provided herein are devices wherein the distance between the centers of any two structures is about 500 nm. Further provided herein are devices wherein each structure comprises a 3-dimensional structure, wherein the 3-dimensional structure is a nanowell, a nanowire, a nanopost, or a nanorod. Further provided herein are devices wherein the solvent has a density of about 0.5 to about 1.5 g/mL. Further provided herein are devices wherein the solvent comprises a nitrile group. Further provided herein are devices wherein the solvent is trimethylacetonitrile. Further provided herein are devices wherein the solvent has a melting temperature of between 5 degrees C. to 18 degrees C. Further provided herein are devices wherein the solvent has a melting temperature of between 10 degrees C. to 18 degrees C. Further provided herein are devices wherein the solvent has a melting temperature of between 15 degrees C. to 18 degrees C. Further provided herein are devices wherein the device is used for polynucleotide synthesis, wherein polynucleotide synthesis comprises a plurality of elongation steps. Further provided herein are devices wherein the solvent is not removed during an elongation step. Further provided herein are methods for polynucleotide synthesis using the devices described herein.


Provided herein are devices for polynucleotide synthesis comprising: a solid support comprising a surface; a plurality of structures for polynucleotide extension located on the surface, wherein each structure has a width of about 10 nm to about 1000 nm, wherein each structure is in contact with a heating unit, and wherein the heating unit comprises at least one electrode; and a solvent distributed across the surface, wherein the solvent has a melting temperature of no more than about 18 degrees C. Further provided herein are devices wherein the surface comprises at least 30,000 loci for nucleic acid synthesis. Further provided herein are devices wherein the surface comprises at least 50,000 loci for nucleic acid synthesis. Further provided herein are devices wherein the surface comprises at least 100,000 loci for nucleic acid synthesis. Further provided herein are devices wherein the surface comprises at least 200,000 loci for nucleic acid synthesis. Further provided herein are devices wherein the surface comprises at least 1,000,000 loci for nucleic acid synthesis. Further provided herein are devices wherein the one or more electrodes are addressible electrodes that heats one or more individual loci. Further provided herein are devices wherein the solid support further comprises a cooling unit. Further provided herein are devices wherein the distance between the centers of any two structures is about 10 nm to about 1000 nm. Further provided herein are devices wherein the distance between the centers of any two structures is about 100 nm to about 500 nm. Further provided herein are devices wherein the distance between the centers of any two structures is about 20 nm to about 300 nm. Further provided herein are devices wherein the distance between the centers of any two structures is about 100 nm. Further provided herein are devices wherein the distance between the centers of any two structures is about 200 nm. Further provided herein are devices wherein the distance between the centers of any two structures is about 500 nm. Further provided herein are devices wherein each structure comprises a 3-dimensional structure, wherein the 3-dimensional structure is a nanowell, a nanowire, a nanopost, or a nanorod. Further provided herein are devices wherein the solvent has a density of about 0.5 to about 1.5 g/mL. Further provided herein are devices wherein the solvent is a polar solvent. Further provided herein are devices wherein the solvent comprises a nitrile group. Further provided herein are devices wherein the solvent is trimethylacetonitrile. Further provided herein are devices wherein the solvent has a melting temperature of between 5 degrees C. to 18 degrees C. Further provided herein are devices wherein the solvent has a melting temperature of between 10 degrees C. to 18 degrees C. Further provided herein are devices wherein the solvent has a melting temperature of between 15 degrees C. to 18 degrees C. Further provided herein are devices wherein the device is used for polynucleotide synthesis, wherein polynucleotide synthesis comprises a plurality of elongation steps. Further provided herein are devices wherein the solvent is not removed during an elongation step. Further provided herein are methods for polynucleotide synthesis using the devices described herein.


Provided herein are devices for polynucleotide synthesis comprising: a solid support comprising a surface; a plurality of structures for polynucleotide extension located on the surface, wherein each structure has a width of about 10 nm to about 1000 nm, wherein each structure is in contact with a heating unit, and wherein the heating unit comprises at least one electrode; and a solvent distributed across the surface, wherein the solvent has a boiling temperature of no more than about 82 degrees C. Further provided herein are devices wherein the surface comprises at least 30,000 loci for nucleic acid synthesis. Further provided herein are devices wherein the surface comprises at least 50,000 loci for nucleic acid synthesis. Further provided herein are devices wherein the surface comprises at least 100,000 loci for nucleic acid synthesis. Further provided herein are devices wherein the surface comprises at least 200,000 loci for nucleic acid synthesis. Further provided herein are devices wherein the surface comprises at least 1,000,000 loci for nucleic acid synthesis. Further provided herein are devices wherein the one or more electrodes are addressible electrodes that heats one or more individual loci. Further provided herein are devices wherein the solid support further comprises a cooling unit. Further provided herein are devices wherein the distance between the centers of any two structures is about 10 nm to about 1000 nm. Further provided herein are devices wherein the distance between the centers of any two structures is about 100 nm to about 500 nm. Further provided herein are devices wherein the distance between the centers of any two structures is about 20 nm to about 300 nm. Further provided herein are devices wherein the distance between the centers of any two structures is about 100 nm. Further provided herein are devices wherein the distance between the centers of any two structures is about 200 nm. Further provided herein are devices wherein the distance between the centers of any two structures is about 500 nm. Further provided herein are devices wherein each structure comprises a 3-dimensional structure, wherein the 3-dimensional structure is a nanowell, a nanowire, a nanopost, or a nanorod. Further provided herein are devices wherein the solvent has a density of about 0.5 to about 1.5 g/mL. Further provided herein are devices wherein the solvent has a boiling temperature of between 0 degrees C. to 82 degrees C. Further provided herein are devices wherein the solvent has a boiling temperature of between 30 degrees C. to 82 degrees C. Further provided herein are devices wherein the solvent has a boiling temperature of between 55 degrees C. to 82 degrees C. Further provided herein are devices wherein the device is used for polynucleotide synthesis, wherein polynucleotide synthesis comprises a plurality of elongation steps. Further provided herein are devices wherein the solvent is not removed during an elongation step. Further provided herein are methods for polynucleotide synthesis using the devices described herein.


Provided herein are methods for polynucleotide synthesis, comprising: providing predetermined sequences for a library of polynucleotides; providing a substrate comprising a surface; and synthesizing the library of polynucleotides extending from the surface, wherein different nucleotides are sequentially added before a deblocking step occurs. Further provided herein are methods wherein synthesizing further comprises a solvent, wherein the solvent undergoes at least one phase change. Further provided herein are methods wherein the solvent is a polar solvent. Further provided herein are methods wherein the solvent is trimethylacetonitrile. Further provided herein are methods wherein the solvent has a melting temperature between 15 degrees C. to 18 degrees C. Further provided herein are methods wherein the solvent has a density of between 0.5 and 1.5 g/mL. Further provided herein are methods wherein polynucleotide synthesis further comprises a plurality of elongation steps. Further provided herein are methods wherein the solvent is not removed during an elongation step. Further provided herein are methods wherein at least 2 different nucleotides are sequentially added before a deblocking step occurs. Further provided herein are methods wherein at least 3 different nucleotides are sequentially added before a deblocking step occurs. Further provided herein are methods wherein at least 4 different nucleotides are sequentially added before a deblocking step occurs. Further provided herein are methods wherein all of the surface is contacted with an identical nucleotide during an elongation step. Further provided herein are methods wherein the at least one phase change is melting or freezing. Further provided herein are methods wherein the at least one phase change is boiling or condensing.


Provided herein are methods for polynucleotide synthesis using the devices described herein.


Provided herein are methods for polynucleotide synthesis, the method comprising: providing predetermined sequences for a library of polynucleotides; providing a substrate comprising a surface; synthesizing the library of polynucleotides extending from the surface, wherein a solvent in the solid phase prevents deblocking of at least one polynucleotide extending from the at least one region of the surface, wherein the solvent has a melting temperature of no more than about 18 degrees C. Further provided herein are methods wherein synthesizing the library of polynucleotides extending from the surface comprises contacting the surface with a first nucleotide phosphoramidite. Further provided herein are methods wherein synthesizing the library of polynucleotides extending from the surface further comprises contacting the surface with a second nucleotide phosphoramidite, wherein the solvent is not removed between contact with the first nucleotide phosphoramidite and the second nucleotide phosphoramidite. Further provided herein are methods wherein synthesizing the library of polynucleotides extending from the surface further comprises melting the solvent present at the at least one region of the surface, and deblocking at least one extended polynucleotide extending from the surface in the at least one region. Further provided herein are methods wherein the solvent has a melting temperature of no more than about 15 degrees C. Further provided herein are methods wherein the solvent has a melting temperature of no more than about 10 degrees C. Further provided herein are methods wherein the solvent has a melting temperature of between 5 degrees C. to 18 degrees C. Further provided herein are methods wherein the solvent has a melting temperature of between 10 degrees C. to 18 degrees C. Further provided herein are methods wherein the solvent has a melting temperature of between 15 degrees C. to 18 degrees C. Further provided herein are methods wherein the surface comprises at least 30,000 loci for nucleic acid synthesis. Further provided herein are methods wherein the surface comprises at least 50,000 loci for nucleic acid synthesis. Further provided herein are methods wherein the surface comprises at least 100,000 loci for nucleic acid synthesis. Further provided herein are methods wherein the surface comprises at least 200,000 loci for nucleic acid synthesis. Further provided herein are methods wherein the surface comprises at least 1,000,000 loci for nucleic acid synthesis.


Provided herein are methods for polynucleotide synthesis, the method comprising: providing predetermined sequences for a library of polynucleotides; providing a substrate comprising a surface; synthesizing the library of polynucleotides extending from the surface, wherein a solvent in the gas phase prevents deblocking of at least one polynucleotide extending from the at least one region of the surface, wherein the solvent has a boiling temperature no more than about 82 degrees C. Further provided herein are methods wherein synthesizing the library of polynucleotides extending from the surface comprises contacting the surface with a first nucleotide phosphoramidite. Further provided herein are methods wherein synthesizing the library of polynucleotides extending from the surface further comprises contacting the surface with a second nucleotide phosphoramidite, wherein the solvent is not removed between contact with the first nucleotide phosphoramidite and the second nucleotide phosphoramidite. Further provided herein are methods wherein synthesizing the library of polynucleotides extending from the surface further comprises condensing the solvent present at the at least one region of the surface, and deblocking at least one extended polynucleotide extending from the surface in the at least one region. Further provided herein are methods wherein the solvent has a boiling temperature no more than about 75 degrees C. Further provided herein are methods wherein the solvent has a boiling temperature no more than about 65 degrees C. Further provided herein are methods wherein the solvent has a boiling temperature of between 0 degrees C. to 82 degrees C. Further provided herein are methods wherein the solvent has a boiling temperature of between 30 degrees C. to 82 degrees C. Further provided herein are methods wherein the solvent has a boiling temperature of between 55 degrees C. to 82 degrees C. Further provided herein are methods wherein the surface comprises at least 30,000 loci for nucleic acid synthesis. Further provided herein are methods wherein the surface comprises at least 50,000 loci for nucleic acid synthesis. Further provided herein are methods wherein the surface comprises at least 100,000 loci for nucleic acid synthesis. Further provided herein are methods wherein the surface comprises at least 200,000 loci for nucleic acid synthesis. Further provided herein are methods wherein the surface comprises at least 1,000,000 loci for nucleic acid synthesis.


INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:



FIG. 1 depicts a rigid structure, having flat features (loci), channels, or wells, respectively.



FIG. 2 depicts a schematic for the generation of polynucleotide libraries from cluster amplification.



FIG. 3A depicts a front cross section of a heated nanowell structure, having addressable wells.



FIG. 3B depicts a right cross section of a heated nanowell structure, having addressable wells.



FIG. 4A depicts a front cross section of a heated nanowell structure, having addressable wells.



FIG. 4B depicts a front cross section of a heated nanopost structure, having addressable nanoposts.



FIG. 5 depicts a front cross section of a heated nanorod structure, having addressable nanorods.



FIG. 6 depicts a front cross section of a nanowire structure attached to an addressable bottom contact.



FIG. 7 depicts a polynucleotide synthesis material deposition device.



FIG. 8 depicts a polynucleotide synthesis workflow.



FIG. 9 depicts a a computer system.



FIG. 10 depicts a block diagram illustrating the architecture of a computer system.



FIG. 11 depicts a network configured to incorporate a plurality of computer systems, a plurality of cell phones and personal data assistants, and Network Attached Storage (NAS).



FIG. 12 depicts a multiprocessor computer system using a shared virtual address memory space.





DETAILED DESCRIPTION OF THE INVENTION
Definitions

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of ordinary skill in the art to which these inventions belong.


Throughout this disclosure, numerical features are presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of any embodiments. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range to the tenth of the unit of the lower limit unless the context clearly dictates otherwise. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual values within that range, for example, 1.1, 2, 2.3, 5, and 5.9. This applies regardless of the breadth of the range. The upper and lower limits of these intervening ranges may independently be included in the smaller ranges, and are also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention, unless the context clearly dictates otherwise.


The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of any embodiment. As used herein, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.


Unless specifically stated or obvious from context, as used herein, the term “about” in reference to a number or range of numbers is understood to mean the stated number and numbers +/−10% thereof, or 10% below the lower listed limit and 10% above the higher listed limit for the values listed for a range.


As used herein, the terms “preselected sequence”, “predefined sequence” or “predetermined sequence” are used interchangeably. The terms mean that the sequence of the polymer is known and chosen before synthesis or assembly of the polymer. In particular, various aspects of the invention are described herein primarily with regard to the preparation of nucleic acids molecules, the sequence of the oligonucleotide or polynucleotide being known and chosen before the synthesis or assembly of the nucleic acid molecules.


Provided herein are methods and compositions for production of synthetic (i.e. de novo synthesized or chemically synthesizes) polynucleotides. The term oligonucleotide, oligo, and polynucleotide are defined to be synonymous throughout. Libraries of synthesized polynucleotides described herein may comprise a plurality of polynucleotides collectively encoding for one or more genes or gene fragments. In some instances, the polynucleotide library comprises coding or non-coding sequences. In some instances, the polynucleotide library encodes for a plurality of cDNA sequences. Reference gene sequences from which the cDNA sequences are based may contain introns, whereas cDNA sequences exclude introns. Polynucleotides described herein may encode for genes or gene fragments from an organism. Exemplary organisms include, without limitation, prokaryotes (e.g., bacteria) and eukaryotes (e.g., mice, rabbits, humans, and non-human primates). In some instances, the polynucleotide library comprises one or more polynucleotides, each of the one or more polynucleotides encoding sequences for multiple exons. Each polynucleotide within a library described herein may encode a different sequence, i.e., non-identical sequence. In some instances, each polynucleotide within a library described herein comprises at least one portion that is complementary to sequence of another polynucleotide within the library. Polynucleotide sequences described herein may, unless stated otherwise, comprise DNA or RNA. Provided herein are methods and compositions for production of synthetic (i.e. de novo synthesized) genes. Libraries comprising synthetic genes may be constructed by a variety of methods described in further detail elsewhere herein, such as PCA, non-PCA gene assembly methods or hierarchical gene assembly, combining (“stitching”) two or more double-stranded polynucleotides to produce larger DNA units (i.e., a chassis). Libraries of large constructs may involve polynucleotides that are at least 1, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, 250, 300, 400, 500 kb long or longer. The large constructs can be bounded by an independently selected upper limit of about 5000, 10000, 20000 or 50000 base pairs. The synthesis of any number of polypeptide-segment encoding nucleotide sequences, including sequences encoding non-ribosomal peptides (NRPs), sequences encoding non-ribosomal peptide-synthetase (NRPS) modules and synthetic variants, polypeptide segments of other modular proteins, such as antibodies, polypeptide segments from other protein families, including non-coding DNA or RNA, such as regulatory sequences e.g. promoters, transcription factors, enhancers, siRNA, shRNA, RNAi, miRNA, small nucleolar RNA derived from microRNA, or any functional or structural DNA or RNA unit of interest. The following are non-limiting examples of polynucleotides: coding or non-coding regions of a gene or gene fragment, intergenic DNA, loci (locus) defined from linkage analysis, exons, introns, messenger RNA (mRNA), transfer RNA, ribosomal RNA, short interfering RNA (siRNA), short-hairpin RNA (shRNA), micro-RNA (miRNA), small nucleolar RNA, ribozymes, complementary DNA (cDNA), which is a DNA representation of mRNA, usually obtained by reverse transcription of messenger RNA (mRNA) or by amplification; DNA molecules produced synthetically or by amplification, genomic DNA, recombinant polynucleotides, branched polynucleotides, plasmids, vectors, isolated DNA of any sequence, isolated RNA of any sequence, nucleic acid probes, and primers. cDNA encoding for a gene or gene fragment referred to herein, may comprise at least one region encoding for exon sequence(s) without an intervening intron sequence found in the corresponding genomic sequence. Alternatively, the corresponding genomic sequence to a cDNA may lack an intron sequence in the first place.


Devices for Polynucleotide Synthesis


Provided herein are processes and devices for the selective synthesis of polynucleotides in addressable locations based on a phase change process. The selectivity is achieved by blocking synthesis on an active polynucleotide synthesis surface, by converting a reaction solvent phase, such as a liquid solvent, in the reaction well to a non-reactive phase, such as a solid or gas which limits exposure to reagents in the surrounding solvent. Heating or cooling in the reaction well provides for a shift in the physical state of the solvent exposed to the polynucleotide synthesis surface. During an iterative synthetic protocol, structures such as nanostructures comprising local addressable heaters (heating units, comprising for example one or more electrodes or heating elements) are used to melt or boil the solvent, affording accessibility at defined locations on the synthesis surface for downstream interactions, such as nucleoside coupling and extension reactions.


Provided herein are structures having a surface with a plurality of features (loci) for polynucleotide synthesis or extension. Each feature on a structure in some instances comprises one or more smaller structures, such as a nanostructure, for controlling the phase of the surrounding solvent in a region of a feature. Each feature in a portion of the structure 101, may comprise a substantially planar feature 103, a well 105, or a channel. See FIG. 1. In one instance each feature of the structure has a width of about 10 nm to about 10 μm and a distance between the center of each feature of about 10 nm to about 10 μm. The cross sectional shape of the feature may comprise, without limitation, a circle, a rectangle, a triangle or a polygon. The shape of the feature may be tapered, round, a well, a channel, a wire, a rod, a pole, a cone, or any combination thereof.


In some instances, the polynucleotides are synthesized on a cluster of loci for polynucleotide extension, released and then subsequently subjected to an amplification reaction, e.g., PCR. An exemplary workflow of synthesis of polynucleotides from a cluster is depicted in FIG. 2. A silicon plate 201 includes multiple clusters 203. Within each cluster are multiple loci 221. Polynucleotides are synthesized 207 de novo on a plate 201 from the cluster 203. Polynucleotides are cleaved 211 and removed 213 from the plate to form a population of released polynucleotides 215. The population of released polynucleotides 215 are then amplified 217 to form a library of amplified polynucleotides 219.


In a first structure, a heated nanowell for solid-liquid phase control provides for polynucleotide synthesis. See FIG. 3A and FIG. 3B, device 300. Each feature in a portion of the structure 301, may be a substantially planar feature 303 (e.g., flat), a well 305, or a channel. In some instances, the substantially planar feature 303 comprises a first material 307, a second material 309, a third material 311 and a fourth material 313, wherein the third material 311 covers a first portion of the first material 307 and the second material 309, and wherein the fourth material 313 covers a second portion of the first material 307 and the second material 309. The first 307, second 309, third 311, and fourth 313 materials comprise conductors, semiconductors, or insulators. In some instances, the first material 307 comprises a semiconducting material, such as silicon. In some instances, the second material 309 forms two or more columns of bottom addressible electrodes. In some instances, the second material 309 comprises a conductor, such as a metal. In some instances the second material 309 comprises tungsten. In some instances, the third material 311 comprises an insulator, such as silicon dioxide. In some instances, the fourth material 313 forms two or more rows of top addressable electrodes. In some instances, the fourth material 313 comprises a conductor, such as a metal. In some instances the third material 311 comprises titanium nitride. Consistent with the specification, other metals, semi-conductors, and insulators are used.


In some instances, simultaneously applying a current to one or more of the columns of the bottom addressible electrodes 309, and one or more of the rows of the top addressible electrodes 313, heats one or more wells 305 associated with the intersection of the corresponding column of the one or more bottom electrodes 309, and the corresponding row of the one or more top electrodes 313. In some aspects, the first material 307 and the bottom electrodes 309 serve to conduct heat away from a synthesis surface 302 to a cooling element (or cooling unit, or cold chuck). In some instances, lined wells 305 act as a heater and are selective against the deposition of the nucleotide binding chemistry. In some instances, an insulator, such as SiO2 is used to thermally isolate the wells 305 and the top surface of the device 300. In some instances, a device for the selective synthesis of polynucleotides comprises one or more heating elements comprised of one or more addressible electrodes.


In a second structure, a heated nanowell for liquid-gas phase control provides for polynucleotide synthesis. See FIG. 4A. Each feature in a portion of the device 400, may be a well 401, or a channel. In some instances, the well is a cylinder shape. In some instances, the device 400 comprises a top contact 403, a first heating element 404, a first material 405, a second heating element 406, a bottom contact 408, and a second material 409 wherein the top contact 403 covers a first portion of the first material 405 and a first portion of the first heating element 404, wherein the first heating element 404 covers a first portion of the second heating element 406, and a second portion of the first material 405, wherein the first material 405 covers a first portion of the second material 409, and wherein the bottom contact 408 contacts both the second heating element 406 and the second material 409. In some instances, the top contact 403 and the bottom contact form top 403 and bottom 408 addressable contacts, respectively. In some instances, the top contact 403 and the bottom contact 408 comprise a conductor, such as a metal. In some instances, the first material 405 and the second material 409 comprise an insulating material, such as silicon dioxide. In some instances, the first heating element 404 and the second heating element 406 comprise semiconducting materials, such as silicon. The semiconducting material in some instances comprises one or more dopants, such as but not limited to phosphorus, antimony, arsenic, boron, aluminum, or indium. Alternately or in combination, the first heating element 404 and the second heating element 406 are conductors.


In some instances, simultaneously applying an electrical current to one or more of the bottom addressible contacts 408, and one or more of the top addressible contacts 403 to form an electrical path heats one or more wells 401 associated with the intersection of the corresponding one or more bottom contacts 408, and the corresponding one or more top contacts 403, such as at the first heating element 404 and the second heating element 406, respectively. In some instances, heating of a solvent 402 by applying an electrical current through the device causes solvent vaporization to form a vapor nanobubble 417 that prevents solvent contact with the synthesis surface 407, which collapses when the electrical current flow or heating is discontinued. In some instances, the electrical path includes at least one semiconductor junction, such as a p-n junction. In some instances, this junction determines the current intensity, and improves heating element stability. In some instances, the fourth material 406 forms a heating element, and comprises a doped semiconductor resistor.


In a third structure, a heated nanopost for liquid-gas phase control provides for polynucleotide synthesis. See FIG. 4B, device 410. Each feature in a portion of the device 410, may be a nanopost. In some instances, the feature 410 comprises a core contact 412, a first material 413, a surface contact 414, a heating element 415, and a second material 416 wherein the surface contact 414 covers a first portion of the first material 413, wherein the heating element 415 covers a first portion of the first material 413 and a first portion of the surface contact 414, wherein the second material 416 covers a first portion of the core contact 412 and a second portion of surface contact 414. In some instances, heating of a solvent 402 by applying an electrical current through the device causes solvent vaporization to form a gas bubble 417 which prevents solvent contact with the synthesis surface 407, and collapses when the electrical current flow or heating is discontinued. In some instances, the core contact 412, surface contact 414, and the heating element 415 comprise a conductor, such as a metal. In some instances, the first material 413 and the second material 416 comprise an insulating material. In some instances, the heating element 415 comprises a semiconducting material.


In some instances, simultaneously applying a current to one or more top surface contacts 414 and one or more conductive core contacts 412 heats one or more electrical resistor sidewalls (heating elements) 415. In some instances, heating of a solvent 402 by applying an electrical current through the device causes solvent vaporization to form a vapor nanobubble 417 that prevents solvent contact with the synthesis surface 407 and collapses when the electrical current flow or heating is discontinued.


In a fourth structure, a heated nanorod for liquid-gas phase control provides for polynucleotide synthesis. See FIG. 5, device 500. Each feature in a portion of the device 500, may comprise one or more nanorods 502, including but not limited to nanowires or carbon nanotubes. The location of polynucleotide synthesis or extension 507 in FIG. 5 is shown for illustration only; synthesis or extension may take place anywhere on the nanorod 502. In some instances, the device 500 is comprised of a heating element 501, a nanorod 502, a top contact 503, a first material 504, and a bottom contact 505 wherein the top contact 503 covers a first portion of first material 504, wherein the heating element 501 covers a second portion of the first material 504 and a first portion of the bottom contact 505, and wherein the nanorod 502 covers a third portion of the first material 504.


In some instances, the top contact 503 and the bottom contact 505 form top 503 and bottom 505 addressable contacts, respectively. In some instances, the top contact 503 and the bottom contact 505 comprise a conductor, such as a metal. In some instances, the first material 504 comprises an insulating material. In some instances, the heating element 501 comprises a semiconducting material, such as silicon. The semiconducting material in some instances comprises one or more dopants, such as but not limited to phosphorus, antimony, arsenic, boron, aluminum, or indium. In some instances, the heating element 501 comprises a conductor, such as a metal.


In some instances, simultaneously applying a current to one or more of the bottom addressible contacts 505, and one or more of the top addressible contacts 503 to form an electrical path through heating element 501 and solvent 506 heats the area surrounding one or more nanorods 502 or nanorod clusters. In some instances, heating a solvent 506 by applying an electrical current through the device causes solvent vaporization to form a vapor nanobubble 517 which collapses when the electrical current flow or heating is discontinued. The vapor bubble 517 separates the synthesis surface 507 from the solvent 506. In some instances, the electrical path includes at least one semiconductor junction, such as a p-n junction at the heating element 501. In some instances, this junction determines the current intensity, and improves heating element stability. In some instances, the heating element 501 comprises a doped semiconductor resistor. In some instances, the nanorod 502 provides increased surface area for nucleotide coupling, leading to higher polynucleotide yields. In some instances, the number and scale of nanorods 502 and electrodes may be reduced.


In a fifth structure, a nanorod on a contact provides for polynucleotide synthesis. See FIG. 6, device 600. Each feature in a portion of the device 600, may be one or more nanorods 603, including but not limited to nanowires or carbon nanotubes. In some instances, nanorods 603 are in contact with solvent 604. The location of polynucleotide synthesis or extension 607 in FIG. 6 is shown for illustration only; synthesis or extension may take place anywhere on the nanorod 603. In some instances, the substantially planar feature 600 comprises a bottom contact 601, one or more nanorods 603, and a first material 602, wherein the first material 602 covers a first portion of the bottom contact 601. In some instances, the bottom contact 601 forms a bottom addressable contact. In some instances, the bottom contact 601 comprises a conductor, such as a metal. In some instances, the nanorod 603 comprises a conductor or a semiconductor. In some instances, the first material 602 comprises an insulating material.


In some instances, the nanorods 603 comprise a conductive material. In some instances, the nanorod feature 607 provides increased surface area for nucleotide coupling, leading to higher polynucleotide yields. In some instances, the number and scale of nanorods and contacts may be reduced, for example, to one nanorod with one contact. In some instances, the bottom contact 601 is a thermal contact. In some instances, cooling of the bottom contact 601 cools one or more nanorods 607, and coats the one or more nanorods 603 with a layer of frozen solvent, that prevents solvent contact with the synthesis surface 607.


Structures for Polynucleotide Synthesis


In some instances, a well described herein has a width to depth (or height) ratio of 20 to 0.01, wherein the width is a measurement of the width at the narrowest segment of the well. In some instances, a well described herein has a width to depth (or height) ratio of 20 to 0.05, wherein the width is a measurement of the width at the narrowest segment of the well. In some instances, a well described herein has a width to depth (or height) ratio of 1 to 0.01, wherein the width is a measurement of the width at the narrowest segment of the well. In some instances, a well described herein has a width to depth (or height) ratio of 0.5 to 0.01, wherein the width is a measurement of the width at the narrowest segment of the well. In some instances, a well described herein has a width to depth (or height) ratio of about 0.01, 0.05, 0.1, 0.15, 0.16, 0.2, 0.5, 1, 2, 5, 10 or 20.


In some instances, a well described herein has a diameter to depth (or height) ratio of 20 to 0.01, wherein the diameter is a measurement of the diameter at the narrowest segment of the well. In some instances, a well described herein has a diameter to depth (or height) ratio of 20 to 0.05, wherein the diameter is a measurement of the diameter at the narrowest segment of the well. In some instances, a well described herein has a diameter to depth (or height) ratio of 1 to 0.01, wherein the diameter is a measurement of the diameter at the narrowest segment of the well. In some instances, a well described herein has a diameter to depth (or height) ratio of 0.5 to 0.01, wherein the diameter is a measurement of the diameter at the narrowest segment of the well. In some instances, a well described herein has a diameter to depth (or height) ratio of about 0.01, 0.05, 0.1, 0.15, 0.16, 0.2, 0.5, 1, 2, 5, 10, or 20.


In some instances, a structure described herein comprises a plurality of wells, wherein the height or depth of the well is from about 10 nm to about 10 μm, from about 10 nm to about 1 μm, from about 10 nm to about 500 nm, from about 10 nm to about 100 nm, from about 50 nm to about 700 nm, from about 50 nm to about 600 nm, from about 50 nm to about 500 nm, from about 50 nm to about 400 nm, from about 50 nm to about 300 nm, from about 50 nm to about 200 nm, or from about 50 nm to about 100 nm. In some instances, the height of a well is no more than 10 μm, 5 μm, 2 μm, 1 μm, 500 nm, 200 nm, 100 nm, 50 nm, 20 nm, or no more than 10 nm. In some instances, the well height is about 10 nm, 20 nm, 30 nm, 40 nm, 50 nm, 60 nm, 70 nm, 80 nm, 90 nm, 100 nm, 200 nm, 300 nm, 400 nm, 500 nm, 1 μm, 2 μm, 5 μm, 10 μm, or more than 10 μm.


In some instances, a structure described herein comprises a plurality of wells, wherein the width of the well is from about 10 nm to about 10 μm, from about 10 nm to about 1 μm, from about 10 nm to about 500 nm, from about 10 nm to about 100 nm, from about 50 nm to about 700 nm, from about 50 nm to about 600 nm, from about 50 nm to about 500 nm, from about 50 nm to about 400 nm, from about 50 nm to about 300 nm, from about 50 nm to about 200 nm, or from about 50 nm to about 100 nm. In some instances, the width of a well is no more than 10 μm, 5 μm, 2 μm, 1 μm, 500 nm, 200 nm, 100 nm, 50 nm, 20 nm, or no more than 10 nm. In some instances, well width is about 10 nm, 20 nm, 30 nm, 40 nm, 50 nm, 60 nm, 70 nm, 80 nm, 90 nm, 100 nm, 200 nm, 300 nm, 400 nm, 500 nm, 1 μm, 2 μm, 5 μm, 10 μm, or more than 10 μm.


In some instances, a structure described herein comprises a plurality of wells, wherein the diameter of the well is from about 10 nm to about 10 μm, from about 10 nm to about 1 μm, from about 10 nm to about 500 nm, from about 10 nm to about 100 nm, from about 50 nm to about 700 nm, from about 50 nm to about 600 nm, from about 50 nm to about 500 nm, from about 50 nm to about 400 nm, from about 50 nm to about 300 nm, from about 50 nm to about 200 nm, or from about 50 nm to about 100 nm. In some instances, the diameter of a well is no more than 10 μm, 5 μm, 2 μm, 1 μm, 500 nm, 200 nm, 100 nm, 50 nm, 20 nm, or no more than 10 nm. In some instances, well diameter is about 10 nm, 20 nm, 30 nm, 40 nm, 50 nm, 60 nm, 70 nm, 80 nm, 90 nm, 100 nm, 200 nm, 300 nm, 400 nm, 500 nm, 1 μm, 2 μm, 5 μm, 10 μm, or more than 10 μm.


In some instances, a spot or substantially planar feature described herein has a diameter from about 50 nm to about 1000 nm, from about 50 nm to about 900 nm, from about 50 nm to about 800 nm, from about 50 nm to about 700 nm, from about 50 nm to about 600 nm, from about 50 nm to about 500 nm, from about 50 nm to about 400 nm, from about 50 nm to about 300 nm, from about 50 nm to about 200 nm, or from about 50 nm to about 100 nm.


In some instances, a channel described herein has a width to depth (or height) ratio of 20 to 0.01, wherein the channel is a measurement of the width at the narrowest segment of the channel. In some instances, a channel described herein has a width to depth (or height) ratio of 20 to 0.05, wherein the width is a measurement of the width at the narrowest segment of the channel. In some instances, a channel described herein has a width to depth (or height) ratio of 1 to 0.01, wherein the width is a measurement of the width at the narrowest segment of the channel. In some instances, a channel described herein has a width to depth (or height) ratio of 0.5 to 0.01, wherein the width is a measurement of the width at the narrowest segment of the well. In some instances, a channel described herein has a width to depth (or height) ratio of about 0.01, 0.05, 0.1, 0.15, 0.16, 0.2, 0.5, 1, 2, 5, 10 or 20.


In some instances, a channel described herein has a diameter to depth (or height) ratio of 20 to 0.01, wherein the diameter is a measurement of the diameter at the narrowest segment of the channel. In some instances, a channel described herein has a diameter to depth (or height) ratio of 20 to 0.05, wherein the diameter is a measurement of the diameter at the narrowest segment of the channel. In some instances, a channel described herein has a diameter to depth (or height) ratio of 1 to 0.01, wherein the diameter is a measurement of the diameter at the narrowest segment of the channel. In some instances, a channel described herein has a diameter to depth (or height) ratio of 0.5 to 0.01, wherein the diameter is a measurement of the diameter at the narrowest segment of the channel. In some instances, a channel described herein has a diameter to depth (or height) ratio of about 0.01, 0.05, 0.1, 0.15, 0.16, 0.2, 0.5, 1, 2, 5, 10, or 20.


In some instances, a structure described herein comprises a plurality of channels, wherein the height or depth of the channel is from about 10 nm to about 10 μm, from about 10 nm to about 1 μm, from about 10 nm to about 500 nm, from about 10 nm to about 100 nm, from about 50 nm to about 700 nm, from about 50 nm to about 600 nm, from about 50 nm to about 500 nm, from about 50 nm to about 400 nm, from about 50 nm to about 300 nm, from about 50 nm to about 200 nm, or from about 50 nm to about 100 nm. In some instances, the height of a channel is no more than 10 μm, 5 μm, 2 μm, 1 μm, 500 nm, 200 nm, 100 nm, 50 nm, 20 nm, or no more than 10 nm. In some instances, channel height is about 10 nm, 20 nm, 30 nm, 40 nm, 50 nm, 60 nm, 70 nm, 80 nm, 90 nm, 100 nm, 200 nm, 300 nm, 400 nm, 500 nm, 1 μm, 2 μm, 5 μm, 10 μm, or more than 10 μm.


In some instances, a structure described herein comprises a plurality of channels, wherein the width of the channel is from about 10 nm to about 10 μm, from about 10 nm to about 1 μm, from about 10 nm to about 500 nm, from about 10 nm to about 100 nm, from about 50 nm to about 700 nm, from about 50 nm to about 600 nm, from about 50 nm to about 500 nm, from about 50 nm to about 400 nm, from about 50 nm to about 300 nm, from about 50 nm to about 200 nm, or from about 50 nm to about 100 nm. In some instances, the width of a channel is no more than 10 μm, 5 μm, 2 μm, 1 μm, 500 nm, 200 nm, 100 nm, 50 nm, 20 nm, or no more than 10 nm. In some instances, channel width is about 10 nm, 20 nm, 30 nm, 40 nm, 50 nm, 60 nm, 70 nm, 80 nm, 90 nm, 100 nm, 200 nm, 300 nm, 400 nm, 500 nm, 1 μm, 2 μm, 5 μm, 10 μm, or more than 10 μm.


In some instances, a structure described herein comprises a plurality of channels, wherein the diameter of the channel is from about 10 nm to about 10 μm, from about 10 nm to about 1 μm, from about 10 nm to about 500 nm, from about 10 nm to about 100 nm, from about 50 nm to about 700 nm, from about 50 nm to about 600 nm, from about 50 nm to about 500 nm, from about 50 nm to about 400 nm, from about 50 nm to about 300 nm, from about 50 nm to about 200 nm, or from about 50 nm to about 100 nm. In some instances, the diameter of a channel is no more than 10 μm, 5 μm, 2 μm, 1 μm, 500 nm, 200 nm, 100 nm, 50 nm, 20 nm, or no more than 10 nm. In some instances, well diameter is about 10 nm, 20 nm, 30 nm, 40 nm, 50 nm, 60 nm, 70 nm, 80 nm, 90 nm, 100 nm, 200 nm, 300 nm, 400 nm, 500 nm, 1 μm, 2 μm, 5 μm, 10 μm, or more than 10 μm.


In some instances, the width of a feature (e.g., substantially planar feature, well, channel, or other feature supporting polynucleotide synthesis) is from about 10 nm to about 10 μm, from about 100 nm to about 10 μm, from about 200 nm to about 1 μm, from about 50 nm to about 500 nm, from about 50 nm to about 200 μm, or from about 10 nm to about 100 nm, for example, about 10 μm, 5 μm, 2 μm, 1 μm, 500 nm, 200 nm, 100 nm, 50 nm, 20 nm, or 10 nm. In some instances, the width of a feature is no more than about 10 μm, 5 μm, 2 μm, 1 μm, 500 nm, 200 nm, 100 nm, 50 nm or 10 nm. In some instances, the distance between the center of two adjacent features is from about 10 nm to about 10 μm, 20 nm to about 5 μm, from about 50 nm to about 2 nm, from about 100 nm to about 1 μm, from about 200 nm to about 500 nm, from about 200 nm to about 1 μm, from about 200 nm to about 750 nm, or from about 300 nm to about 600 nm, for example, about 500 nm. In some instances, the total width of a feature is about 10 nm, 20 nm, 50 nm, 100 nm, 200 nm, 500 nm, 1 μm, 5 μm, 10 μm, 20 μm, 30 μm, 40 μm, 50 μm, 60 μm, 70 μm, 80 μm, 90 μm, or 100 μm. In some instances, the total width of a feature is about 10 nm to 1 μm, 20 nm to 500 nm, or 50 nm to 100 nm.


In some instances, the width of a structure (e.g., substantially planar structure, well, channel, nanowell, nanorod, nanopost, or other nanostructure supporting polynucleotide synthesis) is from about 10 nm to about 10 μm, from about 100 nm to about 10 μm, from about 200 nm to about 1 μm, from about 50 nm to about 500 nm, from about 50 nm to about 200 μm, or from about 10 nm to about 100 nm, for example, about 10 μm, 5 μm, 2 μm, 1 μm, 500 nm, 200 nm, 100 nm, 50 nm, 20 nm, or 10 nm. In some instances, the width of a structure is no more than about 10 μm, 5 μm, 2 μm, 1 μm, 500 nm, 200 nm, 100 nm, 50 nm or 10 nm. In some instances, the distance between the center of two adjacent structures is from about 10 nm to about 10 μm, 20 nm to about 5 μm, from about 50 nm to about 2 nm, from about 100 nm to about 1 μm, from about 200 nm to about 500 nm, from about 200 nm to about 1 μm, from about 200 nm to about 750 nm, or from about 300 nm to about 600 nm, for example, about 500 nm. In some instances, the total width of a structure is about 10 nm, 20 nm, 50 nm, 100 nm, 200 nm, 500 nm, 1 μm, 5 μm, 10 μm, 20 μm, 30 μm, 40 μm, 50 μm, 60 μm, 70 μm, 80 μm, 90 μm, or 100 μm. In some instances, the total width of a structure is about 10 nm to 1 μm, 20 nm to 500 nm, or 50 nm to 100 nm.


Surfaces for Polynucleotide Synthesis


In some instances, each feature supports the synthesis of a population of polynucleotides having a different sequence than a population of polynucleotides grown on another feature. Provided herein are surfaces which comprise at least 10, 100, 256, 500, 1,000, 2,000, 3,000, 4,000, 5,000, 6,000, 7,000, 8,000, 9,000, 10,000, 11,000, 12,000, 13,000, 14,000, 15,000, 20,000, 30,000, 40,000, 50,000 or more clusters. Provided herein are surfaces which comprise more than 2,000; 5,000; 10,000; 20,000; 30,000; 50,000; 100,000; 200,000; 300,000; 400,000; 500,000; 600,000; 700,000; 800,000; 900,000; 1,000,000; 5,000,000; or 10,000,000 or more distinct features. In some instances, each cluster includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 130, 150, 200, 500 or more features. In some instances, each cluster includes 50 to 500, 50 to 200, 50 to 150, or 100 to 150 features. In some instances, each cluster includes 100 to 150 features. In exemplary arrangements, each cluster includes 109, 121, 130 or 137 features. In some instances, each structure within a feature (such as a nanostructure) supports the synthesis of a population of polynucleotides having a different sequence than a population of polynucleotides grown on another structure, within the same feature. Provided herein are features which in some instances each comprise at least 1; 2; 5; 10; 20; 50; 100; 200, 500, 1,000, 2,000, 5,000, 10,000, 20,000 or more than 200,000 distinct nanostructures. In some instances, each feature comprises about 10 to about 500, about 50 to about 250, about 10 to about 1000, or about 1 to about 50 nanostructures.


Provided herein are features having a width at the longest segment of 10 nm to 1 μm. In some instances, the features have a width at the longest segment of about 10, 20, 30, 35, 40, 45, 50, 55 or 60 nm. In some instances, the features are channels having multiple segments, wherein each segment has a center to center distance apart of 5 to 50 nm. In some instances, the center to center distance apart for each segment is about 5, 10, 15, 20 or 25 nm.


In some instances, the number of distinct polynucleotides synthesized on the surface of a structure described herein is dependent on the number of distinct features available in the substrate. In some instances, the density of features within a cluster of a substrate is at least or about 1 feature per mm2, 10 features per mm2, 25 features per mm2, 50 features per mm2, 65 features per mm2, 75 features per mm2, 100 features per mm2, 130 features per mm2, 150 features per mm2, 175 features per mm2, 200 features per mm2, 300 features per mm2, 400 features per mm2, 500 features per mm2, 1,000 features per mm2, 2,000 features per mm2, 5,000 features per mm2, 10,000 features per mm2, 100,000 features per mm2, 1,000,000 features per mm2 or more than 1,000,000 features per mm2. In some instances, a substrate comprises from about 10 features per mm2 to about 500 features per mm2, from about 25 features per mm2 to about 400 features per mm2, from about 50 features per mm2 to about 500 features per mm2, from about 100 features per mm2 to about 500 features per mm2, from about 150 features per mm2 to about 500 features per mm2, from about 10 features per mm2 to about 250 features per mm2, from about 50 features per mm2 to about 250 features per mm2, from about 10 features per mm2 to about 200 features per mm2, or from about 50 features per mm2 to about 200 features per mm2. In some instances, the density of features within a cluster of a substrate is at least or about 1 feature per μm2, 10 features per μm2, 25 features per μm2, 50 features per μm2, 65 features per μm2, 75 features per μm2, 100 features per μm2, 130 features per μm2, 150 features per μm2, 175 features per μm2, 200 features per μm2, 300 features per μm2, 400 features per μm2, 500 features per μm2, 1,000 features per μm2, 2,000 features per μm2, 5,000 features per μm2, 10,000 features per μm2, 100,000 features per μm2, 1,000,000 features per μm2 or more than 1,000,000 features per μm2. In some instances, a substrate comprises from about 10 features per μm2 to about 500 features per μm2, from about 25 features per μm2 to about 400 features per μm2, from about 50 features per μm2 to about 500 features per μm2, from about 100 features per μm2 to about 500 features per μm2, from about 150 features per μm2 to about 500 features per μm2, from about 10 features per μm2 to about 250 features per μm2, from about 50 features per μm2 to about 250 features per μm2, from about 10 features per μm2 to about 200 features per μm2, or from about 50 features per μm2 to about 200 features per μm2. In some instances, the distance between the centers of two adjacent features within a cluster is from about 10 μm to about 500 μm, from about 10 μm to about 200 μm, or from about 10 μm to about 100 μm. In some instances, the distance between two centers of adjacent features is greater than about 10 μm, 20 μm, 30 μm, 40 μm, 50 μm, 60 μm, 70 μm, 80 μm, 90 μm or 100 μm. In some instances, the distance between the centers of two adjacent features is less than about 200 μm, 150 μm, 100 μm, 80 μm, 70 μm, 60 μm, 50 μm, 40 μm, 30 μm, 20 μm or 10 μm. In some instances, the distance between the centers of two adjacent features within a cluster is from about 10 nm to about 1000 nm, from about 10 nm to about 500 nm, 10 nm to about 200 nm, or from about 10 nm to about 100 nm. In some instances, the distance between two centers of adjacent features is greater than about 10 nm, 20 nm, 30 nm, 40 nm, 50 nm, 60 nm, 70 nm, 80 nm, 90 nm or 100 nm. In some instances, the distance between the centers of two adjacent features is less than about 500 nm, 200 nm, 150 nm, 100 nm, 80 nm, 70 nm, 60 nm, 50 nm, 40 nm, 30 nm, 20 nm or 10 nm. In some instances, each square meter of a structure described herein allows for at least about 107, 108, 109, 1010, 1011, or at least about 1012 features, where each feature supports one polynucleotide. In some instances, each square meter of a structure described herein allows for at least about 107, 108, 109, 1010, 1011, or at least about 1012 features, where each feature supports a plurality of different polynucleotides. In some instances, 109 polynucleotides are supported on less than about 6, 5, 4, 3, 2 or 1 m2 of a structure described herein.


In some instances, a structure described herein provides support for the synthesis of more than 2,000; 5,000; 10,000; 20,000; 30,000; 50,000; 100,000; 200,000; 300,000; 400,000; 500,000; 600,000; 700,000; 800,000; 900,000; 1,000,000; 1,200,000; 1,400,000; 1,600,000; 1,800,000; 2,000,000; 2,500,000; 3,000,000; 3,500,000; 4,000,000; 4,500,000; 5,000,000; 10,000,000; 100,000,000 or more non-identical polynucleotides. In some instances, the structure provides support for the synthesis of more than 2,000; 5,000; 10,000; 20,000; 50,000; 100,000; 200,000; 300,000; 400,000; 500,000; 600,000; 700,000; 800,000; 900,000; 1,000,000; 1,200,000; 1,400,000; 1,600,000; 1,800,000; 2,000,000; 2,500,000; 3,000,000; 3,500,000; 4,000,000; 4,500,000; 5,000,000; 10,000,000; 100,000,000 or more polynucleotides encoding for distinct sequences. In some instances, at least a portion of the polynucleotides have an identical sequence or are configured to be synthesized with an identical sequence. In some instances, the structure provides a surface environment for the growth of polynucleotides having at least about 50, 60, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 1,000, 2,000 bases or more than 2,000 bases. In some instances, the structure provides a surface environment for the growth of polynucleotides having between 50 and 2,000, bases, 50 and 1,000, 50 and 500, 50 and 250, or between 100 and 1,000, 100 and 500, or between 100 and 300 bases.


In some instances, polynucleotides are synthesized on distinct features of a structure, wherein each feature supports the synthesis of a population of polynucleotides. In some instances, each feature supports the synthesis of a population of polynucleotides having a different sequence than a population of polynucleotides grown on another locus. In some instances, the features of a structure are located within a plurality of clusters. In some instances, a structure comprises at least 10, 500, 1,000, 2,000, 3,000, 4,000, 5,000, 6,000, 7,000, 8,000, 9,000, 10,000, 11,000, 12,000, 13,000, 14,000, 15,000, 20,000, 30,000, 40,000, 50,000 or more clusters. In some instances, a structure comprises more than 2,000; 5,000; 10,000; 100,000; 200,000; 300,000; 400,000; 500,000; 600,000; 700,000; 800,000; 900,000; 1,000,000; 1,100,000; 1,200,000; 1,300,000; 1,400,000; 1,500,000; 1,600,000; 1,700,000; 1,800,000; 1,900,000; 2,000,000; 300,000; 400,000; 500,000; 600,000; 700,000; 800,000; 900,000; 1,000,000; 1,200,000; 1,400,000; 1,600,000; 1,800,000; 2,000,000; 2,500,000; 3,000,000; 3,500,000; 4,000,000; 4,500,000; 5,000,000; or 10,000,000 or more distinct features. In some instances, each cluster includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 130, 150 or more features (loci). In some instances, each cluster includes 50 to 500, 100 to 150, or 100 to 200 features. In some instances, each cluster includes 109, 121, 130 or 137 features. In some instances, each cluster includes 5, 6, 7, 8, 9, 10, 11 or 12 features. In some instances, polynucleotides from distinct features within one cluster have sequences that, when assembled, encode for a contiguous longer polynucleotide of a predetermined sequence.


Structure Size


In some instances, a structure described herein is about the size of a standard 96 well plate, for example between about 100 and 200 mm by between about 50 and 150 mm. In some instances, a structure described herein has a diameter less than or equal to about 1000 mm, 500 mm, 450 mm, 400 mm, 300 mm, 250 nm, 200 mm, 150 mm, 100 mm or 50 mm. In some instances, the diameter of a substrate is between about 25 mm and 1000 mm, between about 25 mm and about 800 mm, between about 25 mm and about 600 mm, between about 25 mm and about 500 mm, between about 25 mm and about 400 mm, between about 25 mm and about 300 mm, or between about 25 mm and about 200. Non-limiting examples of substrate size include about 300 mm, 200 mm, 150 mm, 130 mm, 100 mm, 76 mm, 51 mm and 25 mm. In some instances, a substrate has a planar surface area of at least about 100 mm2; 200 mm2; 500 mm2; 1,000 mm2; 2,000 mm2; 5,000 mm2; 10,000 mm2; 12,000 mm2; 15,000 mm2; 20,000 mm2; 30,000 mm2; 40,000 mm2; 50,000 mm2 or more. In some instances, a substrate has a thickness between about 50 mm and about 2000 mm, between about 50 mm and about 1000 mm, between about 100 mm and about 1000 mm, between about 200 mm and about 1000 mm, or between about 250 mm and about 1000 mm. Non-limiting examples of thickness include 275 mm, 375 mm, 525 mm, 625 mm, 675 mm, 725 mm, 775 mm and 925 mm. In some instances, the thickness of the substrate varies with diameter and depends on the composition of the substrate. For example, a structure comprising materials other than silicon may have a different thickness than a silicon structure of the same diameter. Structure thickness may be determined by the mechanical strength of the material used and the structure must be thick enough to support its own weight without cracking during handling. In some instances, a structure is more than about 1, 2, 3, 4, 5, 10, 15, 30, 40, 50 feet in any one dimension.


In some instances, a structure described herein comprises a nanostructure, for example between about 10 and 200 nm by between about 10 and 150 nm. In some instances, a structure described herein has a diameter less than or equal to about 1000 nm, 500 nm, 450 nm, 400 nm, 300 nm, 250 nm, 200 nm, 150 nm, 100 nm or 50 nm. In some instances, the diameter of a structure is between about 10 nm and 1000 nm, between about 10 nm and about 800 nm, between about 10 nm and about 600 nm, between about 10 nm and about 500 nm, between about 10 nm and about 400 nm, between about 10 nm and about 300 nm, or between about 10 mm and about 200 nm. Non-limiting examples of structure size include about 300 nm, 200 nm, 150 nm, 130 nm, 100 nm, 76 nm, 51 nm 25 nm, and 10 nm. In some instances, a structure has a planar surface area of at least about 100 nm2; 200 nm2; 500 nm2; 1,000 nm2; 2,000 nm2; 5,000 nm2; 10,000 nm2; 12,000 nm2; 15,000 nm2; 20,000 nm2; 30,000 nm2; 40,000 nm2; 50,000 nm2 or more. In some instances, a structure has a thickness between about 10 nm and about 2000 nm, between about 50 nm and about 1000 mm, between about 100 nm and about 1000 nm, between about 200 nm and about 1000 nm, or between about 250 nm and about 1000 nm. Non-limiting examples of thickness include 50 nm, 100 nm, 275 nm, 375 nm 525 nm, 625 nm, 675 nm, 725 nm, 775 nm and 925 nm.


Materials


Provided herein are devices comprising a surface, wherein the surface is modified to support polynucleotide synthesis at predetermined locations and with a resulting low error rate, a low dropout rate, a high yield, and a high oligo representation. In some instances, surfaces of a device for polynucleotide synthesis provided herein are fabricated from a variety of materials capable of modification to support a de novo polynucleotide synthesis reaction. In some instances, the devices are sufficiently conductive, e.g., are able to form uniform electric fields across all or a portion of the device. A device described herein may comprise a flexible material. Exemplary flexible materials include, without limitation, modified nylon, unmodified nylon, nitrocellulose, and polypropylene. A device described herein may comprise a rigid material. Exemplary rigid materials include, without limitation, glass, fuse silica, silicon, silicon dioxide, silicon nitride, metal nitride, metal silicide, metal carbide, metal oxide, plastics (for example, polytetrafluoroethylene, polypropylene, polystyrene, polycarbonate, and blends thereof), and metals (for example, gold, platinum). In some instances, metal oxides include TiO2, Ta2O5, Nb2O5, Al2O3, BaO, Y2O3, HfO2, SrO or other metal oxide known in the art. In some instances, metal carbides include TiC, WC, ThC2, ThC, VC, W2C, ZrC, HfC, NbC, TaC, Ta2C, or other metal carbide known in the art. In some instances, metal nitrides include GaN, InN, BN, Be3N2, Cr2N, MoN, Si3N4, TaN, Th2N2, VN, ZrN, TiN, HfN, NbC, WN, TaN, or other metal nitride known in the art. Devices disclosed herein are in some instances fabricated from a material comprising silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, polydimethylsiloxane (PDMS), glass, or any combination thereof. In some instances, a device disclosed herein is manufactured with a combination of materials listed herein or any other suitable material known in the art.


A listing of tensile strengths for exemplary materials described herein is provides as follows: nylon (70 MPa), nitrocellulose (1.5 MPa), polypropylene (40 MPa), silicon (268 MPa), polystyrene (40 MPa), agarose (1-10 MPa), polyacrylamide (1-10 MPa), polydimethylsiloxane (PDMS) (3.9-10.8 MPa). Solid supports described herein can have a tensile strength from 1 to 300, 1 to 40, 1 to 10, 1 to 5, or 3 to 11 MPa. Solid supports described herein can have a tensile strength of about 1, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 20, 25, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 270, or more MPa. In some instances, a device described herein comprises a solid support for polynucleotide synthesis that is in the form of a flexible material capable of being stored in a continuous loop or reel, such as a tape or flexible sheet.


Young's modulus measures the resistance of a material to elastic (recoverable) deformation under load. A listing of Young's modulus for stiffness of exemplary materials described herein is provides as follows: nylon (3 GPa), nitrocellulose (1.5 GPa), polypropylene (2 GPa), silicon (150 GPa), polystyrene (3 GPa), agarose (1-10 GPa), polyacrylamide (1-10 GPa), polydimethylsiloxane (PDMS) (1-10 GPa). Solid supports described herein can have a Young's moduli from 1 to 500, 1 to 40, 1 to 10, 1 to 5, or 3 to 11 GPa. Solid supports described herein can have a Young's moduli of about 1, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 20, 25, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 400, 500 GPa, or more. As the relationship between flexibility and stiffness are inverse to each other, a flexible material has a low Young's modulus and changes its shape considerably under load.


In some instances, a device disclosed herein comprises a silicon dioxide base and a surface layer of silicon oxide. Alternatively, the device may have a base of silicon oxide. Surface of the device provided here may be textured, resulting in an increase overall surface area for polynucleotide synthesis. Devices described herein may comprise at least 5%, 10%, 25%, 50%, 80%, 90%, 95%, or 99% silicon. A device disclosed herein may be fabricated from a silicon on insulator (SOI) wafer.


Provided herein are devices for polynucleotide synthesis comprising a structure fabricated from any one or more of a variety of materials. In certain instances, the materials from which the substrates/solid supports comprise are fabricated to exhibit a low level of polynucleotide binding. In some situations, materials that are transparent to visible and/or UV light can be employed. Materials that are sufficiently conductive (conductors), e.g. those that can form uniform electric fields across all or a portion of the substrates/solids support described herein, can be utilized. In some instances, such materials may be connected to an electric ground. In some instances, the substrate or solid support can be heat conductive or insulated. The materials can be chemical resistant and heat resistant to support chemical or biochemical reactions such as a series of polynucleotide synthesis reactions.


In some instances, conductive or semiconductive materials (semiconductors) include but are not limited to one or more of titanium silicon nitride, titanium nitride, tungsten nitride, tantulum nitride, tantulum silicon nitride, titanium, platinum silicide, or other conductive materials. In instances materials include but are not limited to one or more of aluminumcarbides, carbides, nitrides, oxides, silicides, siliconitrides, phosphides, or other non-metal or metalloids used as components of conductive materials. In some instances, exemplary materials comprise (non-limiting) one or more of the elements of tungsten, cobalt, iridium, molybdenum, nickel, platinum, rhenium, ruthenium, tantulum, titanium, or other, metals used as components of conductive materials. In some instances, materials comprise mixtures of metals, non-metals, or metalloids. In some instances, dopants are added to the semiconductive material. Dopants include but are not limited to phosphorus, antimony, arsenic, boron, aluminum, indium, or other element consistent with the specification. For nanostructures such as nanorods, nanowires, or nanotubes, materials of interest include conductors, semiconductors, or insulators. This includes without limitation metallic elements (for example, nickel, copper, silver, gold, platinum), semiconducting materials (for example, silicon, zinc oxide, germanium, gallium phosphide, indium nitride), or insulating materials (for example, silicon dioxide, or titanium dioxide). Conductors, semiconductors, or insulators may be manufactured with a combination of materials listed herein or any other suitable material known in the art.


For rigid materials, specific materials of interest include: glass; fused silica; silicon, plastics (for example polytetraflouroethylene, polypropylene, polystyrene, polycarbonate, and blends thereof, and the like); metals (for example, gold, platinum, and the like). The structure can be fabricated from a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, polydimethylsiloxane (PDMS), and glass. The substrates/solid supports, microstructures, reactors, or other polynucleotide synthesis structure therein may be manufactured with a combination of materials listed herein or any other suitable material known in the art.


Exemplary flexible materials for structures described herein include, without limitation, nylon (unmodified nylon, modified nylon, clear nylon), nitrocellulose, polypropylene, polycarbonate, polyethylene, polyurethane, polystyrene, acetal, acrylic, acrylonitrile, butadiene styrene (ABS), polyester films such as polyethylene terephthalate, polymethyl methacrylate or other acrylics, polyvinyl chloride or other vinyl resin, transparent PVC foil, transparent foil for printers, Poly(methyl methacrylate) (PMMA), methacrylate copolymers, styrenic polymers, high refractive index polymers, fluorine-containing polymers, polyethersulfone, polyimides containing an alicyclic structure, rubber, fabric, metal foils, and any combination thereof. Various plasticizers and modifiers may be used with polymeric substrate materials to achieve selected flexibility characteristics.


Flexible structures described herein may comprise a plastic material. In some instances, the structure comprises a thermoplastic material. Non-limiting examples of thermoplastic materials include acrylic, acrylonitrile butadiene styrene, nylon, polylactic acid, polybenzimidazole, polycarbonate, polyether sulfone, polyetherether ketone, polyetherimide, polyethylene, polyphenylene oxide, polyphenylene sulfide, polypropylene, polystyrene, polyvinyl chloride, and polytetrafluoroethylene. In some instances, the substrate comprises a thermoplastic material in the polyaryletherketone (PEAK) family. Non-limiting examples of PEAK thermoplastics include polyetherketone (PEK), polyetherketoneketone (PEKK), poly(ether ether ketone ketone) (PEEKK), polyether ether ketone (PEEK), and polyetherketoneetherketoneketone (PEKEKK). In some instances, the structure comprises a thermoplastic material compatible with toluene. In some instances, the flexibility of the plastic material is increased by the addition of a plasticizer. An example of a plasticizer is an ester-based plasticizer, such as phthalate. Phthalate plasticizers include bis(2-ethylhexyl) phthalate (DEHP), diisononly phthalate (DINP), di-n-butyl phthalate (DnBP, DBP), butyl benzyl phthalate (BBzP), diisodecyl phthalate (DIDP), dioctyl phthalate (DOP, DnOP), diisooctyl phthalate (DIOP), diethyl phthalate (DEP), diisobutyl phthalate (DIBP), and di-n-hexyl phthalate. In some instances, modification of the thermoplastic polymer through copolymerization or through the addition of non-reactive side chains to monomers before polymerization also increases flexibility.


Provided herein are flexible structures which may further comprise a fluoroelastomer. Materials having about 80% fluoroelastomers are designated as FKMs. Fluoroelastomers include perfluoro-elastomers (FFKMs) and tetrafluoroethylene/propylene rubbers (FEPM).


Fluoroelastomers have five known types. Type 1 FKMs are composed of vinylidene fluoride (VDF) and hexafluoropropylene (HFP) and their fluorine content typically is around 66% by weight. Type 2 FKMs are composed of VDF, HFP, and tetrafluoroethylene (TFE) and typically have between about 68% and 69% fluorine. Type 3 FKMs are composed of VDF, TFE, and perfluoromethylvinylether (PMVE) and typically have between about 62% and 68% fluorine. Type 4 FKMs are composed of propylene, TFE, and VDF and typically have about 67% fluorine. Type 5 FKMs are composed of VDF, HFP, TFE, PMVE, and ethylene.


In some instances, a substrate disclosed herein comprises a computer readable material. Computer readable materials include, without limitation, magnetic media, reel-to-reel tape, cartridge tape, cassette tape, flexible disk, paper media, film, microfiche, continuous tape (e.g., a belt) and any media suitable for storing electronic instructions. In some instances, the substrate comprises magnetic reel-to-reel tape or a magnetic belt. In some instances, the substrate comprises a flexible printed circuit board.


Structures described herein may be transparent to visible and/or UV light. In some instances, structures described herein are sufficiently conductive to form uniform electric fields across all or a portion of a structure. In some instances, structures described herein are heat conductive or insulated. In some instances, the structures are chemical resistant and heat resistant to support a chemical reaction such as a polynucleotide synthesis reaction. In some instances, the substrate is magnetic. In some instances, the structures comprise a metal or a metal alloy.


Structures for polynucleotide synthesis may be over 1, 2, 5, 10, 30, 50 or more feet long in any dimension. In the case of a flexible structure, the flexible structure is optionally stored in a wound state, e.g., in a reel. In the case of a large structure, e.g., greater than 1 foot in length, the structure can be stored vertically or horizontally.


Material Deposition Systems


Provided herein are systems and devices for the deposition and storage of biomolecules on a structure described herein. In some instances, the biomolecules are polynucleotides that store encoded information in their sequences. In some instances, the system comprises a surface of a structure to support biomolecule attachment and/or a device for application of a biomolecule to the surface of the substrate. In an example, the device for biomolecule application is a polynucleotide synthesizer. In some instances, the system comprises a device for treating the substrate with a fluid, for example, a flow cell. In some instances, the system comprises a device for moving the substrate between the application device and the treatment device. For instances where the substrate is a reel-to-reel tape, the system may comprise two or more reels that allow for access of different portions of the substrate to the application and optional treatment device at different times.


A first example of a polynucleotide material deposition system for polynucleotide synthesis is shown in FIG. 7. The system includes a material deposition device that moves in the X-Y direction to align with the location of the substrate. The material deposition device can also move in the Z direction to seal with the substrate, forming a resolved reactor. A resolved reactor is configured to allow for the transfer of fluid, including polynucleotides and/or reagents, from the substrate to a capping element and/or vice versa. As shown in FIG. 7, fluid may pass through either or both the substrate and the capping element and includes, without limitation, coupling reagents, capping reagents, oxidizers, de-blocking agents, acetonitrile and nitrogen gas. Examples of devices that are capable of high resolution droplet deposition include the printhead of inkjet printers and laser printers. The devices useful in the systems and methods described herein achieve a resolution from about 100 dots per inch (DPI) to about 50,000 DPI; from about 100 DPI to about 20,000 DPI; from about 100 DPI to about 10,000 DPI; from about 100 DPI to about 5,000 DPI; from about 1,000 DPI to about 20,000 DPI; or from about 1,000 DPI to about 10,000 DPI. In some instances, the devices have a resolution at least about 1,000; 2,000; 3,000; 4,000; 5,000; 10,000; 12,000 DPI, or 20,000 DPI. The high resolution deposition performed by the device is related to the number and density of each nozzle that corresponds to a feature of the substrate.


An exemplary process workflow for de novo synthesis of a polynucleotide on a substrate using a polynucleotide synthesizer is shown in FIG. 8. Droplets comprising polynucleotide synthesis reagents are released from the material deposition device to the substrate in a stepwise manner, wherein the material deposition device has a piezo ceramic material and electrodes to convert electrical signals into a mechanical signal for releasing the droplets. The droplets are released to specific locations on the surface of the substrate one nucleobase at a time to generate a plurality of synthesized polynucleotides having predetermined sequences that encode data. In some instances, the synthesized polynucleotides are stored on the substrate. Nucleic acid reagents may be deposited on the substrate surface in a non-continuous, or drop-on-demand method. Examples of such methods include the electromechanical transfer method, electric thermal transfer method, and electrostatic attraction method. In the electromechanical transfer method, piezoelectric elements deformed by electrical pulses cause the droplets to be ejected. In the electric thermal transfer method, bubbles are generated in a chamber of the device, and the expansive force of the bubbles causes the droplets to be ejected. In the electrostatic attraction method, electrostatic force of attraction is used to eject the droplets onto the substrate. In some instances, the drop frequency is from about 5 KHz to about 500 KHz; from about 5 KHz to about 100 KHz; from about 10 KHz to about 500 KHz; from about 10 KHz to about 100 KHz; or from about 50 KHz to about 500 KHz. In some instances, the frequency is less than about 500 KHz, 200 KHz, 100 KHz, or 50 KHz.


The size of the droplets dispensed correlates to the resolution of the device. In some instances, the devices deposit droplets of reagents at sizes from about 0.01 pl to about 20 pl, from about 0.01 pl to about 10 pl, from about 0.01 pl to about 1 pl, from about 0.01 pl to about 0.5 pl, from about 0.01 pl to about 0.01 pl, or from about 0.05 pl to about 1 pl. In some instances, the droplet size is less than about 1 pl, 0.5 pl, 0.2 pl, 0.1 pl, or 0.05 pl. The size of droplets dispensed by the device is correlated to the diameters of deposition nozzles, wherein each nozzle is capable of depositing a reagent onto a feature of the substrate. In some instances, a deposition device of a polynucleotide synthesizer comprises from about 100 to about 10,000 nozzles; from about 100 to about 5,000 nozzles; from about 100 to about 3,000 nozzles; from about 500 to about 10,000 nozzles; or from about 100 to about 5,000 nozzles. In some instances, the deposition device comprises greater than 1,000; 2,000; 3,000; 4,000; 5,000; or 10,000 nozzles. In some instances, each material deposition device comprises a plurality of nozzles, where each nozzle is optionally configured to correspond to a feature on a substrate. Each nozzle may deposit a reagent component that is different from another nozzle. In some instances, each nozzle deposits a droplet that covers one or more features of the substrate. In some instances, one or more nozzles are angled. In some instances, multiple deposition devices are stacked side by side to achieve a fold increase in throughput. In some instances, the gain is 2×, 4×, 8× or more. An example of a deposition device is Samba Printhead (Fujifilm). A Samba Printhead may be used with the Samba Web Administration Tool (SWAT).


The number of deposition sites may be increased by using and rotating the same deposition device by a certain degree or saber angle. By rotating the deposition device, each nozzle is jetted with a certain amount of delay time corresponding to the saber angle. This unsynchronized jetting creates a cross talk among the nozzles. Therefore, when the droplets are jetting at a certain saber angle different from 0 degrees, the droplet volume from the nozzle could be different.


In some arrangements, the configuration of a polynucleotide synthesis system allows for a continuous polynucleotide synthesis process that exploits the flexibility of a substrate for traveling in a reel-to-reel type process. This synthesis process operates in a continuous production line manner with the substrate travelling through various stages of polynucleotide synthesis using one or more reels to rotate the position of the substrate. In an exemplary embodiment, a polynucleotide synthesis reaction comprises rolling a substrate: through a solvent bath, beneath a deposition device for phosphoramidite deposition, through a bath of oxidizing agent, through an acetonitrile wash bath, and through a deblock bath. Optionally, the tape is also traversed through a capping bath. A reel-to-reel type process allows for the finished product of a substrate comprising synthesized polynucleotides to be easily gathered on a take-up reel, where it can be transported for further processing or storage.


In some arrangements, polynucleotide synthesis proceeds in a continuous process as a continuous flexible tape is conveyed along a conveyor belt system. Similar to the reel-to-reel type process, polynucleotide synthesis on a continuous tape operates in a production line manner, with the substrate travelling through various stages of polynucleotide synthesis during conveyance. However, in a conveyor belt process, the continuous tape revisits a polynucleotide synthesis step without rolling and unrolling of the tape, as in a reel-to-reel process. In some arrangements, polynucleotide synthesis steps are partitioned into zones and a continuous tape is conveyed through each zone one or more times in a cycle. For example, a polynucleotide synthesis reaction may comprise (1) conveying a substrate through a solvent bath, beneath a deposition device for phosphoramidite deposition, through a bath of oxidizing agent, through an acetonitrile wash bath, and through a block bath in a cycle; and then (2) repeating the cycles to achieve synthesized polynucleotides of a predetermined length. After polynucleotide synthesis, the flexible substrate is removed from the conveyor belt system and, optionally, rolled for storage. Rolling may be around a reel, for storage.


In an exemplary arrangement, a flexible substrate comprising thermoplastic material is coated with nucleoside coupling reagent. The coating is patterned into features such that each feature has diameter of about 10 μm, with a center-to-center distance between two adjacent features of about 21 μm. In this instance, the feature size is sufficient to accommodate a sessile drop volume of 0.2 pl during a polynucleotide synthesis deposition step. In some instances, the feature density is about 2.2 billion features per m2 (1 feature/441×10−12 m2). In some instances, a 4.5 m2 substrate comprise about 10 billion features, each with a 10 μm diameter.


In another exemplary arrangement, a substrate comprising nanostructures is coated with nucleoside coupling reagent. The coating is patterned into features such that each feature has diameter of about 10 nm to about 200 nm, with a center-to-center distance between two adjacent features of about 10 nm to about 200 nm. In this instance, a plurality of features accommodates a sessile drop volume of 0.2 pl during a polynucleotide synthesis deposition step. In some instances, a feature diameter of about 50 nm and a center-to-center distance between two adjacent features of about 100 nm results in a feature density of about 10 billion features per m2 (1 feature/100×10−12 m2).


A material deposition device described herein may comprises about 2,048 nozzles that each deposit about 100,000 droplets per second at 1 nucleobase per droplet. For each deposition device, at least about 1.75×1013 nucleobases are deposited on the substrate per day. In some instances, 100 to 500 nucleobase polynucleotides are synthesized. In some instances, 200 nucleobase polynucleotides are synthesized. Optionally, over 3 days, at a rate of about 1.75×1013 bases per day, at least about 262.5×109 polynucleotides are synthesized.


In some arrangements, a device for application of one or more reagents to a substrate during a synthesis reaction is configured to deposit reagents and/or nucleotide monomers for nucleoside phosphoramidite based synthesis. Reagents for polynucleotide synthesis include reagents for polynucleotide extension and wash buffers. As non-limiting examples, the device deposits cleaning reagents, coupling reagents, capping reagents, oxidizers, de-blocking agents, acetonitrile, phase change solvents, gases such as nitrogen gas, and any combination thereof. In addition, the device optionally deposits reagents for the preparation and/or maintenance of substrate integrity. In some instances, the polynucleotide synthesizer deposits a drop having a diameter less than about 200 μm, 100 μm, or 50 μm in a volume less than about 1000, 500, 100, 50, or 20 pl. In some instances, the polynucleotide synthesizer deposits between about 1 and 10,000, 1 and 5,000, 100 and 5,000, or 1,000 and 5,000 droplets per second.


In some arrangement, during polynucleotide synthesis, the substrate is positioned within and/or sealed within a flow cell. The flow cell may provide continuous or discontinuous flow of liquids such as those comprising reagents necessary for reactions within the substrate, for example, oxidizers and/or solvents. The flow cell may provide continuous or discontinuous flow of a gas, such as nitrogen, for drying the substrate typically through enhanced evaporation of a volatile substrate. A variety of auxiliary devices are useful to improve drying and reduce residual moisture on the surface of the substrate. Examples of such auxiliary drying devices include, without limitation, a vacuum source, depressurizing pump and a vacuum tank. In some instances, a polynucleotide synthesis system comprises one or more flow cells, such as 2, 3, 4, 5, 6, 7, 8, 9, 10, or 20 and one or more substrates, such as 2, 3, 4, 5, 6, 7, 8, 9, 10 or 20. In some instances, a flow cell is configured to hold and provide reagents to the substrate during one or more steps in a synthesis reaction. In some instances, a flowcell comprises a lid that slides over the top of a substrate and can be clamped into place to form a pressure tight seal around the edge of the substrate. An adequate seal includes, without limitation, a seal that allows for about 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 atmospheres of pressure. In some instances, the lid of the flow cell is opened to allow for access to an application device such as a polynucleotide synthesizer. In some instances, one or more steps of a polynucleotide synthesis method are performed on a substrate within a flow cell, without the transport of the substrate.


In some arrangements, a device for treating a substrate with a fluid comprises a spray bar. Nucleotide monomers may be applied onto a substrate surface, and then a spray bar sprays the substrate surface with one or more treatment reagents using spray nozzles of the spray bar. In some arrangements, the spray nozzles are sequentially ordered to correlate with different treatment steps during polynucleotide synthesis. The chemicals used in different process steps may be changed in the spray bar to readily accommodate changes in a synthesis method or between steps of a synthesis method. In some instances, the spray bar continuously sprays a given chemistry on a surface of a substrate as the substrate moves past the spray bar. In some instances, the spray bar deposits over a wide area of a substrate, much like the spray bars used in lawn sprinklers. In some instances, the spray bar nozzles are positioned to provide a uniform coat of treatment material to a given area of a substrate.


In some instances, a polynucleotide synthesis system comprises one or more elements useful for downstream processing of synthesized polynucleotides. As an example, the system comprises a temperature control element such as a thermal cycling device. In some instances, the temperature control element is used with a plurality of resolved reactors to perform nucleic acid assembly such as PCA and/or nucleic acid amplification such as PCR.


De Novo Polynucleotide Synthesis Using a Temperature Controllable Device Provided herein are methods for phase change applications to regulate access of reagents during polynucleotide synthesis in a temperature specific manner (see Table 1). Exemplary melting temperatures for solvents described herein include about 10° C. to about 30° C., about 10° C. to about 18° C., about −30° C. to about 40° C., or about 5° C. to about 40° C. In some aspects, the phase change solvent has a melting temperature of about 15-16° C. In some aspects, the phase change solvent has a melting temperature of about 10-25° C. In some aspects, the phase change solvent has a melting temperature of about 15-25° C. In some aspects, the phase change solvent has a melting temperature of about 15-18° C. In some instances, the phase change solvent has a melting temperature of at least −20° C., or at least −15, −10, −5, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, or more than 40° C. In some instances, the phase change solvent has a melting temperature no more than −20° C., or no more than −15, −10, −5, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, or no more than 40° C. In some instances, the phase change solvent includes solvents containing about 5 to about 10 carbon atoms. In some instances, the phase change solvent is a polar solvent. In some instances, the phase change solvent is an ionic liquid. In some instances, the phase change solvent is a supercritical fluid. In some instances, the phase change solvent comprises one or more additives, such as salts, other solids, liquids, or dissolved gases that influence the solvent properties. Exemplary densities for phase change solvents described herein include about 0.5 g/mL to about 1.5 g/mL, or about 0.6 g/mL to about 1.4 g/mL, or about 0.7 g/mL to about 1.3 g/mL. In some instances, the phase change solvent is a solvent with a boiling point of no more than 82° C. In some instances, the phase change solvent is acetonitrile or an acetonitrile mixture.


In some instances, the phase change solvent is trimethylacetonitrile (TMACN). Other exemplary phase change solvents include but are not limited to trimethylacetonitrile (TMACN), dimethylsulfoxide (DMSO), p-xylene, cyclohexylcyanide, 2,5-dimethyl-2,4-hexadiene, cyclooctane, o-tolunitrile, acetophenone, cyclononane, p-methylbenzyl cyanide, propiophenone, m-nitrotoluene, o-dimethoxybenzene, m-chlorobenzaldehyde, o-chlorobenzaldehyde, cyclodecane, dimethyl succinate, butyrophenone, 4-ethoxybenzaldehyde, m-tolyl acetate, phenyl propionate, or mixtures thereof.












TABLE 1







Phase Change Solvent
Melting Temperature (° C.)









trimethylacetonitrile (TMACN)
15



dimethylsulfoxide (DMSO)
18



p-xylene
13



cyclohexylcyanide
11



2,5-dimethyl-2,4-hexadiene
13



cyclooctane
15



o-tolunitrile
13



acetophenone
20



cyclononane
11



p-methylbenzyl cyanide
18



propiophenone
19



m-nitrotoluene
16



o-dimethoxybenzene
15



m-chlorobenzaldehyde
18



o-chlorobenzaldehyde
11



cyclodecane
10



dimethyl succinate
19



butyrophenone
12



4-ethoxybenzaldehyde
14



m-tolyl acetate
12



phenyl propionate
20










In some instances, a polynucleotide synthesis method used herein comprises 1, 2, 3 or more sequential coupling steps. Prior to coupling, in many cases, the nucleoside bound to the substrate is de-protected by removal of a protecting group, where the protecting group functions to prevent polymerization. A common protecting group is 4,4′-dimethoxytrityl (DMT). In some instances, coupling steps are repeated two or more times without removal of a protecting group.


Following coupling, phosphoramidite polynucleotide synthesis methods optionally comprise a capping step. In a capping step, the growing polynucleotide is treated with a capping agent. A capping step generally serves to block unreacted substrate-bound 5′-OH groups after coupling from further chain elongation, preventing the formation of polynucleotides with internal base deletions. Further, phosphoramidites activated with 1H-tetrazole often react, to a small extent, with the O6 position of guanosine. Without being bound by theory, upon oxidation with I2/water, this side product, possibly via O6-N7 migration, undergoes depurination. The apurinic sites can end up being cleaved in the course of the final deprotection of the polynucleotide thus reducing the yield of the full-length product. The O6 modifications may be removed by treatment with the capping reagent prior to oxidation with I2/water. In some instances, inclusion of a capping step during polynucleotide synthesis decreases the error rate as compared to synthesis without capping. As an example, the capping step comprises treating the substrate-bound polynucleotide with a mixture of acetic anhydride and 1-methylimidazole. Following a capping step, the substrate is optionally washed.


Following addition of a nucleoside phosphoramidite, and optionally after capping and one or more wash steps, the substrate bound growing nucleic acid may be oxidized. The oxidation step comprises oxidizing the phosphite triester into a tetracoordinated phosphate triester, a protected precursor of the naturally occurring phosphate diester internucleoside linkage. In some instances, oxidation of the growing polynucleotide is achieved by treatment with iodine and water, optionally in the presence of a weak base such as a pyridine, lutidine, or collidine. Oxidation is sometimes carried out under anhydrous conditions using tert-Butyl hydroperoxide or (1S)-(+)-(10-camphorsulfonyl)-oxaziridine (CSO). In some methods, a capping step is performed following oxidation. A second capping step allows for substrate drying, as residual water from oxidation that may persist can inhibit subsequent coupling. Following oxidation, the substrate and growing polynucleotide is optionally washed. In some instances, the step of oxidation is substituted with a sulfurization step to obtain polynucleotide phosphorothioates, wherein any capping steps can be performed after the sulfurization. Many reagents are capable of the efficient sulfur transfer, including, but not limited to, 3-(Dimethylaminomethylidene)amino)-3H-1,2,4-dithiazole-3-thione, DDTT, 3H-1,2-benzodithiol-3-one 1,1-dioxide, also known as Beaucage reagent, and N,N,N′N′-Tetraethylthiuram disulfide (TETD).


For a subsequent cycle of nucleoside incorporation to occur through coupling, a protected 5′ end of the substrate bound growing polynucleotide must be removed so that the primary hydroxyl group can react with a next nucleoside phosphoramidite. In some instances, the protecting group is DMT and deblocking occurs with trichloroacetic acid in dichloromethane. Conducting detritylation for an extended time or with stronger than recommended solutions of acids may lead to increased depurination of solid support-bound polynucleotide and thus reduces the yield of the desired full-length product. Methods and compositions described herein provide for controlled deblocking conditions limiting undesired depurination reactions. In some instances, the substrate bound polynucleotide is washed after deblocking. In some instances, efficient washing after deblocking contributes to synthesized polynucleotides having a low error rate.


Methods for the synthesis of polynucleotides on the substrates described herein typically involve an iterating sequence of the following steps: application of a protected monomer to a surface of a substrate feature to link with either the surface, a linker or with a previously deprotected monomer; deprotection of the applied monomer so that it can react with a subsequently applied protected monomer; and application of another protected monomer for linking. One or more intermediate steps include oxidation and/or sulfurization. In some instances, one or more wash steps precede or follow one or all of the steps. In some instances, the last wash step comprises addition of a suitable phase change solvent. In some instances, a coupling step occurs without the removal of a phase change solvent. In some instances the reaction solvent is a phase change solvent.


In some aspects of the methods described herein, the phase of the reaction solvent is used to block or unblock specific sites on the surface of the device. In one example, the phase of the reaction solvent at a site is controlled by one or more addressable heating elements, and methods for the synthesis of polynucleotides comprises iteration of a sequence of one or more of the following steps: deprotection of an applied monomer or reactive group on the surface so that it can react with a subsequently applied protected monomer; optional cooling of the device surface; activation of all heater elements on the surface; addition of a phase change solvent, deactivation of all heating elements at device sites to be blocked and application of a protected monomer to a surface of a substrate feature to link with either the surface, a linker or with a previously deprotected monomer. One or more intermediate steps include activation of all heater elements, followed by oxidation and/or sulfurization. In some instances, one or more wash steps precede or follow one or all of the steps. In some instances, activation of all heating elements preceeds or follows one or more wash steps. In some instances, heating elements are activated at sites to be blocked.


Further described herein are methods wherein deactivation of one or more heater elements at one or more surface regions for polynucleotide synthesis causes solvent in these regions to freeze, forming a solid. In some instances, the solid solvent solvent prevents contact of the synthesis surface region with additional reagents such as detritylation reagents, preventing deprotection. In some instances, activation of heating elements or deactivation of cooling elements causes the solid to melt, allowing reagents to contact the synthesis surface.


Further described herein are methods wherein activation of one or more heater elements at one or more surface regions for polynucleotide synthesis causes solvent in these regions to boil, forming a gaseous bubble. In some instances, the bubble of gaseous solvent prevents contact of the synthesis surface region with additional reagents such as detritylation reagents, preventing deprotection. In some instances, activation of cooling elements or deactivation of heating elements causes the bubble to collapse, allowing reagents to contact the synthesis surface.


In some instances, polynucleotides are synthesized with photolabile protecting groups, where the hydroxyl groups generated on the surface are blocked by photolabile-protecting groups. When the surface is exposed to UV light, such as through a photolithographic mask, a pattern of free hydroxyl groups on the surface may be generated. These hydroxyl groups can react with photoprotected nucleoside phosphoramidites, according to phosphoramidite chemistry. A second photolithographic mask can be applied and the surface can be exposed to UV light to generate second pattern of hydroxyl groups, followed by coupling with 5′-photoprotected nucleoside phosphoramidite. Likewise, patterns can be generated and oligomer chains can be extended. Without being bound by theory, the lability of a photocleavable group depends on the wavelength and polarity of a solvent employed and the rate of photocleavage may be affected by the duration of exposure and the intensity of light. This method can leverage a number of factors such as accuracy in alignment of the masks, efficiency of removal of photo-protecting groups, and the yields of the phosphoramidite coupling step. Further, unintended leakage of light into neighboring sites can be minimized. The density of synthesized oligomer per spot can be monitored by adjusting loading of the leader nucleoside on the surface of synthesis.


The surface of the substrate that provides support for polynucleotide synthesis may be chemically modified to allow for the synthesized polynucleotide chain to be cleaved from the surface. In some instances, the polynucleotide chain is cleaved at the same time as the polynucleotide is deprotected. In some instances, the polynucleotide chain is cleaved after the polynucleotide is deprotected. In an exemplary scheme, a trialkoxysilyl amine such as (CH3CH2O)3Si—(CH2)2—NH2 is reacted with surface SiOH groups of a substrate, followed by reaction with succinic anhydride with the amine to create an amide linkage and a free OH on which the nucleic acid chain growth is supported. Cleavage includes gas cleavage with ammonia or methylamine. In some instances, once released from the surface, polynucleotides are assembled into larger nucleic acids that are sequenced and decoded to extract stored information.


Provided herein are systems and methods for synthesis of a high density of polynucleotides on a substrate in a short amount of time. In some instances, the substrate is a flexible substrate. In some instances, at least about 1010, 1011, 1012, 1013, 1014, or 1015 bases are synthesized in one day. In some instances, at least about 10×108, 10×109, 10×1010, 10×1011, or 10×1012 polynucleotides are synthesized in one day. In some instances, each polynucleotide synthesized comprises at least about 20, 50, 100, 200, 300, 400 or 500 nucleobases. In some instances, these bases are synthesized with a total average error rate of less than about 1 in 100; 200; 300; 400; 500; 1000; 2000; 5000; 10000; 15000; 20000 bases. In some instances, these error rates are for at least 50%, 60%, 70%, 80%, 90%, 95%, 98%, 99%, 99.5%, or more of the polynucleotides synthesized. In some instances, these at least 90%, 95%, 98%, 99%, 99.5%, or more of the polynucleotides synthesized do not differ from a predetermined sequence for which they encode. In some instances, the error rate for synthesized polynucleotides on a substrate using the methods and systems described herein is less than about 1 in 200. In some instances, the error rate for synthesized polynucleotides on a substrate using the methods and systems described herein is less than about 1 in 1,000. In some instances, the error rate for synthesized polynucleotides on a substrate using the methods and systems described herein is less than about 1 in 2,000. In some instances, the error rate for synthesized polynucleotides on a substrate using the methods and systems described herein is less than about 1 in 3,000. In some instances, the error rate for synthesized polynucleotides on a substrate using the methods and systems described herein is less than about 1 in 5,000. Individual types of error rates include mismatches, deletions, insertions, and/or substitutions for the polynucleotides synthesized on the substrate. The term “error rate” refers to a comparison of the collective amount of synthesized polynucleotide to an aggregate of predetermined polynucleotide sequences. In some instances, synthesized polynucleotides disclosed herein comprise a tether of 12 to 25 bases. In some instances, the tether comprises 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 or more bases.


A suitable method for polynucleotide synthesis on a substrate of this disclosure is a phosphoramidite method comprising the controlled addition of a phosphoramidite building block, i.e. nucleoside phosphoramidite, to a growing polynucleotide chain in a coupling step that forms a phosphite triester linkage between the phosphoramidite building block and a nucleoside bound to the substrate (for example, an elongation step). In some instances, the nucleoside phosphoramidite is provided to the substrate activated. In some instances, the nucleoside phosphoramidite is provided to the substrate with an activator. In some instances, nucleoside phosphoramidites are provided to the substrate in a 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100-fold excess or more over the substrate-bound nucleosides. In some instances, the addition of nucleoside phosphoramidite is performed in an anhydrous environment, for example, in anhydrous acetonitrile. Following addition and linkage of a nucleoside phosphoramidite in the coupling step, the substrate is optionally washed. In some instances, the coupling step is repeated one or more additional times, optionally with a wash step between nucleoside phosphoramidite additions to the substrate.


Nucleic Acid Assembly


Polynucleotides may be designed to collectively span a large region of a predetermined sequence that encodes for information. In some instances, larger polynucleotides are generated through ligation reactions to join the synthesized polynucleotides. One example of a ligation reaction is polymerase chain assembly (PCA). In some instances, at least of a portion of the polynucleotides are designed to include an appended region that is a substrate for universal primer binding. For PCA reactions, the presynthesized polynucleotides include overlaps with each other (e.g., 4, 20, 40 or more bases with overlapping sequence). During the polymerase cycles, the polynucleotides anneal to complementary fragments and then are filled in by polymerase. Each cycle thus increases the length of various fragments randomly depending on which polynucleotides find each other. Complementarity amongst the fragments allows for forming a complete large span of double-stranded DNA. In some instances, after the PCA reaction is complete, an error correction step is conducted using mismatch repair detecting enzymes to remove mismatches in the sequence. Once larger fragments of a target sequence are generated, they can be amplified. For example, in some instances, a target sequence comprising 5′ and 3′ terminal adapter sequences is amplified in a polymerase chain reaction (PCR) which includes modified primers that hybridize to the adapter sequences. In some instances, the modified primers comprise one or more uracil bases. The use of modified primers allows for removal of the primers through enzymatic reactions centered on targeting the modified base and/or gaps left by enzymes which cleave the modified base pair from the fragment. What remains is a double-stranded amplification product that lacks remnants of adapter sequence. In this way, multiple amplification products can be generated in parallel with the same set of primers to generate different fragments of double-stranded DNA.


Error correction may be performed on synthesized polynucleotides and/or assembled products. An example strategy for error correction involves site-directed mutagenesis by overlap extension PCR to correct errors, which is optionally coupled with two or more rounds of cloning and sequencing. In certain instances, double-stranded nucleic acids with mismatches, bulges and small loops, chemically altered bases and/or other heteroduplexes are selectively removed from populations of correctly synthesized nucleic acids. In some instances, error correction is performed using proteins/enzymes that recognize and bind to or next to mismatched or unpaired bases within double-stranded nucleic acids to create a single or double-strand break or to initiate a strand transfer transposition event. Non-limiting examples of proteins/enzymes for error correction include endonucleases (T7 Endonuclease I, E. coli Endonuclease V, T4 Endonuclease VII, mung bean nuclease, Cell, E. coli Endonuclease IV, UVDE), restriction enzymes, glycosylases, ribonucleases, mismatch repair enzymes, resolvases, helicases, ligases, antibodies specific for mismatches, and their variants. Examples of specific error correction enzymes include T4 endonuclease 7, T7 endonuclease 1, S1, mung bean endonuclease, MutY, MutS, MutH, MutL, cleavase, CELI, and HINF1. In some instances, DNA mismatch-binding protein MutS (Thermus aquaticus) is used to remove failure products from a population of synthesized products. In some instances, error correction is performed using the enzyme Correctase. In some instances, error correction is performed using SURVEYOR endonuclease (Transgenomic), a mismatch-specific DNA endonuclease that scans for known and unknown mutations and polymorphisms for heteroduplex DNA.


Computer Systems


In various aspects, any of the systems described herein are operably linked to a computer and are optionally automated through a computer either locally or remotely. In various instances, the methods and systems of the invention further comprise software programs on computer systems and use thereof. Accordingly, computerized control for the synchronization of the dispense/vacuum/refill functions such as orchestrating and synchronizing the material deposition device movement, dispense action and vacuum actuation are within the bounds of the invention. In some instances, the computer systems are programmed to interface between the user specified base sequence and the position of a material deposition device to deliver the correct reagents to specified regions of the substrate.


The computer system 900 illustrated in FIG. 9 may be understood as a logical apparatus that can read instructions from media 911 and/or a network port 905, which can optionally be connected to server 909. The system, such as shown in FIG. 9 can include a CPU 901, disk drives 903, optional input devices such as keyboard 915 and/or mouse 916 and optional monitor 907. Data communication can be achieved through the indicated communication medium to a server at a local or a remote location. The communication medium can include any means of transmitting and/or receiving data. For example, the communication medium can be a network connection, a wireless connection or an internet connection. Such a connection can provide for communication over the World Wide Web. It is envisioned that data relating to the present disclosure can be transmitted over such networks or connections for reception and/or review by a party 922.



FIG. 10 is a block diagram illustrating a first example architecture of a computer system 1000 that can be used in connection with example instances of the present invention. As depicted in FIG. 10, the example computer system can include a processor 1002 for processing instructions. Non-limiting examples of processors include: Intel Xeon™ processor, AMD Opteron™ processor, Samsung 32-bit RISC ARM 1176JZ(F)-S v1.0™ processor, ARM Cortex-A8 Samsung S5PC100™ processor, ARM Cortex-A8 Apple A4™ processor, Marvell PXA 930™ processor, or a functionally-equivalent processor. Multiple threads of execution can be used for parallel processing. In some instances, multiple processors or processors with multiple cores can also be used, whether in a single computer system, in a cluster, or distributed across systems over a network comprising a plurality of computers, cell phones, and/or personal data assistant devices.


As illustrated in FIG. 10, a high speed cache 1004 can be connected to, or incorporated in, the processor 1002 to provide a high speed memory for instructions or data that have been recently, or are frequently, used by processor 1002. The processor 1002 is connected to a north bridge 1006 by a processor bus 1008. The north bridge 1006 is connected to random access memory (RAM) 1010 by a memory bus 1012 and manages access to the RAM 1010 by the processor 1002. The north bridge 1006 is also connected to a south bridge 1014 by a chipset bus 1016. The south bridge 1014 is, in turn, connected to a peripheral bus 1018. The peripheral bus can be, for example, PCI, PCI-X, PCI Express, or other peripheral bus. The north bridge and south bridge are often referred to as a processor chipset and manage data transfer between the processor, RAM, and peripheral components on the peripheral bus 1018. In some alternative architectures, the functionality of the north bridge can be incorporated into the processor instead of using a separate north bridge chip.


In some instances, system 1000 can include an accelerator card 1022 attached to the peripheral bus 1018. The accelerator can include field programmable gate arrays (FPGAs) or other hardware for accelerating certain processing. For example, an accelerator can be used for adaptive data restructuring or to evaluate algebraic expressions used in extended set processing.


Software and data are stored in external storage 1024 and can be loaded into RAM 1010 and/or cache 1004 for use by the processor. The system 1000 includes an operating system for managing system resources; non-limiting examples of operating systems include: Linux, Windows™, MACOS™, BlackBerry OS™, iOS™, and other functionally-equivalent operating systems, as well as application software running on top of the operating system for managing data storage and optimization in accordance with example instances of the present invention.


In this example, system 1000 also includes network interface cards (NICs) 1020 and 1021 connected to the peripheral bus for providing network interfaces to external storage, such as Network Attached Storage (NAS) and other computer systems that can be used for distributed parallel processing.



FIG. 11 is a diagram showing a network 1100 with a plurality of computer systems 1102a, and 1102b, a plurality of cell phones and personal data assistants 1102c, and Network Attached Storage (NAS) 1104a, and 1104b. In example instances, systems 1102a, 1102b, and 1102c can manage data storage and optimize data access for data stored in Network Attached Storage (NAS) 1104a and 1104b. A mathematical model can be used for the data and be evaluated using distributed parallel processing across computer systems 1102a, and 1102b, and cell phone and personal data assistant systems 1102c. Computer systems 1102a, and 1102b, and cell phone and personal data assistant systems 1102c can also provide parallel processing for adaptive data restructuring of the data stored in Network Attached Storage (NAS) 1104a and 1104b. FIG. 11 illustrates an example only, and a wide variety of other computer architectures and systems can be used in conjunction with the various instances of the present invention. For example, a blade server can be used to provide parallel processing. Processor blades can be connected through a back plane to provide parallel processing. Storage can also be connected to the back plane or as Network Attached Storage (NAS) through a separate network interface.


In some example instances, processors can maintain separate memory spaces and transmit data through network interfaces, back plane or other connectors for parallel processing by other processors. In other instances, some or all of the processors can use a shared virtual address memory space.



FIG. 12 is a block diagram of a multiprocessor computer system 1200 using a shared virtual address memory space in accordance with an example embodiment. The system includes a plurality of processors 1202a-f that can access a shared memory subsystem 1204. The system incorporates a plurality of programmable hardware memory algorithm processors (MAPs) 1206a-f in the memory subsystem 1204. Each MAP 1206a-f can comprise a memory 1208a-f and one or more field programmable gate arrays (FPGAs) 1210a-f The MAP provides a configurable functional unit and particular algorithms or portions of algorithms can be provided to the FPGAs 1210a-f for processing in close coordination with a respective processor. For example, the MAPs can be used to evaluate algebraic expressions regarding the data model and to perform adaptive data restructuring in example instances. In this example, each MAP is globally accessible by all of the processors for these purposes. In one configuration, each MAP can use Direct Memory Access (DMA) to access an associated memory 1208a-f, allowing it to execute tasks independently of, and asynchronously from, the respective microprocessor 1202a-f In this configuration, a MAP can feed results directly to another MAP for pipelining and parallel execution of algorithms.


The above computer architectures and systems are examples only, and a wide variety of other computer, cell phone, and personal data assistant architectures and systems can be used in connection with example instances, including systems using any combination of general processors, co-processors, FPGAs and other programmable logic devices, system on chips (SOCs), application specific integrated circuits (ASICs), and other processing and logic elements. In some instances, all or part of the computer system can be implemented in software or hardware. Any variety of data storage media can be used in connection with example instances, including random access memory, hard drives, flash memory, tape drives, disk arrays, Network Attached Storage (NAS) and other local or distributed data storage devices and systems.


The following examples are set forth to illustrate more clearly the principle and practice of instances disclosed herein to those skilled in the art and are not to be construed as limiting the scope of any claimed instances. Unless otherwise stated, all parts and percentages are on a weight basis.


EXAMPLES
Example 1: Synthesis of 50-Mer Sequence Polynucleotides on a Temperature Controllable Surface Utilizing a Phase Change Solvent

A polynucleotide synthesis device 101 (see FIG. 1), is assembled into a temperature controllable flowcell (FIG. 3A and FIG. 3B), which is connected to a flowcell (Applied Biosystems (ABI394 DNA Synthesizer”) as shown in in FIG. 7. The bottom surface of the well 305 (FIG. 3A and FIG. 3B), coated with SiO2, is uniformly functionalized with N-(3-TRIETHOXYSILYLPROPYL)-4-HYDROXYBUTYRAMIDE (Gelest, CAS No. 156214-80-1) and is used to synthesize an exemplary polynucleotide of 50 bp (“50-mer polynucleotide”) using polynucleotide synthesis methods described herein. The sequence of the 50-mer is as described in SEQ ID NO.: 1. 5′AGACAATCAACCATTTGGGGTGGACAGCCTTGACCTCTAGACTTCGGCAT##TTTTT TTTTT3′ (SEQ ID NO.: 1), where # denotes Thymidine-succinyl hexamide CED phosphoramidite (CLP-2244 from ChemGenes), which is a cleavable linker enabling the release of polynucleotides from the surface during deprotection.


The synthesis is done using standard DNA synthesis chemistry (coupling, capping, oxidation, and deblocking) according to the protocol in Table 2 and an ABI synthesizer, with modification: the chemical coupling reaction in each cell is controlled via a temperature controllable surface (see FIG. 8). The device temperature is lowered to about 5° C. below the freezing temperature of a phase change solvent with a cold chuck. During the coupling step, the phase change solvent is added immediately prior to addition of coupling reagents, and the phase change solvent freezes. Wells are activated for coupling by heating through addressable heating elements, which melt the solvent in individual wells. Remaining wells with frozen solvent do not react with liquid coupling reagents, and are inactive. Coupling steps are iterated, each with different DNA bases, for example A, T, G, and C, while changing the active wells for each coupling iteration. After all desired sites have been functionalized, all wells are activated by heating; global capping, oxidation, and deblocking are then conducted. This overall process is repeated until polynucleotides of the desired length are synthesized.










TABLE 2





Step
Description
















0
Deblock


1
Flush surface


2
Activate all heater elements


3
Flow phase change reagent


4
Deactivate heaters at device sites to be blocked


5
Flow nucleotide A and activator


6
Flush


7
Activate all heater elements


8
Flush


9
Flow phase change reagent


10
Deactivate heaters at device sites to be blocked


11
Flow nucleotide G and activator


12
Flush


13
Activate all heater elements


14
Flush


15
Flow phase change reagent


16
Deactivate heaters at device sites to be blocked


17
Flow nucleotide C and activator


18
Flush


19
Activate all heater elements


20
Flush


21
Flow phase change reagent


22
Deactivate heaters at device sites to be blocked


23
Flow nucleotide T and activator


24
Flush


25
Activate all heater elements


26
Flush


27
Oxidation









The device temperature is lowered to about 5° C. below the freezing temperature of a phase change solvent with a cold chuck. During the coupling step, the phase change solvent is added immediately prior to addition of coupling reagents, and the phase change solvent freezes. Wells are activated for coupling by heating through addressable heating elements, which melt the solvent in individual wells. Remaining wells with frozen solvent do not react with liquid coupling reagents, and are inactive towards coupling reagents. Coupling steps are iterated with different DNA bases, for example A, T, G, and C, while changing the active wells for each coupling iteration. After all desired sites have been functionalized, all wells are activated by heating; global capping, oxidation, and deblocking are then conducted. This overall process is repeated until polynucleotides of the desired length are synthesized.


Example 2: Synthesis of a 50-Mer Sequence Polynucleotides on a Temperature Controllable Surface Utilizing a Solvent Vapor Bubble

A polynucleotide synthesis device 101 (see FIG. 1), is assembled into a temperature controllable flowcell (FIG. 4A), which is connected to a flowcell (Applied Biosystems (ABI394 DNA Synthesizer”) as shown in in FIG. 7. The bottom surface of the well 401 (FIG. 4A), is functionalized using the general methods from Example 1.


The synthesis is done using standard DNA synthesis chemistry (coupling, capping, oxidation, and deblocking) according to the protocol in Table 3 and an ABI synthesizer, with modification: the chemical coupling reaction in each cell is controlled via a temperature controllable surface (see FIG. 8).










TABLE 3





Step
Description
















0
Deblock


1
Flush surface


2
Deactivate all heater elements


3
Activate heaters at device sites to be blocked


4
Flow nucleotide A and activator


5
Flush


6
Deactivate all heater elements


7
Flush


8
Activate heaters at device sites to be blocked


9
Flow nucleotide G and activator


10
Flush


11
Deactivate all heater elements


12
Flush


13
Activate heaters at device sites to be blocked


14
Flow nucleotide C and activator


15
Flush


16
Deactivate all heater elements


17
Flush


18
Activate heaters at device sites to be blocked


19
Flow nucleotide T and activator


20
Flush


21
Deactivate all heater elements


22
Flush


23
Oxidation









Wells are blocked against coupling by heating through addressable heating elements, which vaporizes the solvent in individual wells, creating a bubble 417. Remaining wells with liquid solvent contacting the polynucleotide surface 407 for extension or synthesis react with liquid coupling reagents, and are active. Coupling steps are iterated with different DNA bases, for example A, T, G, and C, while changing the active wells for each coupling iteration. Inactive wells are activated by turning off heating elements at those wells, causing the vapor bubbles to collapse. After all desired sites have been functionalized, all wells are activated by turning off heating elements; global capping, oxidation, and deblocking are then conducted. This overall process is repeated until polynucleotides of the desired length are synthesized.


Example 3: Synthesis of 50-Mer Sequence Polynucleotides on a Temperature Controllable Surface Utilizing Nanoposts

A polynucleotide synthesis device 101 (see FIG. 1), is assembled into a temperature controllable flowcell (FIG. 4B), which is connected to a flowcell (Applied Biosystems (ABI394 DNA Synthesizer”) as shown in in FIG. 7. The top surface of the nanopost 407 (FIG. 4B), is functionalized using the general methods from Example 1.


The synthesis is done using standard DNA synthesis chemistry (coupling, capping, oxidation, and deblocking) according to the protocol in Table 3 and an ABI synthesizer, with modification: the chemical coupling reaction in each cell is controlled via a temperature controllable surface (see FIG. 8), using the general method of Example 2.


Example 4: Synthesis of 50-Mer Sequence Polynucleotides on a Temperature Controllable Surface Utilizing Nanowires

A polynucleotide synthesis device 101 (see FIG. 1), is assembled into a temperature controllable flowcell (FIG. 5), which is connected to a flowcell (Applied Biosystems (ABI394 DNA Synthesizer”) as shown in in FIG. 7. The surface of the nanorods 502 (FIG. 5), is functionalized using the general methods from Example 1.


The synthesis is done using standard DNA synthesis chemistry (coupling, capping, oxidation, and deblocking) according to the protocol in Table 3 and an ABI synthesizer, with modification: the chemical coupling reaction in each cell is controlled via a temperature controllable surface (see FIG. 8), using the general methods of Example 2.


Example 5: Synthesis of 50-Mer Sequence Polynucleotides on a Surface Containing Nanorods and Utilizing a Phase Change Solvent

A polynucleotide synthesis device 101 (see FIG. 1), is assembled into a temperature controllable flowcell (FIG. 6), which is connected to a flowcell (Applied Biosystems (ABI394 DNA Synthesizer”) as shown in in FIG. 7. The surface of the nanorods 603 (FIG. 6), is functionalized using the general methods from Example 1.


The synthesis is done using standard DNA synthesis chemistry (coupling, capping, oxidation, and deblocking) according to the protocol in Table 4 and an ABI synthesizer, with modification: the chemical coupling reaction in each cell is controlled via a temperature controllable surface (see FIG. 8). During the coupling step, the phase change solvent is added immediately prior to addition of coupling reagents. Wells are deactivated for coupling by cooling through an addressable lower contact 601 connected to one or more nanorods, which freezes a layer of solvent around the nanorods. Remaining nanorods with liquid solvent react with liquid coupling reagents, and are active. Coupling steps are iterated with different DNA bases, for example A, T, G, and C, while changing the active wells for each coupling iteration. After all desired sites have been functionalized, all nanorods are activated by discontinuing cooling; global capping, oxidation, and deblocking are then conducted. This overall process is repeated until polynucleotides of the desired length are synthesized.










TABLE 4





Step
Description
















0
Deblock


1
Flush surface


2
Deactivate all cooling elements


3
Flow phase change reagent


4
Activate cooling at device sites to be blocked


5
Flow nucleotide A and activator


6
Flush


7
Deactivate all cooling elements


8
Flush


9
Flow phase change reagent


10
Activate cooling at device sites to be blocked


11
Flow nucleotide G and activator


12
Flush


13
Deactivate all cooling elements


14
Flush


15
Flow phase change reagent


16
Activate cooling at device sites to be blocked


17
Flow nucleotide C and activator


18
Flush


19
Deactivate all cooling elements


20
Flush


21
Flow phase change reagent


22
Activate cooling at device sites to be blocked


23
Flow nucleotide T and activator


24
Flush


25
Deactivate all cooling elements


26
Flush


27
Oxidation









While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.

Claims
  • 1. A method for polynucleotide synthesis, the method comprising: a. providing:a substrate comprising a surface;a plurality of structures for polynucleotide extension located on the surface, wherein each structure has a width of about 10 nm to about 1000 nm, wherein each structure is in contact with a heating unit, wherein the heating unit comprise an addressable electrode,a solvent distributed across the surface,predetermined sequences for a library of polynucleotides at each structure;b. synthesizing the library of polynucleotides at each structure, andc. heating of the solvent at each structure by applying an electrical current through the addressable electrode, causing the solvent to be in a gas phase which prevents deblocking of at least one polynucleotide extending from the at least one region of the surface.
  • 2. The method of claim 1, wherein synthesizing the library of polynucleotides extending from the surface comprises contacting the surface with a first nucleoside phosphoramidite.
  • 3. The method of claim 2, wherein synthesizing the library of polynucleotides extending from the surface further comprises contacting the surface with a second nucleoside phosphoramidite, wherein the solvent is not removed between contact with the first nucleotide phosphoramidite and the second nucleotide phosphoramidite.
  • 4. The method of claim 1, wherein synthesizing the library of polynucleotides extending from the surface further comprises condensing the solvent present at the at least one region of the surface, and deblocking at least one extended polynucleotide extending from the surface in the at least one region.
  • 5. The method of claim 1, wherein the solvent has a boiling temperature no more than about 75 degrees C.
  • 6. The method of claim 5, wherein the solvent has a boiling temperature no more than about 65 degrees C.
  • 7. The method of claim 1, wherein the solvent has a boiling temperature of between 30 degrees C. to 82 degrees C.
  • 8. The method of claim 7, wherein the solvent has a boiling temperature of between 55 degrees C. to 82 degrees C.
  • 9. The method of claim 1, wherein the surface comprises at least 30,000 loci for polynucleotide synthesis.
  • 10. The method of claim 9, wherein the surface comprises at least 50,000 loci for polynucleotide synthesis.
  • 11. The method of claim 10, wherein the surface comprises at least 100,000 loci for polynucleotide synthesis.
  • 12. The method of claim 11, wherein the surface comprises at least 200,000 loci for polynucleotide synthesis.
  • 13. The method of claim 12, wherein the surface comprises at least 1,000,000 loci for polynucleotide synthesis.
  • 14. The method of claim 1, wherein the solvent has a boiling temperature no more than about 82 degrees C.
  • 15. The method of claim 1, wherein the solvent is a polar solvent.
  • 16. The method of claim 15, wherein the solvent is acetonitrile.
  • 17. The method of claim 1, wherein the solvent is a non-polar solvent.
  • 18. The method of claim 1, wherein the solvent when in a liquid phase allows deblocking of at least one polynucleotide extending from the at least one region of the surface.
  • 19. The method of claim 1, wherein the method further comprises condensing the solvent after deblocking of at least one polynucleotide extending from the at least one region of the surface.
CROSS-REFERENCE

This application claims the benefit of U.S. provisional patent application No. 62/575,287 filed on Oct. 20, 2017, which is incorporated herein by reference in its entirety.

US Referenced Citations (955)
Number Name Date Kind
3549368 Robert et al. Dec 1970 A
3920714 Streck Nov 1975 A
4123661 Wolf et al. Oct 1978 A
4415732 Caruthers et al. Nov 1983 A
4613398 Chiong et al. Sep 1986 A
4726877 Fryd et al. Feb 1988 A
4808511 Holmes Feb 1989 A
4837401 Hirose et al. Jun 1989 A
4863557 Kokaku et al. Sep 1989 A
4981797 Jessee et al. Jan 1991 A
4988617 Landegren et al. Jan 1991 A
5102797 Tucker et al. Apr 1992 A
5118605 Urdea Jun 1992 A
5137814 Rashtchian et al. Aug 1992 A
5143854 Pirrung et al. Sep 1992 A
5242794 Whiteley et al. Sep 1993 A
5242974 Holmes Sep 1993 A
5288514 Ellman Feb 1994 A
5291897 Gastrin et al. Mar 1994 A
5299491 Kawada Apr 1994 A
5384261 Winkler et al. Jan 1995 A
5387541 Hodge et al. Feb 1995 A
5395753 Prakash Mar 1995 A
5431720 Nagai et al. Jul 1995 A
5445934 Fodor et al. Aug 1995 A
5449754 Nishioka Sep 1995 A
5459039 Modrich et al. Oct 1995 A
5474796 Brennan Dec 1995 A
5476930 Letsinger et al. Dec 1995 A
5487993 Herrnstadt et al. Jan 1996 A
5494810 Barany et al. Feb 1996 A
5501893 Laermer et al. Mar 1996 A
5508169 Deugau et al. Apr 1996 A
5510270 Fodor et al. Apr 1996 A
5514789 Kempe May 1996 A
5527681 Holmes Jun 1996 A
5530516 Sheets Jun 1996 A
5556750 Modrich et al. Sep 1996 A
5586211 Dumitrou et al. Dec 1996 A
5641658 Adams et al. Jun 1997 A
5677195 Winkler et al. Oct 1997 A
5679522 Modrich et al. Oct 1997 A
5683879 Laney et al. Nov 1997 A
5688642 Chrisey et al. Nov 1997 A
5700637 Southern Dec 1997 A
5700642 Monforte et al. Dec 1997 A
5702894 Modrich et al. Dec 1997 A
5707806 Shuber Jan 1998 A
5712124 Walker Jan 1998 A
5739386 Holmes Apr 1998 A
5750672 Kempe May 1998 A
5780613 Letsinger et al. Jul 1998 A
5830643 Yamamoto et al. Nov 1998 A
5830655 Monforte et al. Nov 1998 A
5830662 Soares et al. Nov 1998 A
5834252 Stemmer et al. Nov 1998 A
5843669 Kaiser et al. Dec 1998 A
5843767 Beattie Dec 1998 A
5846717 Brow et al. Dec 1998 A
5854033 Lizardi Dec 1998 A
5858754 Modrich et al. Jan 1999 A
5861482 Modrich et al. Jan 1999 A
5863801 Southgate et al. Jan 1999 A
5869245 Yeung Feb 1999 A
5877280 Wetmur Mar 1999 A
5882496 Northrup et al. Mar 1999 A
5922539 Modrich et al. Jul 1999 A
5922593 Livingston Jul 1999 A
5928907 Woudenberg et al. Jul 1999 A
5962272 Chenchik et al. Oct 1999 A
5976842 Wurst Nov 1999 A
5976846 Passmore et al. Nov 1999 A
5989872 Luo et al. Nov 1999 A
5994069 Hall et al. Nov 1999 A
6001567 Brow et al. Dec 1999 A
6008031 Modrich et al. Dec 1999 A
6013440 Lipshutz et al. Jan 2000 A
6015674 Woudenberg et al. Jan 2000 A
6020481 Benson et al. Feb 2000 A
6027898 Gjerde et al. Feb 2000 A
6028189 Blanchard Feb 2000 A
6028198 Liu et al. Feb 2000 A
6040138 Lockhart et al. Mar 2000 A
6077674 Schleifer et al. Jun 2000 A
6087482 Teng et al. Jul 2000 A
6090543 Prudent et al. Jul 2000 A
6090606 Kaiser et al. Jul 2000 A
6103474 Dellinger et al. Aug 2000 A
6107038 Choudhary et al. Aug 2000 A
6110682 Dellinger et al. Aug 2000 A
6114115 Wagner, Jr. Sep 2000 A
6130045 Wurst et al. Oct 2000 A
6132997 Shannon Oct 2000 A
6136568 Hiatt et al. Oct 2000 A
6171797 Perbost Jan 2001 B1
6180351 Cattell Jan 2001 B1
6201112 Ach Mar 2001 B1
6218118 Sampson et al. Apr 2001 B1
6221653 Caren et al. Apr 2001 B1
6222030 Dellinger et al. Apr 2001 B1
6232072 Fisher May 2001 B1
6235483 Wolber et al. May 2001 B1
6242266 Schleifer et al. Jun 2001 B1
6251588 Shannon et al. Jun 2001 B1
6251595 Gordon et al. Jun 2001 B1
6251685 Dorsel et al. Jun 2001 B1
6258454 Lefkowitz et al. Jul 2001 B1
6262490 Hsu et al. Jul 2001 B1
6274725 Sanghvi et al. Aug 2001 B1
6284465 Wolber Sep 2001 B1
6287776 Hefti Sep 2001 B1
6287824 Lizardi Sep 2001 B1
6297017 Schmidt et al. Oct 2001 B1
6300137 Earhart et al. Oct 2001 B1
6306599 Perbost Oct 2001 B1
6309822 Fodor et al. Oct 2001 B1
6309828 Schleifer et al. Oct 2001 B1
6312911 Bancroft et al. Nov 2001 B1
6319674 Fulcrand et al. Nov 2001 B1
6323043 Caren et al. Nov 2001 B1
6329210 Schleifer Dec 2001 B1
6346423 Schembri Feb 2002 B1
6365355 McCutchen-Maloney Apr 2002 B1
6372483 Schleifer et al. Apr 2002 B2
6375903 Cerrina et al. Apr 2002 B1
6376285 Joyner et al. Apr 2002 B1
6384210 Blanchard May 2002 B1
6387636 Perbost et al. May 2002 B1
6399394 Dahm et al. Jun 2002 B1
6399516 Ayon Jun 2002 B1
6403314 Lange et al. Jun 2002 B1
6406849 Dorsel et al. Jun 2002 B1
6406851 Bass Jun 2002 B1
6408308 Maslyn et al. Jun 2002 B1
6419883 Blanchard Jul 2002 B1
6428957 Delenstarr Aug 2002 B1
6440669 Bass et al. Aug 2002 B1
6444268 Lefkowitz et al. Sep 2002 B2
6446642 Caren et al. Sep 2002 B1
6446682 Viken Sep 2002 B1
6451998 Perbost Sep 2002 B1
6458526 Schembri et al. Oct 2002 B1
6458535 Hall et al. Oct 2002 B1
6458583 Bruhn et al. Oct 2002 B1
6461812 Barth et al. Oct 2002 B2
6461816 Wolber et al. Oct 2002 B1
6469156 Schafer et al. Oct 2002 B1
6472147 Janda et al. Oct 2002 B1
6492107 Kauffman et al. Dec 2002 B1
6518056 Schembri et al. Feb 2003 B2
6521427 Evans Feb 2003 B1
6521453 Crameri et al. Feb 2003 B1
6555357 Kaiser et al. Apr 2003 B1
6558908 Wolber et al. May 2003 B2
6562611 Kaiser et al. May 2003 B1
6566495 Fodor et al. May 2003 B1
6582908 Fodor et al. Jun 2003 B2
6582938 Su et al. Jun 2003 B1
6586211 Staehler et al. Jul 2003 B1
6587579 Bass Jul 2003 B1
6589739 Fisher Jul 2003 B2
6599693 Webb Jul 2003 B1
6602472 Zimmermann et al. Aug 2003 B1
6610978 Yin et al. Aug 2003 B2
6613513 Parce et al. Sep 2003 B1
6613523 Fischer Sep 2003 B2
6613560 Tso et al. Sep 2003 B1
6613893 Webb Sep 2003 B1
6621076 Van et al. Sep 2003 B1
6630581 Dellinger et al. Oct 2003 B2
6632641 Brennan et al. Oct 2003 B1
6635226 Tso et al. Oct 2003 B1
6642373 Manoharan et al. Nov 2003 B2
6649348 Bass et al. Nov 2003 B2
6660338 Hargreaves Dec 2003 B1
6664112 Mulligan et al. Dec 2003 B2
6670127 Evans Dec 2003 B2
6670461 Wengel et al. Dec 2003 B1
6673552 Frey Jan 2004 B2
6682702 Barth et al. Jan 2004 B2
6689319 Fisher et al. Feb 2004 B1
6692917 Neri et al. Feb 2004 B2
6702256 Killeen et al. Mar 2004 B2
6706471 Brow et al. Mar 2004 B1
6706875 Goldberg; Martin et al. Mar 2004 B1
6709852 Bloom et al. Mar 2004 B1
6709854 Donahue et al. Mar 2004 B2
6713262 Gillibolian et al. Mar 2004 B2
6716629 Hess et al. Apr 2004 B2
6716634 Myerson Apr 2004 B1
6723509 Ach Apr 2004 B2
6728129 Lindsey et al. Apr 2004 B2
6743585 Dellinger et al. Jun 2004 B2
6753145 Holcomb et al. Jun 2004 B2
6768005 Mellor et al. Jul 2004 B2
6770748 Imanishi et al. Aug 2004 B2
6770892 Corson et al. Aug 2004 B2
6773676 Schembri Aug 2004 B2
6773888 Li et al. Aug 2004 B2
6780982 Lyamichev et al. Aug 2004 B2
6787308 Balasubramanian et al. Sep 2004 B2
6789965 Barth et al. Sep 2004 B2
6790620 Bass et al. Sep 2004 B2
6794499 Wengel et al. Sep 2004 B2
6796634 Caren et al. Sep 2004 B2
6800439 McGall et al. Oct 2004 B1
6814846 Berndt Nov 2004 B1
6815218 Jacobson et al. Nov 2004 B1
6824866 Glazer et al. Nov 2004 B1
6830890 Lockhart et al. Dec 2004 B2
6833246 Balasubramanian Dec 2004 B2
6833450 McGall et al. Dec 2004 B1
6835938 Ghosh et al. Dec 2004 B2
6838888 Peck Jan 2005 B2
6841131 Zimmermann et al. Jan 2005 B2
6845968 Killeen et al. Jan 2005 B2
6846454 Peck Jan 2005 B2
6846922 Manoharan et al. Jan 2005 B1
6852850 Myerson et al. Feb 2005 B2
6858720 Myerson et al. Feb 2005 B2
6879915 Cattell Apr 2005 B2
6880576 Karp et al. Apr 2005 B2
6884580 Caren et al. Apr 2005 B2
6887715 Schembri May 2005 B2
6890723 Perbost et al. May 2005 B2
6890760 Webb May 2005 B1
6893816 Beattie May 2005 B1
6897023 Fu et al. May 2005 B2
6900047 Bass May 2005 B2
6900048 Perbost May 2005 B2
6911611 Wong et al. Jun 2005 B2
6914229 Corson et al. Jul 2005 B2
6916113 De et al. Jul 2005 B2
6916633 Shannon Jul 2005 B1
6919181 Hargreaves Jul 2005 B2
6927029 Lefkowitz et al. Aug 2005 B2
6929951 Corson et al. Aug 2005 B2
6936472 Earhart et al. Aug 2005 B2
6938476 Chesk Sep 2005 B2
6939673 Bass et al. Sep 2005 B2
6943036 Bass Sep 2005 B2
6946285 Bass Sep 2005 B2
6950756 Kincaid Sep 2005 B2
6951719 Dupret et al. Oct 2005 B1
6958119 Yin et al. Oct 2005 B2
6960464 Jessee et al. Nov 2005 B2
6969488 Bridgham et al. Nov 2005 B2
6976384 Hobbs et al. Dec 2005 B2
6977223 George et al. Dec 2005 B2
6987263 Hobbs et al. Jan 2006 B2
6989267 Kim et al. Jan 2006 B2
6991922 Dupret et al. Jan 2006 B2
7008037 Caren et al. Mar 2006 B2
7025324 Slocum et al. Apr 2006 B1
7026124 Barth et al. Apr 2006 B2
7027930 Cattell Apr 2006 B2
7028536 Karp et al. Apr 2006 B2
7029854 Collins et al. Apr 2006 B2
7034290 Lu et al. Apr 2006 B2
7041445 Chenchik et al. May 2006 B2
7045289 Allawi et al. May 2006 B2
7051574 Peck May 2006 B2
7052841 Delenstarr May 2006 B2
7062385 White et al. Jun 2006 B2
7064197 Rabbani et al. Jun 2006 B1
7070932 Leproust et al. Jul 2006 B2
7075161 Barth Jul 2006 B2
7078167 Delenstarr et al. Jul 2006 B2
7078505 Bass et al. Jul 2006 B2
7094537 Leproust et al. Aug 2006 B2
7097974 Staehler et al. Aug 2006 B1
7101508 Thompson et al. Sep 2006 B2
7101986 Dellinger et al. Sep 2006 B2
7105295 Bass et al. Sep 2006 B2
7115423 Mitchell Oct 2006 B1
7122303 Delenstarr et al. Oct 2006 B2
7122364 Lyamichev et al. Oct 2006 B1
7125488 Li Oct 2006 B2
7125523 Sillman Oct 2006 B2
7128876 Yin et al. Oct 2006 B2
7129075 Gerard et al. Oct 2006 B2
7135565 Dellinger et al. Nov 2006 B2
7138062 Yin et al. Nov 2006 B2
7141368 Fisher et al. Nov 2006 B2
7141807 Joyce et al. Nov 2006 B2
7147362 Caren et al. Dec 2006 B2
7150982 Allawi et al. Dec 2006 B2
7153689 Tolosko et al. Dec 2006 B2
7163660 Lehmann Jan 2007 B2
7166258 Bass et al. Jan 2007 B2
7179659 Stolowitz et al. Feb 2007 B2
7183406 Belshaw et al. Feb 2007 B2
7192710 Gellibolian et al. Mar 2007 B2
7193077 Dellinger et al. Mar 2007 B2
7198939 Dorsel et al. Apr 2007 B2
7202264 Ravikumar et al. Apr 2007 B2
7202358 Hargreaves Apr 2007 B2
7205128 Ilsley et al. Apr 2007 B2
7205400 Webb Apr 2007 B2
7206439 Zhou et al. Apr 2007 B2
7208322 Stolowitz et al. Apr 2007 B2
7217522 Brenner May 2007 B2
7220573 Shea et al. May 2007 B2
7221785 Curry et al. May 2007 B2
7226862 Staehler et al. Jun 2007 B2
7227017 Mellor et al. Jun 2007 B2
7229497 Stott et al. Jun 2007 B2
7247337 Leproust et al. Jul 2007 B1
7247497 Dahm et al. Jul 2007 B2
7252938 Leproust et al. Aug 2007 B2
7269518 Corson Sep 2007 B2
7271258 Dellinger et al. Sep 2007 B2
7276336 Webb et al. Oct 2007 B1
7276378 Myerson Oct 2007 B2
7276599 Moore et al. Oct 2007 B2
7282183 Peck Oct 2007 B2
7282332 Caren et al. Oct 2007 B2
7282705 Brennen Oct 2007 B2
7291471 Sampson et al. Nov 2007 B2
7302348 Ghosh et al. Nov 2007 B2
7306917 Prudent et al. Dec 2007 B2
7314599 Roitman et al. Jan 2008 B2
7323320 Oleinikov Jan 2008 B2
7344831 Wolber et al. Mar 2008 B2
7348144 Minor Mar 2008 B2
7351379 Schleifer Apr 2008 B2
7353116 Webb et al. Apr 2008 B2
7361906 Ghosh et al. Apr 2008 B2
7364896 Schembri Apr 2008 B2
7368550 Dellinger et al. May 2008 B2
7371348 Schleifer et al. May 2008 B2
7371519 Wolber et al. May 2008 B2
7371580 Yakhini et al. May 2008 B2
7372982 Le May 2008 B2
7384746 Lyamichev et al. Jun 2008 B2
7385050 Dellinger et al. Jun 2008 B2
7390457 Schembri Jun 2008 B2
7393665 Brenner Jul 2008 B2
7396676 Robotti et al. Jul 2008 B2
7399844 Sampson et al. Jul 2008 B2
7402279 Schembri Jul 2008 B2
7411061 Myerson et al. Aug 2008 B2
7413709 Roitman et al. Aug 2008 B2
7417139 Dellinger et al. Aug 2008 B2
7422911 Schembri Sep 2008 B2
7427679 Dellinger et al. Sep 2008 B2
7432048 Neri et al. Oct 2008 B2
7435810 Myerson et al. Oct 2008 B2
7439272 Xu Oct 2008 B2
7476709 Moody et al. Jan 2009 B2
7482118 Allawi et al. Jan 2009 B2
7488607 Tom-Moy et al. Feb 2009 B2
7504213 Sana et al. Mar 2009 B2
7514369 Li et al. Apr 2009 B2
7517979 Wolber Apr 2009 B2
7524942 Wang et al. Apr 2009 B2
7524950 Dellinger et al. Apr 2009 B2
7527928 Neri et al. May 2009 B2
7531303 Dorsel et al. May 2009 B2
7534561 Sana et al. May 2009 B2
7534563 Hargreaves May 2009 B2
7537936 Dahm et al. May 2009 B2
7541145 Prudent et al. Jun 2009 B2
7544473 Brenner Jun 2009 B2
7556919 Chenchik et al. Jul 2009 B2
7563600 Oleinikov Jul 2009 B2
7572585 Wang Aug 2009 B2
7572907 Dellinger et al. Aug 2009 B2
7572908 Dellinger et al. Aug 2009 B2
7585970 Dellinger et al. Sep 2009 B2
7588889 Wolber et al. Sep 2009 B2
7595350 Xu Sep 2009 B2
7604941 Jacobson Oct 2009 B2
7604996 Stuelpnagel et al. Oct 2009 B1
7608396 Delenstarr Oct 2009 B2
7618777 Myerson et al. Nov 2009 B2
7629120 Bennett et al. Dec 2009 B2
7635772 McCormac Dec 2009 B2
7648832 Jessee et al. Jan 2010 B2
7651762 Xu et al. Jan 2010 B2
7659069 Belyaev et al. Feb 2010 B2
7678542 Lyamichev et al. Mar 2010 B2
7682809 Sampson Mar 2010 B2
7709197 Drmanac May 2010 B2
7718365 Wang May 2010 B2
7718786 Dupret et al. May 2010 B2
7723077 Young et al. May 2010 B2
7737088 Staehler et al. Jun 2010 B1
7737089 Guimil et al. Jun 2010 B2
7741463 Gormley et al. Jun 2010 B2
7749701 Leproust et al. Jul 2010 B2
7759471 Dellinger et al. Jul 2010 B2
7776021 Borenstein et al. Aug 2010 B2
7776532 Gibson et al. Aug 2010 B2
7790369 Stahler; Peer F et al. Sep 2010 B2
7790387 Dellinger et al. Sep 2010 B2
7807356 Sampson et al. Oct 2010 B2
7807806 Allawi et al. Oct 2010 B2
7811753 Eshoo Oct 2010 B2
7816079 Fischer Oct 2010 B2
7820387 Neri et al. Oct 2010 B2
7829314 Prudent et al. Nov 2010 B2
7855281 Dellinger et al. Dec 2010 B2
7862999 Zheng et al. Jan 2011 B2
7867782 Barth Jan 2011 B2
7875463 Adaskin et al. Jan 2011 B2
7879541 Kincaid Feb 2011 B2
7879580 Carr et al. Feb 2011 B2
7894998 Kincaid Feb 2011 B2
7919239 Wang Apr 2011 B2
7919308 Schleifer Apr 2011 B2
7927797 Nobile et al. Apr 2011 B2
7927838 Shannon Apr 2011 B2
7932025 Carr et al. Apr 2011 B2
7932070 Hogrefe et al. Apr 2011 B2
7935800 Allawi et al. May 2011 B2
7939645 Borns May 2011 B2
7943046 Martosella et al. May 2011 B2
7943358 Hogrefe et al. May 2011 B2
7960157 Borns Jun 2011 B2
7977119 Kronick et al. Jul 2011 B2
7979215 Sampas Jul 2011 B2
7998437 Berndt et al. Aug 2011 B2
7999087 Dellinger et al. Aug 2011 B2
8021842 Brenner Sep 2011 B2
8021844 Wang Sep 2011 B2
8034917 Yamada Oct 2011 B2
8036835 Sampas et al. Oct 2011 B2
8048664 Guan et al. Nov 2011 B2
8053191 Blake Nov 2011 B2
8058001 Crameri et al. Nov 2011 B2
8058004 Oleinikov Nov 2011 B2
8058055 Barrett et al. Nov 2011 B2
8063184 Allawi et al. Nov 2011 B2
8067556 Hogrefe et al. Nov 2011 B2
8073626 Troup et al. Dec 2011 B2
8076064 Wang Dec 2011 B2
8076152 Robotti Dec 2011 B2
8097711 Timar et al. Jan 2012 B2
8137936 Macevicz Mar 2012 B2
8148068 Brenner Apr 2012 B2
8154729 Baldo et al. Apr 2012 B2
8168385 Brenner et al. May 2012 B2
8168388 Gormley et al. May 2012 B2
8173368 Staehler et al. May 2012 B2
8182991 Kaiser et al. May 2012 B1
8194244 Wang et al. Jun 2012 B2
8198071 Goshoo et al. Jun 2012 B2
8202983 Dellinger et al. Jun 2012 B2
8202985 Dellinger et al. Jun 2012 B2
8206952 Carr et al. Jun 2012 B2
8213015 Kraiczek et al. Jul 2012 B2
8242258 Dellinger et al. Aug 2012 B2
8247221 Fawcett Aug 2012 B2
8263335 Carr et al. Sep 2012 B2
8268605 Sorge et al. Sep 2012 B2
8283148 Sorge et al. Oct 2012 B2
8288093 Hall et al. Oct 2012 B2
8298767 Brenner et al. Oct 2012 B2
8304273 Stellacci et al. Nov 2012 B2
8309307 Barrett et al. Nov 2012 B2
8309706 Dellinger et al. Nov 2012 B2
8309710 Sierzchala et al. Nov 2012 B2
8314220 Mullinax et al. Nov 2012 B2
8318433 Brenner Nov 2012 B2
8318479 Domansky et al. Nov 2012 B2
8357489 Chua et al. Jan 2013 B2
8357490 Froehlich et al. Jan 2013 B2
8367016 Quan et al. Feb 2013 B2
8367335 Staehler et al. Feb 2013 B2
8380441 Webb et al. Feb 2013 B2
8383338 Kitzman et al. Feb 2013 B2
8415138 Leproust Apr 2013 B2
8435736 Gibson et al. May 2013 B2
8445205 Brenner May 2013 B2
8445206 Bergmann et al. May 2013 B2
8470996 Brenner et al. Jun 2013 B2
8476018 Brenner Jul 2013 B2
8476598 Pralle et al. Jul 2013 B1
8481292 Casbon et al. Jul 2013 B2
8481309 Zhang et al. Jul 2013 B2
8491561 Borenstein et al. Jul 2013 B2
8497069 Hutchison, III et al. Jul 2013 B2
8500979 Elibol et al. Aug 2013 B2
8501454 Liu et al. Aug 2013 B2
8507226 Carr et al. Aug 2013 B2
8507239 Lubys et al. Aug 2013 B2
8507272 Zhang et al. Aug 2013 B2
8530197 Li et al. Sep 2013 B2
8552174 Dellinger et al. Oct 2013 B2
8563478 Gormley et al. Oct 2013 B2
8569046 Love et al. Oct 2013 B2
8577621 Troup et al. Nov 2013 B2
8586310 Mitra et al. Nov 2013 B2
8614092 Zhang et al. Dec 2013 B2
8642755 Sierzchala et al. Feb 2014 B2
8664164 Ericsson et al. Mar 2014 B2
8669053 Stuelpnagel et al. Mar 2014 B2
8679756 Brenner et al. Mar 2014 B1
8685642 Sampas Apr 2014 B2
8685676 Hogrefe et al. Apr 2014 B2
8685678 Casbon et al. Apr 2014 B2
8715933 Oliver May 2014 B2
8715967 Casbon et al. May 2014 B2
8716467 Jacobson May 2014 B2
8722368 Casbon et al. May 2014 B2
8722585 Wang May 2014 B2
8728766 Casbon et al. May 2014 B2
8741606 Casbon et al. Jun 2014 B2
8808896 Choo et al. Aug 2014 B2
8808986 Jacobson et al. Aug 2014 B2
8815600 Liu et al. Aug 2014 B2
8889851 Leproust et al. Nov 2014 B2
8932994 Gormley et al. Jan 2015 B2
8962532 Shapiro et al. Feb 2015 B2
8968999 Gibson et al. Mar 2015 B2
8980563 Zheng et al. Mar 2015 B2
9018365 Brenner et al. Apr 2015 B2
9023601 Oleinikov May 2015 B2
9051666 Oleinikov Jun 2015 B2
9073962 Fracchia et al. Jul 2015 B2
9074204 Anderson et al. Jul 2015 B2
9085797 Gebeyehu et al. Jul 2015 B2
9133510 Andersen et al. Sep 2015 B2
9139874 Myers et al. Sep 2015 B2
9150853 Hudson et al. Oct 2015 B2
9187777 Jacobson et al. Nov 2015 B2
9194001 Brenner Nov 2015 B2
9216414 Chu Dec 2015 B2
9217144 Jacobson et al. Dec 2015 B2
9279149 Efcavitch et al. Mar 2016 B2
9286439 Shapiro et al. Mar 2016 B2
9295965 Jacobson et al. Mar 2016 B2
9315861 Hendricks et al. Apr 2016 B2
9328378 Earnshaw et al. May 2016 B2
9347091 Bergmann et al. May 2016 B2
9375748 Harumoto et al. Jun 2016 B2
9376677 Mir Jun 2016 B2
9376678 Gormley et al. Jun 2016 B2
9384320 Church Jul 2016 B2
9384920 Bakulich Jul 2016 B1
9388407 Jacobson Jul 2016 B2
9394333 Wada et al. Jul 2016 B2
9403141 Banyai et al. Aug 2016 B2
9409139 Banyai et al. Aug 2016 B2
9410149 Brenner et al. Aug 2016 B2
9410173 Betts et al. Aug 2016 B2
9416411 Stuelpnagel et al. Aug 2016 B2
9422600 Ramu et al. Aug 2016 B2
9487824 Kutyavin et al. Nov 2016 B2
9499848 Carr et al. Nov 2016 B2
9523122 Zheng et al. Dec 2016 B2
9528148 Zheng et al. Dec 2016 B2
9534251 Young et al. Jan 2017 B2
9555388 Banyai et al. Jan 2017 B2
9568839 Stahler et al. Feb 2017 B2
9580746 Leproust et al. Feb 2017 B2
9670529 Osborne et al. Jun 2017 B2
9670536 Casbon et al. Jun 2017 B2
9677067 Toro Jun 2017 B2
9695211 Wada et al. Jul 2017 B2
9718060 Venter et al. Aug 2017 B2
9745573 Stuelpnagel et al. Aug 2017 B2
9745619 Rabbani et al. Aug 2017 B2
9765387 Rabbani et al. Sep 2017 B2
9771576 Gibson et al. Sep 2017 B2
9833761 Banyai Dec 2017 B2
9834774 Carstens Dec 2017 B2
9839894 Banyai Dec 2017 B2
9879283 Ravinder et al. Jan 2018 B2
9889423 Banyai Feb 2018 B2
9895673 Peck Feb 2018 B2
9925510 Jacobson et al. Mar 2018 B2
9932576 Raymond et al. Apr 2018 B2
9981239 Banyai May 2018 B2
10053688 Cox Aug 2018 B2
10251611 Marsh et al. Apr 2019 B2
10583415 Banyai et al. Mar 2020 B2
20010018512 Blanchard Aug 2001 A1
20010039014 Bass et al. Nov 2001 A1
20010055761 Kanemoto et al. Dec 2001 A1
20020012930 Rothberg et al. Jan 2002 A1
20020025561 Hodgson Feb 2002 A1
20020076716 Sabanayagam et al. Jun 2002 A1
20020081582 Gao et al. Jun 2002 A1
20020094533 Hess et al. Jul 2002 A1
20020095073 Jacobs et al. Jul 2002 A1
20020119459 Griffiths et al. Aug 2002 A1
20020132308 Liu et al. Sep 2002 A1
20020155439 Rodriguez et al. Oct 2002 A1
20020160536 Regnier et al. Oct 2002 A1
20020164824 Xiao et al. Nov 2002 A1
20030008411 Van et al. Jan 2003 A1
20030022207 Balasubramanian et al. Jan 2003 A1
20030022240 Luo et al. Jan 2003 A1
20030022317 Jack et al. Jan 2003 A1
20030044781 Korlach et al. Mar 2003 A1
20030058629 Hirai et al. Mar 2003 A1
20030064398 Barnes Apr 2003 A1
20030068633 Belshaw et al. Apr 2003 A1
20030082719 Schumacher et al. May 2003 A1
20030100102 Rothberg et al. May 2003 A1
20030108903 Wang et al. Jun 2003 A1
20030120035 Gao et al. Jun 2003 A1
20030138782 Evans Jul 2003 A1
20030143605 Lok et al. Jul 2003 A1
20030148291 Robotti Aug 2003 A1
20030148344 Rothberg et al. Aug 2003 A1
20030171325 Gascoyne et al. Sep 2003 A1
20030186226 Brennan et al. Oct 2003 A1
20030228602 Parker et al. Dec 2003 A1
20030228620 Du Dec 2003 A1
20040009498 Short Jan 2004 A1
20040043509 Stahler et al. Mar 2004 A1
20040053362 De et al. Mar 2004 A1
20040086892 Crothers et al. May 2004 A1
20040087008 Schembri May 2004 A1
20040106130 Besemer et al. Jun 2004 A1
20040106728 McGall et al. Jun 2004 A1
20040110133 Xu et al. Jun 2004 A1
20040175710 Haushalter Sep 2004 A1
20040175734 Stahler et al. Sep 2004 A1
20040191810 Yamamoto Sep 2004 A1
20040219663 Page et al. Nov 2004 A1
20040236027 Maeji et al. Nov 2004 A1
20040248161 Rothberg et al. Dec 2004 A1
20040259146 Friend et al. Dec 2004 A1
20050022895 Barth et al. Feb 2005 A1
20050049796 Webb et al. Mar 2005 A1
20050053968 Bharadwaj et al. Mar 2005 A1
20050079510 Berka et al. Apr 2005 A1
20050100932 Lapidus et al. May 2005 A1
20050112608 Grossman et al. May 2005 A1
20050112636 Hurt et al. May 2005 A1
20050112679 Myerson et al. May 2005 A1
20050124022 Srinivasan et al. Jun 2005 A1
20050137805 Lewin et al. Jun 2005 A1
20050208513 Agbo et al. Sep 2005 A1
20050227235 Carr et al. Oct 2005 A1
20050255477 Carr et al. Nov 2005 A1
20050266045 Canham et al. Dec 2005 A1
20050277125 Benn et al. Dec 2005 A1
20050282158 Landegren Dec 2005 A1
20060003381 Gilmore et al. Jan 2006 A1
20060003958 Melville et al. Jan 2006 A1
20060012784 Ulmer Jan 2006 A1
20060012793 Harris Jan 2006 A1
20060019084 Pearson Jan 2006 A1
20060024678 Buzby Feb 2006 A1
20060024711 Lapidus et al. Feb 2006 A1
20060024721 Pedersen Feb 2006 A1
20060076482 Hobbs et al. Apr 2006 A1
20060078909 Srinivasan et al. Apr 2006 A1
20060078927 Peck et al. Apr 2006 A1
20060078937 Korlach et al. Apr 2006 A1
20060127920 Church et al. Jun 2006 A1
20060134638 Mulligan et al. Jun 2006 A1
20060160138 Church Jul 2006 A1
20060171855 Yin et al. Aug 2006 A1
20060202330 Reinhardt et al. Sep 2006 A1
20060203236 Ji et al. Sep 2006 A1
20060203237 Ji et al. Sep 2006 A1
20060207923 Li Sep 2006 A1
20060219637 Killeen et al. Oct 2006 A1
20070031857 Makarov et al. Feb 2007 A1
20070031877 Stahler et al. Feb 2007 A1
20070043516 Gustafsson et al. Feb 2007 A1
20070054127 Hergenrother et al. Mar 2007 A1
20070059692 Gao et al. Mar 2007 A1
20070087349 Staehler et al. Apr 2007 A1
20070099208 Drmanac et al. May 2007 A1
20070122817 Church et al. May 2007 A1
20070141557 Raab et al. Jun 2007 A1
20070196854 Stahler et al. Aug 2007 A1
20070207482 Church et al. Sep 2007 A1
20070207487 Emig et al. Sep 2007 A1
20070231800 Roberts et al. Oct 2007 A1
20070233403 Alwan et al. Oct 2007 A1
20070238104 Barrett et al. Oct 2007 A1
20070238106 Barrett et al. Oct 2007 A1
20070238108 Barrett et al. Oct 2007 A1
20070259344 Leproust et al. Nov 2007 A1
20070259345 Sampas Nov 2007 A1
20070259346 Gordon et al. Nov 2007 A1
20070259347 Gordon et al. Nov 2007 A1
20070269870 Church et al. Nov 2007 A1
20080085511 Peck et al. Apr 2008 A1
20080085514 Peck et al. Apr 2008 A1
20080087545 Jensen et al. Apr 2008 A1
20080161200 Yu et al. Jul 2008 A1
20080182296 Chanda et al. Jul 2008 A1
20080214412 Stahler et al. Sep 2008 A1
20080227160 Kool Sep 2008 A1
20080233616 Liss Sep 2008 A1
20080287320 Baynes et al. Nov 2008 A1
20080300842 Govindarajan et al. Dec 2008 A1
20080308884 Kalvesten Dec 2008 A1
20080311628 Shoemaker Dec 2008 A1
20090036664 Peter Feb 2009 A1
20090053704 Novoradovskaya et al. Feb 2009 A1
20090062129 McKernan et al. Mar 2009 A1
20090087840 Baynes et al. Apr 2009 A1
20090088679 Wood et al. Apr 2009 A1
20090105094 Heiner et al. Apr 2009 A1
20090170802 Stahler et al. Jul 2009 A1
20090176280 Hutchison, III et al. Jul 2009 A1
20090181861 Li et al. Jul 2009 A1
20090194483 Robotti et al. Aug 2009 A1
20090230044 Bek Sep 2009 A1
20090238722 Mora-Fillat et al. Sep 2009 A1
20090239759 Balch Sep 2009 A1
20090246788 Albert et al. Oct 2009 A1
20090263802 Drmanac Oct 2009 A1
20090285825 Kini et al. Nov 2009 A1
20090324546 Notka et al. Dec 2009 A1
20100004143 Shibahara Jan 2010 A1
20100009872 Eid et al. Jan 2010 A1
20100047805 Wang Feb 2010 A1
20100051967 Bradley et al. Mar 2010 A1
20100069250 White, III et al. Mar 2010 A1
20100090341 Wan et al. Apr 2010 A1
20100099103 Hsieh et al. Apr 2010 A1
20100160463 Wang et al. Jun 2010 A1
20100167950 Juang et al. Jul 2010 A1
20100173364 Evans, Jr. et al. Jul 2010 A1
20100216648 Staehler et al. Aug 2010 A1
20100256017 Larman et al. Oct 2010 A1
20100258487 Zelechonok et al. Oct 2010 A1
20100286290 Lohmann et al. Nov 2010 A1
20100292102 Nouri Nov 2010 A1
20100300882 Zhang et al. Dec 2010 A1
20110009607 Komiyama et al. Jan 2011 A1
20110082055 Fox et al. Apr 2011 A1
20110114244 Yoo et al. May 2011 A1
20110114549 Yin et al. May 2011 A1
20110124049 Li et al. May 2011 A1
20110124055 Carr et al. May 2011 A1
20110126929 Velasquez-Garcia et al. Jun 2011 A1
20110171651 Richmond Jul 2011 A1
20110172127 Jacobson et al. Jul 2011 A1
20110201057 Carr et al. Aug 2011 A1
20110217738 Jacobson Sep 2011 A1
20110230653 Novoradovskaya et al. Sep 2011 A1
20110254107 Bulovic et al. Oct 2011 A1
20110287435 Grunenwald et al. Nov 2011 A1
20120003713 Hansen et al. Jan 2012 A1
20120021932 Mershin et al. Jan 2012 A1
20120027786 Gupta et al. Feb 2012 A1
20120028843 Ramu et al. Feb 2012 A1
20120032366 Ivniski et al. Feb 2012 A1
20120046175 Rodesch et al. Feb 2012 A1
20120050411 Mabritto et al. Mar 2012 A1
20120094847 Warthmann et al. Apr 2012 A1
20120128548 West et al. May 2012 A1
20120129704 Gunderson et al. May 2012 A1
20120149602 Friend et al. Jun 2012 A1
20120164127 Short et al. Jun 2012 A1
20120164633 Laffler Jun 2012 A1
20120164691 Eshoo et al. Jun 2012 A1
20120184724 Sierzchala et al. Jul 2012 A1
20120220497 Jacobson et al. Aug 2012 A1
20120231968 Bruhn et al. Sep 2012 A1
20120238737 Dellinger et al. Sep 2012 A1
20120258487 Chang et al. Oct 2012 A1
20120264653 Carr et al. Oct 2012 A1
20120270750 Oleinikov Oct 2012 A1
20120270754 Blake Oct 2012 A1
20120283140 Chu Nov 2012 A1
20120288476 Hartmann et al. Nov 2012 A1
20120289691 Dellinger et al. Nov 2012 A1
20120315670 Jacobson et al. Dec 2012 A1
20120322681 Kung et al. Dec 2012 A1
20130005585 Anderson et al. Jan 2013 A1
20130005612 Carr et al. Jan 2013 A1
20130014790 Van Gerpen Jan 2013 A1
20130017642 Milgrew et al. Jan 2013 A1
20130017977 Oleinikov Jan 2013 A1
20130017978 Kavanagh et al. Jan 2013 A1
20130035261 Sierzchala et al. Feb 2013 A1
20130040836 Himmler et al. Feb 2013 A1
20130045483 Treusch et al. Feb 2013 A1
20130053252 Xie et al. Feb 2013 A1
20130059296 Jacobson et al. Mar 2013 A1
20130059761 Jacobson et al. Mar 2013 A1
20130065017 Sieber Mar 2013 A1
20130109595 Routenberg May 2013 A1
20130109596 Peterson et al. May 2013 A1
20130123129 Zeiner et al. May 2013 A1
20130130321 Staehler et al. May 2013 A1
20130137161 Zhang et al. May 2013 A1
20130137173 Zhang et al. May 2013 A1
20130137174 Zhang et al. May 2013 A1
20130137861 Leproust et al. May 2013 A1
20130164308 Foletti et al. Jun 2013 A1
20130225421 Li et al. Aug 2013 A1
20130244884 Jacobson et al. Sep 2013 A1
20130252849 Hudson et al. Sep 2013 A1
20130261027 Li et al. Oct 2013 A1
20130281308 Kung et al. Oct 2013 A1
20130296192 Jacobson et al. Nov 2013 A1
20130296194 Jacobson et al. Nov 2013 A1
20130298265 Cunnac et al. Nov 2013 A1
20130309725 Jacobson et al. Nov 2013 A1
20130323725 Peter et al. Dec 2013 A1
20130330778 Zeiner et al. Dec 2013 A1
20140011226 Bernick et al. Jan 2014 A1
20140018441 Fracchia et al. Jan 2014 A1
20140031240 Behlke et al. Jan 2014 A1
20140038240 Temme et al. Feb 2014 A1
20140106394 Ko et al. Apr 2014 A1
20140141982 Jacobson et al. May 2014 A1
20140170665 Hiddessen et al. Jun 2014 A1
20140178992 Nakashima et al. Jun 2014 A1
20140274729 Kurn et al. Sep 2014 A1
20140274741 Hunter et al. Sep 2014 A1
20140303000 Armour et al. Oct 2014 A1
20140309119 Jacobson et al. Oct 2014 A1
20140309142 Tian Oct 2014 A1
20150010953 Lindstrom et al. Jan 2015 A1
20150012723 Park et al. Jan 2015 A1
20150031089 Lindstrom Jan 2015 A1
20150038373 Banyai et al. Feb 2015 A1
20150056609 Daum et al. Feb 2015 A1
20150057625 Coulthard Feb 2015 A1
20150065357 Fox Mar 2015 A1
20150065393 Jacobson Mar 2015 A1
20150099870 Bennett et al. Apr 2015 A1
20150120265 Amirav-Drory Apr 2015 A1
20150159152 Allen et al. Jun 2015 A1
20150183853 Sharma et al. Jul 2015 A1
20150191524 Smith et al. Jul 2015 A1
20150191719 Hudson et al. Jul 2015 A1
20150196917 Kay et al. Jul 2015 A1
20150203839 Jacobson et al. Jul 2015 A1
20150211047 Borns Jul 2015 A1
20150225782 Walder et al. Aug 2015 A1
20150240232 Zamore et al. Aug 2015 A1
20150240280 Gibson et al. Aug 2015 A1
20150261664 Goldman et al. Sep 2015 A1
20150269313 Church Sep 2015 A1
20150293102 Shim Oct 2015 A1
20150307875 Happe et al. Oct 2015 A1
20150321191 Kendall et al. Nov 2015 A1
20150322504 Lao et al. Nov 2015 A1
20150344927 Sampson et al. Dec 2015 A1
20150353921 Tian Dec 2015 A9
20150353994 Myers et al. Dec 2015 A1
20150361420 Hudson et al. Dec 2015 A1
20150361422 Sampson et al. Dec 2015 A1
20150361423 Sampson et al. Dec 2015 A1
20150368687 Saaem et al. Dec 2015 A1
20150376602 Jacobson et al. Dec 2015 A1
20160001247 Oleinikov Jan 2016 A1
20160002621 Nelson et al. Jan 2016 A1
20160002622 Nelson et al. Jan 2016 A1
20160010045 Cohen et al. Jan 2016 A1
20160017394 Liang et al. Jan 2016 A1
20160017425 Ruvolo et al. Jan 2016 A1
20160019341 Harris et al. Jan 2016 A1
20160024138 Gebeyehu et al. Jan 2016 A1
20160024576 Chee et al. Jan 2016 A1
20160026753 Krishnaswami et al. Jan 2016 A1
20160026758 Jabara et al. Jan 2016 A1
20160032396 Diehn et al. Feb 2016 A1
20160046973 Efcavitch et al. Feb 2016 A1
20160046974 Efcavitch et al. Feb 2016 A1
20160082472 Perego et al. Mar 2016 A1
20160089651 Banyai Mar 2016 A1
20160090592 Banyai et al. Mar 2016 A1
20160096160 Banyai et al. Apr 2016 A1
20160097051 Jacobson et al. Apr 2016 A1
20160102322 Ravinder et al. Apr 2016 A1
20160108466 Nazarenko et al. Apr 2016 A1
20160122755 Hall et al. May 2016 A1
20160122800 Bernick et al. May 2016 A1
20160152972 Stapleton et al. Jun 2016 A1
20160168611 Efcavitch et al. Jun 2016 A1
20160184788 Hall et al. Jun 2016 A1
20160200759 Srivastava et al. Jul 2016 A1
20160215283 Braman et al. Jul 2016 A1
20160229884 Indermuhle et al. Aug 2016 A1
20160230175 Carstens Aug 2016 A1
20160230221 Bergmann et al. Aug 2016 A1
20160251651 Banyai et al. Sep 2016 A1
20160253890 Rabinowitz et al. Sep 2016 A1
20160256846 Smith et al. Sep 2016 A1
20160264958 Toro et al. Sep 2016 A1
20160289758 Akeson et al. Oct 2016 A1
20160289839 Harumoto et al. Oct 2016 A1
20160303535 Banyai et al. Oct 2016 A1
20160304862 Igawa et al. Oct 2016 A1
20160304946 Betts et al. Oct 2016 A1
20160310426 Wu Oct 2016 A1
20160310927 Banyai et al. Oct 2016 A1
20160333340 Wu Nov 2016 A1
20160339409 Banyai et al. Nov 2016 A1
20160340672 Banyai et al. Nov 2016 A1
20160348098 Stuelpnagel et al. Dec 2016 A1
20160354752 Banyai et al. Dec 2016 A1
20160355880 Gormley et al. Dec 2016 A1
20170017436 Church Jan 2017 A1
20170066844 Glanville Mar 2017 A1
20170067099 Zheng et al. Mar 2017 A1
20170073664 McCafferty et al. Mar 2017 A1
20170073731 Zheng et al. Mar 2017 A1
20170081660 Cox Mar 2017 A1
20170081716 Peck Mar 2017 A1
20170088887 Makarov et al. Mar 2017 A1
20170095785 Banyai Apr 2017 A1
20170096706 Behlke et al. Apr 2017 A1
20170114404 Behlke et al. Apr 2017 A1
20170141793 Strauss et al. May 2017 A1
20170147748 Staehler et al. May 2017 A1
20170151546 Peck et al. Jun 2017 A1
20170159044 Toro et al. Jun 2017 A1
20170175110 Jacobson et al. Jun 2017 A1
20170218537 Olivares Aug 2017 A1
20170233764 Young et al. Aug 2017 A1
20170249345 Malik et al. Aug 2017 A1
20170253644 Steyaert et al. Sep 2017 A1
20170320061 Venter et al. Nov 2017 A1
20170327819 Banyai et al. Nov 2017 A1
20170355984 Evans et al. Dec 2017 A1
20170357752 Diggans Dec 2017 A1
20170362589 Banyai et al. Dec 2017 A1
20180029001 Banyai Feb 2018 A1
20180051278 Cox et al. Feb 2018 A1
20180051280 Gibson et al. Feb 2018 A1
20180068060 Ceze et al. Mar 2018 A1
20180101487 Peck Apr 2018 A1
20180104664 Fernandez Apr 2018 A1
20180126355 Peck et al. May 2018 A1
20180142289 Zeitoun May 2018 A1
20180171509 Cox Jun 2018 A1
20180236425 Banyai et al. Aug 2018 A1
20180253563 Peck Sep 2018 A1
20180264428 Banyai et al. Sep 2018 A1
20180273936 Cox et al. Sep 2018 A1
20180282721 Cox et al. Oct 2018 A1
20180312834 Cox et al. Nov 2018 A1
20180326388 Banyai et al. Nov 2018 A1
20180346585 Zhang et al. Dec 2018 A1
20190060345 Harrison et al. Feb 2019 A1
20190135926 Glanville May 2019 A1
20190240636 Peck et al. Aug 2019 A1
20190244109 Bramlett et al. Aug 2019 A1
20190318132 Peck Oct 2019 A1
20190352635 Toro et al. Nov 2019 A1
20190366293 Banyai et al. Dec 2019 A1
20190366294 Banyai et al. Dec 2019 A1
20200017907 Zeitoun et al. Jan 2020 A1
20200102611 Zeitoun et al. Apr 2020 A1
20200156037 Banyai et al. May 2020 A1
20200222875 Peck et al. Jul 2020 A1
20200283760 Nugent et al. Sep 2020 A1
Foreign Referenced Citations (181)
Number Date Country
3157000 Sep 2000 AU
2362939 Aug 2000 CA
1771336 May 2006 CN
102159726 Aug 2011 CN
103907117 Jul 2014 CN
104520864 Apr 2015 CN
104562213 Apr 2015 CN
104734848 Jun 2015 CN
10260805 Jul 2004 DE
0090789 Oct 1983 EP
0126621 Aug 1990 EP
0753057 Jan 1997 EP
1314783 May 2003 EP
1363125 Nov 2003 EP
1546387 Jun 2005 EP
1153127 Jul 2006 EP
1728860 Dec 2006 EP
1072010 Apr 2010 EP
2175021 Apr 2010 EP
2330216 Jun 2011 EP
1343802 May 2012 EP
2504449 Oct 2012 EP
2751729 Jul 2014 EP
2872629 May 2015 EP
2928500 Oct 2015 EP
2971034 Jan 2016 EP
3030682 Jun 2016 EP
3044228 Apr 2017 EP
2994509 Jun 2017 EP
3204518 Aug 2017 EP
2002536977 Nov 2002 JP
2002538790 Nov 2002 JP
2006503586 Feb 2006 JP
2009294195 Dec 2009 JP
2016527313 Sep 2016 JP
WO-9015070 Dec 1990 WO
WO-9210092 Jun 1992 WO
WO-9210588 Jun 1992 WO
WO-9309668 May 1993 WO
WO-9525116 Sep 1995 WO
WO-9526397 Oct 1995 WO
WO-9615861 May 1996 WO
WO-9710365 Mar 1997 WO
WO-9822541 May 1998 WO
WO-9841531 Sep 1998 WO
WO-9942813 Aug 1999 WO
WO-0013017 Mar 2000 WO
WO-0018957 Apr 2000 WO
WO-0042559 Jul 2000 WO
WO-0042560 Jul 2000 WO
WO-0042561 Jul 2000 WO
WO-0049142 Aug 2000 WO
WO-0053617 Sep 2000 WO
WO-0156216 Aug 2001 WO
WO-0210443 Feb 2002 WO
WO-0156216 Mar 2002 WO
WO-0220537 Mar 2002 WO
WO-0224597 Mar 2002 WO
WO-0227638 Apr 2002 WO
WO-0233669 Apr 2002 WO
WO-02072791 Sep 2002 WO
WO-03040410 May 2003 WO
WO-03046223 Jun 2003 WO
WO-03054232 Jul 2003 WO
WO-03064026 Aug 2003 WO
WO-03064027 Aug 2003 WO
WO-03064699 Aug 2003 WO
WO-03065038 Aug 2003 WO
WO-03066212 Aug 2003 WO
WO-03089605 Oct 2003 WO
WO-03093504 Nov 2003 WO
WO-03100012 Dec 2003 WO
WO-2004024886 Mar 2004 WO
WO-2004029220 Apr 2004 WO
WO-2004029586 Apr 2004 WO
WO-2004031351 Apr 2004 WO
WO-2004031399 Apr 2004 WO
WO-2004059556 Jul 2004 WO
WO-2005014850 Feb 2005 WO
WO-2005051970 Jun 2005 WO
WO-2005059096 Jun 2005 WO
WO-2005059097 Jun 2005 WO
WO-2006023144 Mar 2006 WO
WO-2006076679 Jul 2006 WO
WO-2006116476 Nov 2006 WO
WO-2007109221 Sep 2007 WO
WO-2007120627 Oct 2007 WO
WO-2007137242 Nov 2007 WO
WO-2008006078 Jan 2008 WO
WO-2008027558 Mar 2008 WO
WO-2008045380 Apr 2008 WO
WO-2008054543 May 2008 WO
WO-2008063134 May 2008 WO
WO-2008063135 May 2008 WO
WO-2008109176 Sep 2008 WO
WO-2010025310 Mar 2010 WO
WO-2010025566 Mar 2010 WO
WO-2010027512 Mar 2010 WO
WO-2010089412 Aug 2010 WO
WO-2010141433 Dec 2010 WO
WO-2010141433 Apr 2011 WO
WO-2011053957 May 2011 WO
WO-2011056644 May 2011 WO
WO-2011056872 May 2011 WO
WO-2011066185 Jun 2011 WO
WO-2011066186 Jun 2011 WO
WO-2011085075 Jul 2011 WO
WO-2011103468 Aug 2011 WO
WO-2011109031 Sep 2011 WO
WO-2011143556 Nov 2011 WO
WO-2011150168 Dec 2011 WO
WO-2011161413 Dec 2011 WO
WO-2012013913 Feb 2012 WO
WO-2012061832 May 2012 WO
WO-2012078312 Jun 2012 WO
WO-2012149171 Nov 2012 WO
WO-2012154201 Nov 2012 WO
WO-2013030827 Mar 2013 WO
WO-2013032850 Mar 2013 WO
WO-2013036668 Mar 2013 WO
WO-2013101896 Jul 2013 WO
WO-2013154770 Oct 2013 WO
WO-2013177220 Nov 2013 WO
WO-2014004393 Jan 2014 WO
WO-2014008447 Jan 2014 WO
WO-2014035693 Mar 2014 WO
WO-2014088693 Jun 2014 WO
WO-2014089160 Jun 2014 WO
WO-2014093330 Jun 2014 WO
WO-2014093694 Jun 2014 WO
WO-2014151117 Sep 2014 WO
WO-2014151696 Sep 2014 WO
WO-2014160004 Oct 2014 WO
WO-2014160059 Oct 2014 WO
WO-2014206304 Dec 2014 WO
WO-2015017527 Feb 2015 WO
WO-2015021080 Feb 2015 WO
WO-2015021280 Feb 2015 WO
WO-2015031689 Mar 2015 WO
WO-2015040075 Mar 2015 WO
WO-2015054292 Apr 2015 WO
WO-2015066174 May 2015 WO
WO-2015081114 Jun 2015 WO
WO-2015081142 Jun 2015 WO
WO-2015090879 Jun 2015 WO
WO-2015095404 Jun 2015 WO
WO-2015120403 Aug 2015 WO
WO-2015136072 Sep 2015 WO
WO-2015160004 Oct 2015 WO
WO-2015175832 Nov 2015 WO
WO-2016007604 Jan 2016 WO
WO-2016011080 Jan 2016 WO
WO-2016022557 Feb 2016 WO
WO-2016053883 Apr 2016 WO
WO-2016055956 Apr 2016 WO
WO-2016065056 Apr 2016 WO
WO-2016126882 Aug 2016 WO
WO-2016126987 Aug 2016 WO
WO-2016130868 Aug 2016 WO
WO-2016161244 Oct 2016 WO
WO-2016172377 Oct 2016 WO
WO-2016173719 Nov 2016 WO
WO-2016183100 Nov 2016 WO
WO-2017049231 Mar 2017 WO
WO-2017053450 Mar 2017 WO
WO-2017059399 Apr 2017 WO
WO-2017095958 Jun 2017 WO
WO-2017100441 Jun 2017 WO
WO-2017118761 Jul 2017 WO
WO-2017158103 Sep 2017 WO
WO-2017214574 Dec 2017 WO
WO-2018026920 Feb 2018 WO
WO-2018038772 Mar 2018 WO
WO-2018057526 Mar 2018 WO
WO-2018094263 May 2018 WO
WO-2018112426 Jun 2018 WO
WO-2018156792 Aug 2018 WO
WO-2018170164 Sep 2018 WO
WO-2018200380 Nov 2018 WO
WO-2019222706 Nov 2019 WO
WO-2020139871 Jul 2020 WO
Non-Patent Literature Citations (542)
Entry
Paul et al, Acid binding and detritylation during oligonucleotide synthesis, 1996, Nucleic Acids Research, 15, pp. 3048-3052 (Year: 1996).
PubChem Data sheet Methylene chloride, 2020, printed from web site https://pubchem.ncbi.nlm.nih.gov/, pp. 1-140 (Year: 2020).
PubChem Data sheet Acetonitrile, 2020, printed from web site https://pubchem.ncbi.nlm.nih.gov/, pp. 1-124 (Year: 2020).
Abudayyeh et al., C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science, available on line, Jun. 13, 2016, at: http://zlab.mit.edu/assets/reprints/Abudayyeh_OO_Science_2016.pdf , 17 pages.
Acevedo-Rocha et al. Directed evolution of stereoselective enzymes based on genetic selection as opposed to screening systems. J. Biotechnol. 191:3-10 (2014).
Adessi, et al. Solid phase DNA amplification: characterisation of primer attachment and amplification mechanisms. Nucleic Acids Res. 28(20):E87, 2000.
Alexeyev, Mikhail F. et al., “Gene synthesis, bacterial expression and purification of the Rickettsia prowazekii ATP/ADP translocase”, Biochimica et Biophysics Acta, 1419:299-306, 1999.
Al-Housseiny et al., Control of interfacial instabilities using flow geometry Nature Physics, 8:747-750, 2012.
Amblard, Francois et al., “A magnetic manipulator for studying local rheology and micromechanical properties of biological systems”, Rev. Sci. Instrum., 67(3):18-827, 1996.
Andoni and Indyk, Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High Dimensions, Communications of the ACM, 51(1):117-122, 2008.
Arand et al. Structure of Rhodococcus erythropolis limonene-1,2-epoxide hydrolase reveals a novel active site. EMBO J. 22:2583-2592 (2003).
Arkles, et al. The Role of Polarity in the Structure of Silanes Employed in Surface Modification. Silanes and Other Coupling Agents. 5:51-64, 2009.
Arkles, Hydrophobicity, Hydrophilicity Reprinted with permission from the Oct. 2006 issue of Paint & Coatings Industry magazine, Retrieved on Mar. 19, 2016, 10 pages.
Assi et al. Massive-parallel adhesion and reactivity-measurements using simple and inexpensive magnetic tweezers. J. Appl. Phys. 92(9):5584-5586 (2002).
ATDBio, “Nucleic Acid Structure,” Nucleic Acids Book, 9 pages, published on Jan. 22, 2005. from: http://www.atdbio.com/content/5/Nucleic-acid-structure.
ATDBio, “Solid-Phase Oligonucleotide Synthesis,” Nucleic Acids Book, 20 pages, Published on Jul. 31, 2011. from: http://www.atdbio.com/content/17/Solid-phase-oligonucleotide-synthesis.
Au et al. Gene synthesis by a LCR-based approach: high level production of Leptin-L54 using synthetic gene in Escherichia coli. Biochemical and Biophysical Research Communications 248:200-203 (1998).
Baedeker, Mathias et al., Overexpression of a designed 2.2kb gene of eukaryotic phenylalanine ammonialyase in Escherichia coli⋅. FEBS Letters, 457:57-60, 1999.
Barbee, et al. Magnetic Assembly of High-Density DNA Arrays for Genomic Analyses. Anal Chem. 80(6):2149-2154, 2008.
Barton et al., A desk electrohydrodynamic jet printing system. Mechatronics, 20:611-616, 2010.
Beaucage, et al. Advances in the synthesis of oligonucleotides by the phosphoramidite approach. Tetrahedron. 48:2223-2311, 1992.
Beaucage, et al. Deoxynucleoside phosphoramidites—A new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Lett. 22(20):1859-1862, 1981.
Beaucage, Serge L. et al., “The Chemical synthesis of DNA/RNA” Chapter 2 in: Encyclopedia of Cell Biology, 1:36-53, 2016.
Beaulieu, Martin et al., “PCR candidate region mismatch scanning adaptation to quantitative, high-throughput genotyping”, Nucleic Acids Research, 29(5):1114-1124, 2001.
Beigelman, et al. Base-modified phosphoramidite analogs of pyrimidine ribonucleosides for RNA structure-activity studies. Methods Enzymol. 317:39-65, 2000.
Bethge et al., “Reverse synthesis and 3′-modification of RNA.” Jan. 1, 2011, pp. 64-64, XP055353420. Retrieved from the Internet: URL:http://www.is3na.org/assets/events/Category%202-Medicinal %20Chemistry%20of%2001igonucleotides%20%2864-108%29.pdf.
Binkowski et al., Correcting errors in synthetic DNA through consensus shuffling. Nucleic Acids Research, 33(6):e55, 8 pages, 2005.
Biswas, Indranil et al., “Identification and characterization of a thermostable MutS homolog from Thennus aquaticus”, The Journal of Biological Chemistry, 271(9):5040-5048, 1996.
Biswas, Indranil et al., “Interaction of MutS protein with the major and minor grooves of a heteroduplex DNA”, The Journal of Biological Chemistry, 272(20):13355-13364, 1997.
Bjornson, Keith P. et al., “Differential and simultaneous adenosine Di- and Triphosphate binding by MutS”, The Journal of Biological Chemistry, 278(20):18557-18562, 2003.
Blanchard, et al. High-Density Oligonucleotide Arrays. Biosens. & Bioelectronics. 1996; 11:687-690.
Blanchard, et al., “High-Density Oligonucleotide Arrays,” Biosensors & Bioelectronics, 11(6/7):687-690, 1996.
Blanchard, in: Genetic Engineering, Principles and Methods, vol. 20, Ed. J. Sedlow, New York: Plenum Press, p. 111-124, 1979.
Blawat et al., Forward error correction for DNA data storage. Procedia Computer Science, 80:1011-1022, 2016.
Bonini and Mondino, Adoptive T-cell therapy for cancer: The era of engineered T cells. European Journal of Immunology, 45:2457-2469, 2015 .
Bornholt et al., A DNA-Based Archival Storage System, in International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), Apr. 2-6, 2016, Atlanta, GA, 2016, 637-649.
Borovkov et al., High-quality gene assembly directly from unpurified mixtures of microassay-synthesized oligonucleotides. Nucleic Acid Research, 38(19):e180, 10 pages, 2010.
Brunet, Aims and methods of biosteganography. Journal of Biotechnology, 226:56-64, 2016.
Buermans et al., “Next Generation sequencing technology: Advances and applications,” Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1842:1931-1941, 2014.
Butler, et al. In situ synthesis of oligonucleotide arrays by using surface tension. J Am Chem Soc. 123(37):8887-94, 2001.
Calvert, Lithographically patterned self-assembled films. In: Organic Thin Films and Surfaces: Directions for The Nineties, vol. 20, p. 109, ed. By Abraham Ulman, San Diego: Academic Press, 1995.
Cardelli, Two-Domain DNA Strand Displacement, Electron. Proc. Theor. Comput. Sci., 26:47-61, 2010.
Carlson, “Time for New DNA Synthesis and Sequencing Cost Curves,” 2014. [Online]. Available: http://www.synthesis.cc/synthesis/2014/02/time_for_new_cost_curves_2014. 10 pages.
Carr, et al. Protein-mediated error correction for de novo DNA synthesis. Nucleic Acids Res. 32(20):e162, 9 pages, 2004.
Carter and Friedman, DNA synthesis and Biosecurity: Lessons learned and options for the future. J. Craig Venter Institute, La Jolla, CA, 28 pages, Oct. 2015.
Caruthers, Chemical synthesis of deoxyoligonucleotides by the phosphoramidite method. In Methods in Enzymology, Chapter 15, 154:287-313, 1987.
Caruthers. Gene synthesis machines: DNA chemistry and its uses. Science 230(4723):281-285 (1985).
Caruthers, The Chemical Synthesis of DNA/RNA: Our Gift to Science. J. Biol. Chem., 288(2):1420-1427, 2013.
Casmiro, Danilo R. et al., “PCR-based gene synthesis and protein NMR spectroscopy”, Structure, 5(11):1407-1412, 1997.
CeGaT. Tech Note available at https://www.cegat.de/web/wp-content/uploads/2018/06/Twist-Exome-Tech-Note.pdf (4 pgs.) (2018).
Cello, et al. Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science. 297(5583):1016-8, 2000.
Chalmers, et al. Scaling up the ligase chain reaction-based approach to gene synthesis. Biotechniques. 30(2):249-52, 2001.
Chan, et al. Natural and engineered nicking endonucleases—from cleavage mechanism to engineering of strand-specificity. Nucleic Acids Res. 39(1):1-18, 2011.
Chen, et al. Chemical modification of gene silencing oligonucleotides for drug discovery and development. Drug Discov Today. 10(8):587-93 2005.
Chen et al., Programmable chemical controllers made from DNA, Nat. Nanotechnol., 8(10):755-762, 2013.
Cheng, et al. High throughput parallel synthesis of oligonucleotides with 1536 channel synthesizer. Nucleic Acids Res. 30(18):e93, 2002.
Chilamakuri et al. Performance comparison of four exome capture systems for deep sequencing. BMC Genomics 15(1):449 (2014).
Chinese Patent Application No. 201280053850.7 First Office Action dated Jan. 29, 2016.
Chinese Patent Application No. 201280053850.7 Office Action dated Jun. 30, 2017.
Chinese Patent Application No. 201280053850.7 Third Office Action dated Dec. 18, 2017.
Cho, et al. Capillary passive valve in microfluidic systems. NSTI-Nanotech. 2004; 1:263-266.
Chrisey et al., Fabrication of patterned DNA surfaces Nucleic Acids Research, 24(15):3040-3047 (1996).
Chung et al., One-step preparation of competent Escherichia coli:Transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci U S A. Apr. 1989;86(7):2172-2175.
Church et al., Next-generation digital information storage in DNA. Science, 337:6102, 1628-1629, 2012.
Cleary et al. Production of complex nucleic acid libraries using highly parallel in situ oligonucleotide synthesis. Nature Methods, 1(13):241-248, 2004.
Cohen et al., Human population: The next half century. Science, 302:1172-1175, 2003.
Co-pending U.S. Appl. No. 16/006,581, filed Jun. 12, 2018.
Crick. On protein synthesis. Symp Soc Exp Biol12:138-163,1958.
Cruse et al. Atlas of Immunology, Third Edition. Boca Raton:CRC Press (pp. 282-283) (2010).
Cutler, David J. et al., “High-throughput variation detection and genotyping using microarrays”, Genome Research, vol. 11, 1913-19 (2001).
Dahl, et al. Circle-to-circle amplification for precise and sensitive DNA analysis. Proc Natl Acad Sci U S A. Mar. 30, 2004;101(13):4548-53. Epub Mar. 15, 2004.
De Mesmaeker, et al. Backbone modifications in oligonucleotides and peptide nucleic acid systems. Curr Opin Struct Biol. Jun. 1995;5(3):343-55.
De Silva et al. New Trends of Digital Data Storage in DNA. BioMed Res Int. 2016:8072463 (2016).
Deamer, David W. et al., “Characterization of nucleic acids by nanopore analysis”, Ace. Cham. Res., vol. 35, No. 10, 817-825 (2002).
Deaven, The Human Genome Project: Recombinant clones for mapping and sequencing DNA. Los Alamos Science, 20:218-249, 1992.
Deng et al., Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming Nature Biotechnology, 27:352-360 (2009).
Dietrich, Rudiger.et al., “Gene assembly based on blunt-ended double-stranded DNA-modules”, Biotechnology Techniques, vol. 12, No. 1, 49-54 (Jan. 1998).
Dillon et al. Exome sequencing has higher diagnostic yield compared to simulated disease-specific panels in children with suspected monogenic disorders. Eur J Hum Genet 26(5):644-651 (2018).
Dormitzer et al., Synthetic generation of influenza vaccine viruses for rapid response to pandemics. Sci Translational Medicine, 5(185):185ra68, 14 pages, 2013.
Doudna et al. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096-1-1258096-9, 2014.
Dower et al., High efficiency transformation of E.coli by high voltage electroporation. Nucleic Acids Res. 16(13):6127-45 (1988).
Dressman, et al. Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc Natl Acad Sci U S A. Jul. 22, 2003;100(15):8817-22. Epub Jul. 11, 2003.
Drmanac, et al. Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science. Jan. 1, 2010;327(5961):78-81. doi: 10.1126/science.1181498. Epub Nov. 5, 2009.
Droege and Hill, The Genome Sequencer FLXTM System-Longer reads, more applications, straight forward bioinformatics and more complete data sets Journal of Biotechnology, 136:3-10, 2008.
Duffy, et al. Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). Anal Chem. Dec. 1, 1998;70(23):4974-84. doi: 10.1021/ac980656z.
Duggan, et al. Expression profiling using cDNA microarrays. Nat Genet. Jan. 1999;21(1 Suppl):10-4.
Dvorsky. Living Bacteria Can Now Store Data. GIZMODO internet publication. Retrieved from https://gizmodo.com/living-bacteria-can-now-store-data-1781773517 (4 pgs) (Jun. 10, 2016).
Eadie, et al. Guanine modification during chemical DNA synthesis. Nucleic Acids Res. Oct. 26, 1987;15(20):8333-49.
Eisen, Jonathan A., “A phylogenomic study of the MutS family of proteins”, Nucleic Acids Research, vol. 26, No. 18, 4291-4300 (1998).
Ellis, et al. DNA assembly for synthetic biology: from parts to pathways and beyond. Integr Biol (Camb). Feb. 2011;3(2):109-18. doi: 10.1039/c0ib00070a. Epub Jan. 19, 2011.
El-Sagheer, et al. Biocompatible artificial DNA linker that is read through by DNA polymerases and is functional in Escherichia coli. Proc Natl Acad Sci U S A. Jul. 12, 2011;108(28):11338-43. doi: 10.1073/pnas.1101519108. Epub Jun. 27, 2011.
Elsik et al., The Genome sequence of taurine cattle: A window of ruminant biology and evolution. Science, 324:522-528, 2009.
Elsner et al., 172 nm excimer VUV-triggered photodegradation and micropatterning of aminosilane films, Thin Solid Films, 517:6772-6776 (2009).
Engler, et al. A one pot, one step, precision cloning method with high throughput capability. PLoS One. 2008;3(11):e3647. doi: 10.1371/journal.pone.0003647. Epub Nov. 5, 2008.
Engler, et al. Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One. 2009;4(5):e5553. doi: 10.1371/journal.pone.0005553. Epub May 14, 2009.
Erlich and Zielinski, DNA fountain enables a robust and efficient storage architecture. Science, 355(6328):950-054, 2017.
European Patent Application No. 12827479.2 Extended European Search Report dated May 18, 2015.
European Patent Application No. 12827479.2 Partial European Search Report dated Jan. 29, 2015.
European Patent Application No. 14834665.3 Communication dated Jan. 16, 2018.
European Patent Application No. 14834665.3 extended European Search Report dated Apr. 28, 2017.
European Patent Application No. 14834665.3 Office Action dated May 2, 2018.
Evans et al., DNA Repair Enzymes. Current Protocols in Molecular Biology 84:III:3.9:3.9.1-3.9.12 http://www.ncbi.nlm.nih.gov/pubmed/18972391 (Published online Oct. 1, 2008 Abstract only provided).
Fahy, et al. Self-sustained sequence replication (3SR): an isothermal transcription-based amplification system alternative to PCR. PCR Methods Appl. Aug. 1991;1(1):25-33.
Fedoryak, Olesya D. et al., “Brominated hydroxyquinoline as a photolabile protecting group with sensitivity to multiphoton excitation”, Org. Lett., vol. 4, No. 2 , 3419-3422 (2002).
Ferretti et al., Total synthesis of a gene for bovine rhodopsin. PNAS, 83:599-603 (1986).
Finger et al., The wonders of Flap Endonucleases: Structure, function, mechanism and regulation. Subcell Biochem., 62:301-326, 2012.
Fodor et al. Light-Directed, Spatially Addressable Parallel Chemical Synthesis. Science 251(4995):767-773 (1991).
Fogg et al., Structural basis for uracil recognition by archaeal family B DNA polymerases. Nature Structural Biology, 9(12):922-927, 2002.
Foldesi, et al. The synthesis of deuterionucleosides. Nucleosides Nucleotides Nucleic Acids. Oct.-Dec. 2000;19(10-12):1615-56.
Frandsen, et al. Efficient four fragment cloning for the construction of vectors for targeted gene replacement in filamentous fungi. BMC Molecular Biology 2008, 9:70.
Frandsen. Experimental setup. Dec. 7, 2010, 3 pages. http://www.rasmusfrandsen.dk/experimental_setup.htm.
Frandsen. The USER Friendly technology. USER cloning. Oct. 7, 2010, 2 pages. http://www.rasmusfrandsen.dk/user_cloning.htm.
Fullwood et al., Next-generation DNA sequencing of paired-end tags [PET] for transcriptome and genome analysis Genome Research, 19:521-532, 2009.
Galneder. et al., Microelectrophoresis of a bilayer-coated silica bead in an optical trap: application to enzymology. Biophysical Journal, vol. 80, No. 5, 2298-2309 (May 2001).
Gao, et al. A flexible light-directed DNA chip synthesis gated by deprotection using solution photogenerated acids. Nucleic Acids Res. Nov. 15, 2001;29(22):4744-50.
Gao et al. A method for the generation of combinatorial antibody libraries using pIX phage display. PNAS 99(20):12612-12616 (2002).
Gao, et al. Thermodynamically balanced inside-out (TBIO) PCR-based gene synthesis: a novel method of primer design for high-fidelity assembly of longer gene sequences. Nucleic Acids Res. Nov. 15, 2003;31(22):e143.
Garaj, et al. Graphene as a subnanometre trans-electrode membrane. Nature. Sep. 9, 2010;467(7312):190-3. doi: 10.1038/nature09379.
Garbow, Norbert et al., “Optical tweezing electrophoresis of isolated, highly charged colloidal spheres”, Colloids and Surfaces A: Physiochem. Eng. Aspects, vol. 195, 227-241 (2001).
GeneArt Seamless Cloning and Assembly Kits. Life Technologies Synthetic Biology. 8 pages, available online Jun. 15, 2012.
Genomics 101. An Introduction to the Genomic Workflow. 2016 edition, 64 pages. Available at: http://www.frontlinegenomics.com/magazine/6757/genomics-101/.
Geu-Flores, et al. USER fusion: a rapid and efficient method for simultaneous fusion and cloning of multiple PCR products. Nucleic Acids Res. 2007;35(7):e55. Epub Mar. 27, 2007.
Gibson Assembly. Product Listing. Application Overview. 2 pages, available online Dec. 16, 2014.
Gibson, et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science. Feb. 29, 2008;319(5867):1215-20. doi: 10.1126/science.1151721. Epub Jan. 24, 2008.
Gibson et al. Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome. Science 329(5989):52-56 (2010).
Goldfeder et al. Medical implications of technical accuracy in genome sequencing. Genome Med 8(1):24 (2016).
Goldman et al., Towards practical, high-capacity, low-maintenance information storage in synthesized DNA, Nature, 494(7435):77-80, 2013.
Gosse, Charlie et al. “Magnetic tweezers: micromanipulation and force measurement at the molecular level”, Biophysical Journal, vol. 8, 3314-3329 (Jun. 2002).
Grass, et al., Robust chemical preservation of digital information on DNA in silica with error-correcting codes, Angew. Chemie—Int. Ed., 54(8):2552-2555, 2015.
Greagg et al., A read-ahead function in archaeal DNA polymerases detects promutagenic template-strand uracil. Proc. Nat. Acad. Sci. USA, 96:9045-9050, 1999.
Grovenor. Microelectronic materials. Graduate Student Series in Materials Science and Engineering. Bristol, England: Adam Hilger, 1989; p. 113-123.
Gu et al., Depletion of abundant sequences by hybridization (DASH): using Cas9 to remove unwanted high-abundance species in sequencing libraries and molecular counting applications. Genome Biology, 17:41, 13 pages, 2016.
Haber, Charbel et al., Magnetic tweezers for DNA micromanipulation, Rev. Sci. Instrum., vol. 71, No. 12, 4561-4570 (Dec. 2000).
Han et al. Linking T-cell receptor sequence to functional phenotype at the single-cell level. Nat Biotechnol 32(7):684-692 (2014).
Hanahan and Cold Spring Harbor Laboratory, Studies on transformation of Escherichia coli with plasmids J. Mol. Biol. 166:557-580 (1983).
Hanahan et al., Plasmid transformation of Escherichia coli and other bacteria. Methods Enzymol, vol. 204, p. 63-113 (1991).
Harada, et al. Unexpected substrate specificity of T4 DNA ligase revealed by in vitro selection. Nucleic Acids Res. May 25, 1993;21(10):2287-91.
Heckers Karl H. et al., “Error analysis of chemically synthesized polynucleotides”, BioTechniques, vol. 24, No. 2, 256-260 (1998).
Herzer et al.: Fabrication of patterned silane based self-assembled monolayers by photolithography and surface reactions on silicon-oxide substrates Chem. Commun., 46:5634-5652 (2010).
Hoover et al., “DNAWorks: an automated method for designing oligonucleotides for PCR-based gene synthesis”, Nucleic Acids Research, vol. 30, No. 10, e43, 7 pages (2002).
Hosu, Basarab G. et al., Magnetic tweezers for intracellular applications⋅, Rev. Sci. Instrum., vol. 74, No. 9, 4158-4163 (Sep. 2003).
Huang, Hayden et al., “Three-dimensional cellular deformation analysis with a two-photon magnetic manipulator workstation”, Biophysical Journal, vol. 82, No. 4, 2211⋅2223 (Apr. 2002).
Hughes, et al. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat Biotechnol. Apr. 2001;19(4):342-7.
Hughes et al. Principles of early drug discovery. Br J Pharmacol 162(2):1239-1249, 2011.
Hutchison, et al. Cell-free cloning using phi29 DNA polymerase. Proc Natl Acad Sci U S A. Nov. 29, 2005;102(48):17332-6. Epub Nov. 14, 2005.
Imgur: The magic of the internet. Uploaded May 10, 2012, 2 pages, retrieved from: https://imgur.com/mEWuW.
In-Fusion Cloning: Accuracy, Not Background. Cloning & Competent Cells, ClonTech Laboratories, 3 pages, available online Jul. 6, 2014.
Jackson, Brian A. et al., “Recognition of DNA base mismatches by a rhodium intercalator”, J. Am. Chem. Soc., vol. 19, 12986⋅12987 (1997).
Jacobs et al. DNA glycosylases: In DNA repair and beyond. Chromosoma 121:1-20 (2012)—http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3260424/.
Jacobus et al. Optimal cloning of PCR fragments by homologous recombination in Escherichia soli. PLoS One 10(3):e0119221 (2015).
Jager et al. Simultaneous Humoral and Cellular: Immune Response against Cancer—Testis Antigen NY-ES0-1: Definition of Human Histocompatibility LeukocyteAntigen (HLA)-A2-binding Peptide Epitopes. J. Exp. Med. 187(2):265-270 (1998).
Jinek et al., A Programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337:816-821, 2012.
Karagiannis and El-Osta, RNA interference and potential therapeutic applications of short interfering RNAs Cancer Gene Therapy, 12:787-795, 2005.
Ke, Song-Hua et al., “Influence of neighboring base pairs on the stability of single base bulges and base pairs in a DNA fragment”, Biochemistry, Vo. 34, 4593-4600 (1995).
Kelley, Shana, et al. Single-base mismatch detection based on charge transduction through DNA, Nucleic Acids Research, vol. 27, No. 24, 4830-4837 (1999).
Kim et al., High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes. Nano Letters, 15:969-973, 2015.
Kim, Yang-Gyun et al., “Chimeric restriction endonuclease”, Proc. Natl. Acad. Sci. USA, vol. 91, 883-887 (Feb. 1994).
Kim, Yang-Gyun, “The interaction between Z-ONA and the Zab domain of double-stranded RNA adenosine deaminase characterized using fusion nucleases”, The Journal of Biological Chemistry, vol. 274, No. 27, 19081-19086 (1999).
Kim, Yan-Gyun et al., “Site-specific cleavage of DNA-RNA hybrids by zinc finger/Fok I cleavage domain fusions” Gene, vol. 203, 43-49 (1997).
Kinde, et al. Detection and quantification of rare mutations with massively parallel sequencing. Proc Natl Acad Sci U S A. Jun. 7, 2011;108(23):9530-5. Epub May 17, 2011.
Kodumal, et al. Total synthesis of long DNA sequences: synthesis of a contiguous 32-kb polyketide synthase gene cluster. Proc Natl Acad Sci U S A. Nov. 2, 2004;101(44):15573-8. Epub Oct. 20, 2004.
Koike-Yusa et al., Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nature Biotechnology, 32:267-273, 2014 (with three pages of supplemental “Online Methods”).
Kong et al., Parallel gene synthesis in a microfluidic device. Nucleic Acids Res., 35(8):e61 (2007).
Kong. Microfluidic Gene Synthesis. MIT Thesis. Submitted to the program in Media Arts and Sciences, School of Architecture and Planning, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Media Arts and Sciences at the Massachusetts Institute of Technology. 143 pages Jun. 2008.
Kopp, Martin U. et al., “Chemical amplification: continuous-flow PCR on a chip”, Science, vol. 280, 1046-1048 (May 15, 1998).
Kosuri and Church, “Large-scale de novo DNA synthesis: technologies and applications,” Nature Methods, 11:499-507, 2014. Available at: http://www.nature.com/nmeth/journal/v11/n5/full/nmeth.2918.html.
Kosuri, et al. A scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips. Nature Biotechnology. 2010; 28:1295-1299.
Kosuri et al., A scalable gene synthesis platform using high-fidelity DNA microchips Nat.Biotechnol., 28(12):1295-1299, 2010.
Krayden, Inc., A Guide to Silane Solutions. Silane coupling agents. 7 pages. Published on May 31, 2005 at: http://krayden.com/pdf/xia_silane_chemistry.pdf.
Lagally, et al. Single-Molecule DNA Amplification and Analysis in an Integrated Microfluidic Device. Analytical Chemistry. 2001;73(3): 565-570.
Lahue, R.S. et al., “DNA mismatch correction in a defined system”, Science, vol. 425; No. 4914, 160-164 (Jul. 14, 1989).
Lambrinakos, A. et al., “Reactivity of potassium permanganate and tetraethylammonium chloride with mismatched bases and a simple mutation detection protocol”,Nucleic Acids Research, vol. 27, No. 8, 1866-1874 (1999).
Landegren, et al. A ligase-mediated gene detection technique. Science. Aug. 26, 1988;241(4869):1077-80.
Lang, Matthew J. et al., “An automated two-dimensional optical force clamp for single molecule studies”, Biophysical Journal, vol. 83, 491⋅501 (Jul. 2002).
Lashkari, et al. An automated multiplex oligonucleotide synthesizer: development of high-throughput, low-cost DNA synthesis. Proc Natl Acad Sci U S A. Aug. 15, 1995;92(17):7912-5.
Lausted et al., “POSaM: a fast, flexible, open-source, inkjet oligonucleotide synthesizer and microarrayer,” Genome Biology, 5:R58, 17 pages, 2004. available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC507883/.
Leamon, et al. A massively parallel PicoTiterPlate based platform for discrete picoliter-scale polymerase chain reactions. Electrophoresis. Nov. 2003;24(21):3769-77.
Lee, Covalent end-immobilization of oligonucleotides onto solid surfaces. Thesis submitted to the Department of Chemical Engineering in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Chemical Engineering at the Massachusetts Institute of Technology. Aug. 2001, 315 pages.
Lee, C.S. et al., “Microelectromagnets for the control of magnetic nanoparticles”, Appl. Phys. Lett., vol. 79, No. 20, 3308-3310 (Nov. 12, 2001).
Lee, et al. A microfluidic oligonucleotide synthesizer. Nucleic Acids Research 2010 vol. 38(8):2514-2521. DOI: 10.1093/nar/gkq092.
Leproust, et al. Agilent's Microarray Platform: How High-Fidelity DNA Synthesis Maximizes the Dynamic Range of Gene Expression Measurements. 2008; 1-12. http://www.miltenyibiotec.com/˜/media/Files/Navigation/Genomic%20Services/Agilent_DNA_Microarray_Platform.ashx.
Leproust et al., “Synthesis of high-quality libraries of long (150mer) oligonucleotides by a novel depurination controlled process,” Nucleic Acids Research, 35(8):2522-2540, 2010.
Lesnikowski, et al. Nucleic acids and nucleosides containing carboranes. J. Organometallic Chem. 1999; 581:156-169.
Leumann. DNA analogues: from supramolecular principles to biological properties. Bioorg Med Chem. Apr. 2002;10(4):841-54.
Levene, et al. Zero-mode waveguides for single-molecule analysis at high concentrations. Science. Jan. 31, 2003;299(5607):682-6.
Lewontin and Harti, Population genetics in forensic DNA typing. Science, 254:1745-1750, 1991.
Li et al., Beating bias in the directed evolution of proteins: Combining high-fidelity on-chip solid-phase gene synthesis with efficient gene assembly for combinatorial library construction. First published Nov. 24, 2017, 2 pages. retrieved from: https://doi.org/10.1002/cbic.201700540.
Li et al. Beating Bias in the Directed Evolution of Proteins: Combining High-Fidelity on-Chip Solid-Phase Gene Synthesis with Efficient Gene Assembly for Combinatorial Library Construction. ChemBioChem 19:221-228 (2018).
Light source unit for printable patterning VUV-Aligner / USHIO Inc., Link here: https://www.ushio.co.jp/en/products/1005.html, published Apr. 25, 2016, printed from the internet on Aug. 2, 2016, 3 pages.
Limbachiya et al., Natural data storage: A review on sending information from now to then via Nature. ACM Journal on Emerging Technologies in Computing Systems, V(N):Article A, May 19, 2015, 17 pages.
Link Technologies. “Product Guide 2010.” Nov. 27, 2009, 136 pages. XP055353191. Retrieved from the Internet: URL:http://www.linktech.co.uk/documents/517/517.pdf.
Lipshutz, Robert J. et al., “High density synthetic oligonucleotide arrays”, Nature Genetics Supplement, vol. 21, 20-24 (Jan. 1999).
Lishanski, Alia et al., “Mutation detection by mismatch binding protein, MutS, in amplified DNA: application to the cystic fibrosis gene”, Proc. Natl. Acad. Sci. USA, vol. 91, 2674-2678 (Mar. 1994).
Liu et al., Comparison of Next-Generation Sequencing Systems. Journal of Biomedicine and Biotechnology, 11 pages, 2012.
Liu, et al. Enhanced Signals and Fast Nucleic Acid Hybridization by Microfluidic Chaotic Mixing. Angew. Chem. Int. Ed. 2006; 45:3618-3623.
Liu et al., Rational design of CXCR4 specific antibodies with elongated CDRs. JACS, 136:10557-10560, 2014.
Lizardi, et al. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat Genet. Jul. 1998;19(3):225-32.
Li, Lin et al., “Functional domains in Fok I restriction endonuclease”, Proc. Natl. Acad. Sci. USA, 89:4275-4279, 1992.
Lu, A.-Lien et al., “Methyl-directed repair of DNA base-pair mismatches in vitro”, Proc. Natl. Acad. Sci. USA, 80:4639-4643, 1983.
Lund, et al. A validated system for ligation-free uracil excision based assembly of expression vectors for mammalian cell engineering. DTU Systems of Biology. 2011. 1 page. http://www.lepublicsystemepco.com/files/modules/gestion_rubriques/REF-B036-Lund_Anne%20Mathilde.pdf.
Ma, et al. DNA synthesis, assembly and application in synthetic biology. Current Opinion in Chemical Biology. 16:260-267, 2012.
Ma et al., Versatile surface functionalization of cyclic olefin copolymer (COC) with sputtered SiO2 thin film for potential BioMEMS applications. Journal of Materials Chemistry, 11 pages, 2009.
Mahato et al., Modulation of gene expression by antisense and antigene oligodeoxynucleotides and small interfering RNA Expert Opin. Drug Delivery, 2(1):3-28, 2005.
Margulies, et al. Genome sequencing in open microfabricated high-density picolitre reactors. Nature. 437(7057):376-80, 2005.
Matteucci, et al. Synthesis of deoxyoligonucleotides on a polymer support. J. Am. Chem. Soc. 103(11):3185-3191, 1981.
Matzas et al., Next generation gene synthesis by targeted retrieval of bead-immobilized, sequence verified DNA clones from a high throughput pyrosequencing device. Nat. Biotechnol., 28(12):1291-1294, 2010.
McBride & Caruthers, “An investigation of several deoxynucleoside phosphoramidites useful for synthesizing deoxyoligonucleotides.” Tetrahedron Lett. 24: 245-248, 1983.
McGall, et al. Light-directed synthesis of high-density oligonucleotide arrays using semiconductor photoresists. Proc Natl Acad Sci U S A. 93(24):13555-60, 1996.
McGall, et al. The Efficiency of Light-Directed Synthesis of DNA Arrays on Glass Substrates. J. Am. Chem. Soc. 119(22):5081-5090, 1997.
Mei et al., Cell-free protein synthesis in microfluidic array devices Biotechnol. Prog., 23(6):1305-1311, 2007.
Mendel-Hartvig. Padlock probes and rolling circle amplification. New possibilities for sensitive gene detection. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1175. Uppsala University. 2002, 39 pages. http://www.diva-portal.org/smash/get/diva2:161926/FULLTEXT01.pdf.
Meyers and Friedland, Knowledge-based simulation of genetic regulation in bacteriophage lambda. Nucl. Acids Research, 12(1):1-16, 1984.
Meynert et al. Quantifying single nucleotide variant detection sensitivity in exome sequencing. BMC Bioinformatics 14:195 (2013).
Meynert et al. Variant detection sensitivity and biases in whole genome and exome sequencing. BMC Bioinformatics 15:247 (2014).
Milo and Phillips, Numbers here reflect the number of protein coding genes and excludes tRNA and non-coding RNA. Cell Biology by the Numbers, p. 286, 2015.
Mitra, et al. In situ localized amplification and contact replication of many individual DNA molecules. Nucleic Acids Res. 27(24):e34, 1999.
Morin et al., Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. Biotechniques, 45:81-94, 2008.
Morris and Stauss, Optimizing T-cell receptor gene therapy for hematologic malignancies. Blood, 127(26):3305-3311, 2016.
Muller, Caroline et al. “Protection and labelling of thymidine by a fluorescent photolabile group”, Helvetica Chimica Acta, vol. 84, 3735-3741 (2001).
Mulligan. Commercial Gene Synthesis Technology PowerPoint presentation. BlueHeron® Biotechnology. Apr. 5, 2006 (48 pgs).
Nakatani, Kazuhiko et al., “Recognition of a single guanine bulge by 2-Acylamino-1 ,8-naphthyridine”, J. Am. Chem. Soc., vol. 122, 2172-2177 (2000).
Neiman M.S,. Negentropy principle in information processing systems. Radiotekhnika, 1966, No11, p. 2-9.
Neiman M.S., On the bases of the theory of information retrieval. Radiotekhnika, 1967, No 5, p. 2-10.
Neiman M.S., On the molecular memory systems and the directed mutations. Radiotekhnika, 1965, No. 6, pp. 1-8.
Neiman M.S., On the relationships between the reliability, performance and degree of microminiaturization at the molecular-atomic level. Radiotekhnika, 1965, No. 1, pp. 1-9.
Neiman M.S., Some fundamental issues of microminiaturization. Radiotekhnika, 1964, No. 1, pp. 3-12.
Nishikura, A short primer on RNAi: RNA-directed RNA polymerase acts as a key catalyst Cell, 107:415-418, 2001.
Nour-Eldin, et al. USER Cloning and USER Fusion: The Ideal Cloning Techniques for Small and Big Laboratories. Plant Secondary Metabolism Engineering. Methods in Molecular Biology vol. 643, 2010, pp. 185-200.
Ochman, et al. Genetic applications of an inverse polymerase chain reaction. Genetics. Nov. 1988;120(3):621-3.
Organick et al., Random access in large-scale DNA data storage. Nature Biotechnology, Advance Online Publication, 8 pages, 2018.
Organick et al., Scaling up DNA data storage and random access retrieval, bioRxiv, preprint first posted online Mar. 7, 2017, 14 pages.
Pan, et al. An approach for global scanning of single nucleotide variations. Proc Natl Acad Sci U S A. Jul. 9, 2002;99(14):9346-51.
Pankiewicz. Fluorinated nucleosides. Carbohydr Res. Jul. 10, 2000;327(1-2):87-105.
PCT/IL2012/000326 International Preliminary Report on Patentability dated Dec. 5, 2013.
PCT/IL2012/000326 International Search Report dated Jan. 29, 2013.
PCT/US14/049834 International Preliminary Report on Patentability dated Feb. 18, 2016.
PCT/US2014/049834 International Search Report and Written Opinion dated Mar. 19, 2015.
PCT/US2014/049834, “Invitation to Pay Additional Fees and, where applicable, protest fee,” dated Jan. 5, 2015.
PCT/US2015/043605 International Preliminary Report on Patentability dated Feb. 16, 2017.
PCT/US2015/043605 International Search Report and Written Opinion dated Jan. 6, 2016.
PCT/US2015/043605 Invitation to Pay Additional Fees dated Oct. 28, 2015.
PCT/US2016/016459 International Preliminary Report on Patentability dated Aug. 17, 2017.
PCT/US2016/016459 International Search Report and Written Opinion dated Apr. 13, 2016.
PCT/US2016/016636 International Preliminary Report on Patentability dated Aug. 17, 2017.
PCT/US2016/016636 International Search Report and Written Opinion dated May 2, 2016.
PCT/US2016/028699 International Preliminary Report on Patentability dated Nov. 2, 2017.
PCT/US2016/028699 International Search Report and Written Opinion dated Jul. 29, 2016.
PCT/US2016/031674 International Preliminary Report on Patentability dated Nov. 23, 2017.
PCT/US2016/031674 International Search Report and Written Opinion dated Aug. 11, 2016.
PCT/US2016/052336 International Preliminary Report on Patentability dated Mar. 29, 2018.
PCT/US2016/052336 International Search Report and Written Opinion dated Dec. 7, 2016.
PCT/US2016/052916 International Preliminary Report on Patentability dated Apr. 5, 2018.
PCT/US2016/052916 International Search Report and Written Opinion dated Dec. 30, 2016.
PCT/US2016/064270 International Preliminary Report on Patentability dated Jun. 14, 2018.
PCT/US2016/064270 International Search Report and Written Opinion dated Apr. 28, 2017.
PCT/US2017/026232 International Search Report and Written Opinion dated Aug. 28, 2017.
PCT/US2017/036868 International Search Report and Written Opinion dated Aug. 11, 2017.
PCT/US2017/045105 International Search Report and Written Opinion dated Oct. 20, 2017.
PCT/US2017/052305 International Search Report and Written Opinion dated Feb. 2, 2018.
PCT/US2017/062391 International Search Report and Written Opinion dated Mar. 28, 2018.
PCT/US2017/066847 International Search Report and Written Opinion dated May 4, 2018.
PCT/US2018/022487 International Search Report and Written Opinion dated Aug. 1, 2018.
PCT/US2018/022493 International Search Report and Written Opinion dated Aug. 1, 2018.
PCT/US2018/037152 International Search Report and Written Opinion dated Aug. 28, 2018.
PCT/US2018/037161 International Search Report and Written Opinion dated Oct. 22, 2018.
PCT/US2018/037161 Invitation to Pay Additional Fees dated Aug. 27, 2018.
PCT/US2018/056783 International Search Report and Written Opinion of the International Searching Authority dated Dec. 20, 2018.
PCT/US2018/19268 International Search Report and Written Opinion dated Jun. 26, 2018.
PCT/US2018/19268 Invitation to Pay Additional Fees and, where applicable, protest fee dated May 2, 2018.
PCT/US2018/22487 Invitation to Pay Additional Fees and, where applicable, protest fee dated May 31, 2018.
PCT/US2018/22493 Invitation to Pay Additional Fees and, where applicable, protest fee dated May 31, 2018.
Pease, et al. Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc Natl Acad Sci U S A. May 24, 1994;91(11):5022-6.
Peisajovich, et al. BBF RFC 28: A method for combinatorial multi-part assembly based on the type-lis restriction enzyme aarl. Sep. 16, 2009, 7 pages.
Pellois, et al. “Individually addressable parallel peptide synthesis on microchips”, Nature Biotechnology, vol. 20 , 922-926 (Sep. 2002).
Petersen, et al. LNA: a versatile tool for therapeutics and genomics. Trends Biotechnol. Feb. 2003;21(2):74-81.
Pierce and Wangh, Linear-after-the-exponential polymerase chain reaction and allied technologies Real-time detection strategies for rapid, reliable diagnosis from single cells Methods Mol. Med. 132:65-85 (2007) (Abstract only).
Pierce, et al. Linear-after-the-exponential polymerase chain reaction and allied technologies. Real-time detection strategies for rapid, reliable diagnosis from single cells. Methods Mol Med. 2007;132:65-85.
Pirrung. How to make a DNA chip. Angew. Chem. Int. Ed., 41:1276-1289, 2002.
Plesa et al., Multiplexed gene synthesis in emulsions for exploring protein functional landscapes. Science, 10.1126/science.aao5167, 10 pages, 2018.
Pon. Solid-phase supports for oligonucleotide synthesis. Methods Mol Biol. 1993;20:465-96.
Poster. Reimagine Genome Scale Research. 2016, 1 page. Available at http://www2.twistbioscience.com/Oligo_Pools_CRISPR_poster.
Powers et al. Optimal strategies for the chemical and enzymatic synthesis of bihelical deoxyribonucleic acids. J Am Chem Soc., 97(4):875-884, 1975.
Pray. “Discovery of DNA Structure and Function: Watson and Crick,” Nature Education, 2008, 6 pages. available at: http://www.nature.com/scitable/topicpage/discovery-of-dna-structure-and-function-watson-397.
Prodromou, et al. Recursive PCR: a novel technique for total gene synthesis. Protein Eng. Dec. 1992;5(8):827-9.
Puigbo. Optimizer: a web server for optimizing the codon usage of DNA sequences. Nucleic Acid Research, 35(14):126-131, 2007.
Qian and Winfree, Scaling up digital circuit computation with DNA strand displacement cascades. Science, 332(6034):196-1201, 2011.
Qian, et al., Neural network computation with DNA strand displacement cascades, Nature, 475(7356):368-372, 2011.
Quan, et al. Parallel on-chip gene synthesis and application to optimization of protein expression. Nature Biotechnology. 2011; 29:449-452.
Quan et al., “Parallel on-chip gene synthesis and application to optimization of protein expression,” Nature Biotechnology, 29(5):449-452, 2011.
Rafalski and Morgante, Corn and humans: recombination and linkage disequilibrium in two genomes of similar size. Trends in Genetics, 20(2):103-111, 2004.
Raje and Murma, A Review of electrohydrodynamic-inkjet printing technology. International Journal of Emerging Technology and Advanced Engineering, 4(5):174-183, 2014.
Rastegari, et al., XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks, in ECCV 2016, Part IV, LNCS 9908, p. 525-542, 2016.
Reimagine SequenceSpace, Reimagine Research, Twist Bioscience, Product Brochure, Published Apr. 6, 2016 online at: www2.twistbioscience.com/TB_Product_Brochure_04.2016, 8 pages.
RF Electric discharge type excimer lamp. Products Catalog. Excimer lamp light source “flat excimer,” 16 pages dated Jan. 2016. From: http://www.hamamatsu.com/jp/en/product/category/1001/3026/index.html.
Richmond, et al. Amplification and assembly of chip-eluted DNA (AACED): a method for high-throughput gene synthesis. Nucleic Acids Res. Sep. 24, 2004;32(17):5011-8. Print 2004.
Roche. Restriction Enzymes from Roche Applied Science—A Tradition of Premium Quality and Scientific Support. FAQS and Ordering Guide. Roche Applied Science. Accessed Jan. 12, 2015, 37 pages.
Rogozin et al., Origin and evolution of spliceosomal introns. Biology Direct, 7:11, 2012.
Ruminy, et al., “Long-range identification of hepatocyte nuclear factor-3 (FoxA) high and low-affinity binding Sites with a chimeric nuclease”, J. Mol. Bioi., vol. 310, 523-535 (2001).
Saaem et al., In situ synthesis of DNA microarray on functionalized cyclic olefin copolymer substrate ACS Applied Materials & Interfaces, 2(2):491-497, 2010.
Saboulard, et al. High-throughput site-directed mutagenesis using oligonucleotides synthesized on DNA chips. Biotechniques. Sep. 2005;39(3):363-8.
Sacconi, L. et al., Three-dimensional magneto-optic trap for micro-object manipulation, Optics Letters, vol. 26, No. 17, 1359-1361 (Sep. 1, 2001).
Saiki et al. Analysis of enzymatically amplified beta-globin and HLA-DQ alpha DNA with allele-specific oligonucleotide probes. Nature 324:163-166 (1986).
Sandhu, et al. Dual asymmetric PCR: one-step construction of synthetic genes. Biotechniques. Jan. 1992;12(1):14-6.
Sargolzaei et al., Extent of linkage disequilibrium in Holstein cattle in North America. J.Dairy Science, 91:2106-2117, 2007.
Schaller, et al. Studies on Polynucleotides. XXV.1 The Stepwise Synthesis of Specific Deoxyribopolynucleotides (5). Further Studies on the Synthesis of Internucleotide Bond by the Carbodiimide Method. The Synthesis of Suitably Protected Dinucleotides as Intermediates in the Synthesis of Higher Oligonucleotides. J. Am. Chem. Soc. 1963; 85(23):3828-3835.
Schmalzing et al. Microchip electrophoresis: a method for high-speed SNP detection. Nucleic Acids Res 28(9):E43 (2000).
Schmitt et al., New strategies in engineering T-cell receptor gene-modified T cells to more effectively target malignancies. Clinical Cancer Research, 21(23):5191-5197, 2015.
Seelig, et al., Enzyme-Free Nucleic Acid Logic Circuits, Science 314(5805):1585-1588, 2006.
Sharan et al. Recombineering: a homologous recombination-based method of genetic engineering. Nat Profile 4(2):1-37 (originally pp. 206-223) (2009).
Sharpe and Mount, Genetically modified T cells in cancer therapy: opportunities and challenges. Disease Models and Mechanisms, 8:337-350, 2015.
Sierzchala, Agnieszka B. et al., “Solid-phase oligodeoxynucleotide synthesis : a two-step cycle using peroxy anion deprotection”, J. Am. Chem. Soc., vol. 125, No. 44, 13427-13441 (2003).
Simonyan and Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, Published as a conference paper at Int. Conf. Learn. Represent., pp. 1-14, 2015.
Singh-Gasson, Sangeet et al., Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array, Nature Biotechnology, vol. 17, 974-978 (Oct. 1999).
Skerra. Phosphorothioate primers improve the amplification of DNA sequences by DNA polymerases with proofreading activity. Nucleic Acids Res. Jul. 25, 1992; 20(14):3551-4.
Smith, et al. Generating a synthetic genome by whole genome assembly: phiX174 bacteriophage from synthetic oligonucleotides. Proc Natl Acad Sci U S A. Dec. 23, 2003;100(26):15440-5. Epub Dec. 2, 2003.
Smith, et al. Generation of cohesive ends on PCR products by UDG-mediated excision of dU, and application for cloning into restriction digest-linearized vectors. PCR Methods Appl. May 1993;2(4):328-32.
Smith, Jane et al., “Mutation detection with MutH, MutL, and MutS mismatch repair proteins”, Proc. Natl. Acad. Sci. USA, vol. 93, 4374-4379 (Apr. 1996).
Smith Jane et al., “Removal of Polymerase-Produced mutant sequences from PCR products”, Proc. Natl. Acad. Sci. USA, vol. 94, 6847-6850 (Jun. 1997).
Smith, Steven B. et al., “Direct mechanical measurements of the elasticity of single DNA molecules using magnetic beads”, Science, vol. 258, 1122-1126 (Nov. 13, 1992).
Soni, et al. Progress toward ultrafast DNA sequencing using solid-state nanopores. Clin Chem. Nov. 2007;53(11):1996-2001. Epub Sep. 21, 2007.
Southern, et al. Analyzing and comparing nucleic acid sequences by hybridization to arrays of oligonucleotides: evaluation using experimental models. Genomics. Aug. 1992;13(4):1008-17.
Sproat, et al. An efficient method for the isolation and purification of oligoribonucleotides. Nucleosides & Nucleotides. 1995; 14(1&2):255-273.
Srivannavit et al., Design and fabrication of microwell array chips for a solution-based, photogenerated acid-catalyzed parallel oligonuclotide DNA synthesis. Sensors and Actuators A, 116:150-160, 2004.
Srivastava et al., “RNA synthesis: phosphoramidites for RNA synthesis in the reverse direction. Highly efficient synthesis and application to convenient introduction of ligands, chromophores and modifications of synthetic RNA at the 3′-end”, Nucleic Acids Symposium Series, 52(1):103-104, 2008.
Steel, The Flow-Thru Chip A Three-dimensional biochip platform. In: Schena, Microarray Biochip Technology, Chapter 5, Natick, MA: Eaton Publishing, 2000, 33 pages.
Stemmer, et al. Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene. Oct. 16, 1995;164(1):49-53.
Stryer. “DNA Probes and genes can be synthesized by automated solid-phase methods.” Biochemistry, 3rd edition, New York: W.H. Freeman and Company, 1988; 123-125.
Stutz, et al. Novel fluoride-labile nucleobase-protecting groups for the synthesis of 3′(2′)-O-amino-acylated RNA sequences. Helv. Chim. Acta. 2000; 83(9):2477-2503.
Sullivan et al. Library construction and evaluation for site saturation mutagenesis. Enzyme Microb. Technol. 53:70-77 (2013).
Sun et al. Structure-Guided Triple-Code Saturation Mutagenesis: Efficient Tuning of the Stereoselectivity of an Epoxide Hydrolase. ACS Catal. 6:1590-1597 (2016).
Takahashi, Cell-free cloning using multiply-primed rolling circle amplification with modified RNA primers. Biotechniques. Jul. 2009;47(1):609-15. doi: 10.2144/000113155.
Tanase, M. et al., “Magnetic trapping of multicomponent nanowires”, The Johns Hopkins University, Baltimore, Maryland, p. 1-3 (Jun. 25, 2001).
Taylor et al., Impact of surface chemistry and blocking strategies on DNA microarrays. Nucleic Acids Research, 31(16):e87, 19 pages, 2003.
The Hood Laboratory, “Beta Group.” Assembly Manual for the POSaM: The ISB Piezoelelctric Oligonucleotide Synthesizer and Microarrayer, Inkjet Microarrayer Manual Version 1.2, 50 pages, May 28, 2004.
The SLIC, Gibson, CPEC and SLiCE assembly methods (and GeneArt Seamless, In-Fusion Cloning). 5 pages, available online Sep. 2, 2010.
Tian, et al. Accurate multiplex gene synthesis from programmable DNA microchips. Nature. Dec. 23, 2004;432(7020):1050-4.
Tsai et al., Dimeric CRISPR RNA-guided Fokl nucleases for highly specific genome editing Nat. Biotechnol., 32(6):569-576, 2014.
Twist Bioscience | White Paper. DNA-Based Digital Storage. Retrieved from the internet, Twistbioscience.com, Mar. 27, 2018, 5 pages.
Unger, et al. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science. Apr. 7, 2000;288(5463):113-6.
U.S. Appl. No. 14/241,874 Office Action dated Feb. 27, 2017.
U.S. Appl. No. 14/241,874 Office Action dated Jul. 14, 2016.
U.S. Appl. No. 14/241,874 Office Action dated May 4, 2018.
U.S. Appl. No. 14/452,429 Notice of Allowance dated Jun. 7, 2016.
U.S. Appl. No. 14/452,429 Office Action dated Oct. 21, 2015.
U.S. Appl. No. 14/452,429 Restriction Requirement dated Dec. 12, 2014.
U.S. Appl. No. 14/885,962 Notice of Allowance dated Nov. 8, 2017 and dated Sep. 29, 2017.
U.S. Appl. No. 14/885,962 Office Action dated Dec. 16, 2016.
U.S. Appl. No. 14/885,962 Office Action dated Sep. 8, 2016.
U.S. Appl. No. 14/885,962 Restriction Requirement dated Mar. 1, 2016.
U.S. Appl. No. 14/885,963 Notice of Allowance dated May 24, 2016.
U.S. Appl. No. 14/885,965 Office Action dated Aug. 28, 2018.
U.S. Appl. No. 14/885,965 Office Action dated Aug. 30, 2017.
U.S. Appl. No. 14/885,965 Office Action dated Feb. 10, 2017.
U.S. Appl. No. 14/885,965 Office Action dated Feb. 18, 2016.
U.S. Appl. No. 14/885,965 Office Action dated Jan. 4, 2018.
U.S. Appl. No. 14/885,965 Office Action dated Jul. 7, 2016.
U.S. Appl. No. 15/135,434 Notice of Allowance dated Feb. 9, 2018.
U.S. Appl. No. 15/135,434 Office Action dated Nov. 30, 2017.
U.S. Appl. No. 15/135,434 Restriction Requirement dated Jul. 12, 2017.
U.S. Appl. No. 15/151,316 Office Action dated Jun. 7, 2018.
U.S. Appl. No. 15/154,879 Notice of Allowance dated Feb. 1, 2017.
U.S. Appl. No. 15/187,714 Restriction Requirement dated Sep. 17, 2018.
U.S. Appl. No. 15/187,721 Notice of Allowance dated Dec. 7, 2016.
U.S. Appl. No. 15/187,721 Office Action dated Oct. 14, 2016.
U.S. Appl. No. 15/233,835 Notice of Allowance dated Oct. 4, 2017.
U.S. Appl. No. 15/233,835 Office Action dated Feb. 8, 2017.
U.S. Appl. No. 15/233,835 Office Action dated Jul. 26, 2017.
U.S. Appl. No. 15/233,835 Restriction Requirement dated Nov. 4, 2016.
U.S. Appl. No. 15/245,054 Office Action dated Mar. 21, 2017.
U.S. Appl. No. 15/245,054 Office Action dated Oct. 19, 2016.
U.S. Appl. No. 15/268,422 Restriction Requirement dated Oct. 4, 2018.
U.S. Appl. No. 15/377,547 Office Action dated Jul. 27, 2018.
U.S. Appl. No. 15/377,547 Office Action dated Mar. 24, 2017.
U.S. Appl. No. 15/377,547 Office Action dated Nov. 30, 2017.
U.S. Appl. No. 15/433,909 Restriction Requirement dated Sep. 17, 2018.
U.S. Appl. No. 15/602,991 Final Office Action dated Dec. 13, 2018.
U.S. Appl. No. 15/602,991 Notice of Allowance dated Oct. 25, 2017.
U.S. Appl. No. 15/602,991 Office Action dated May 31, 2018.
U.S. Appl. No. 15/602,991 Office Action dated Sep. 21, 2017.
U.S. Appl. No. 15/603,013 Office Action dated Jan. 30, 2018.
U.S. Appl. No. 15/603,013 Office Action dated Jul. 10, 2018.
U.S. Appl. No. 15/603,013 Office Action dated Oct. 20, 2017.
U.S. Appl. No. 15/682,100 Office Action dated Jan. 2, 2018.
U.S. Appl. No. 15/682,100 Restriction Requirement dated Nov. 8, 2017.
U.S. Appl. No. 15/729,564 Final Office Action dated Dec. 13, 2018.
U.S. Appl. No. 15/729,564 Office Action dated Jan. 8, 2018.
U.S. Appl. No. 15/729,564 Office Action dated Jun. 6, 2018.
U.S. Appl. No. 15/860,445 Office Action dated May 30, 2018.
U.S. Appl. No. 14/452,429 Office Action mailed Apr. 9, 2015.
U.S. Appl. No. 15/860,445_Final_Office_Action_dated Dec. 13, 2018.
Vaijayanthi, et al. Recent advances in oligonucleotide synthesis and their applications. Indian J Biochem Biophys. Dec. 2003;40(6):377-91.
Van Den Brulle, et al. A novel solid phase technology for high-throughput gene synthesis. Biotechniques. 2008; 45(3):340-343.
Van Der Werf et al. Limonene-1,2-epoxide hydrolase from Rhodococcus erythropolis DCL14 belongs to a novel class of epoxide hydrolases. J. Bacteriol. 180:5052-5057 (1998).
Van Tassell et al., SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries. Nature Methods, 5:247-252, 2008.
Vargeese, et al. Efficient activation of nucleoside phosphoramidites with 4,5-dicyanoimidazole during oligonucleotide synthesis. Nucleic Acids Res. Feb. 15, 1998;26(4):1046-50.
Verma et al. Modified oligonucleotides: synthesis and strategy for users. Annu Rev Biochem 67:99-134 (1998).
Vincent, et al. Helicase-dependent isothermal DNA amplification. EMBO Rep. Aug. 2004;5(8):795-800.
Visscher et al., “Construction of multiple-beam optical traps with nanometer-resolution position sensing”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 2, No. 4, 1066-1076 (Dec. 1996).
Voldmans Joel et al., “Holding forces of single-particle dielectrophoretic traps.” Biophysical Journal, vol. 80, No. 1, 531-541 (Jan. 2001).
Vos, et al. AFLP:A new technique for DNA fingerprinting. Nucleic Acids Res. Nov. 11, 1995;23(21):4407-14.
Wagner et al., “Nucleotides, Part LXV, Synthesis of 2′-Deoxyribonucleoside 5′-Phosphoramidites: New Building Blocks for the Inverse (5′-3′)-Oligonucleotide Approach.” Helvetica Chimica Acta, 83(8):2023-2035, 2000.
Wah, David A. et al., “Structure of Fok I has implications for DNA cleavage”, Proc. Natl. Acad. Sci. USA, vol. 95, 10564-10569 (Sep. 1998).
Wah, David A. et al., “Structure of the multimodular endonuclease Fok I bound to DNA”, Nature, vol. 388, 97-100 ( Jul. 1997).
Walker, et al. Strand displacement amplification—an isothermal, in vitro DNA amplification technique. Nucleic Acids Res. Apr. 11, 1992;20(7):1691-6.
Wan et al., Deep Learning for Content-Based Image Retrieval: A comprehensive study. in Proceedings of the 22nd ACM International Conference on Multimedia—Nov. 3-7, 2014, Orlando, FL, p. 157-166, 2014.
Warr et al. Exome Sequencing: current and future perspectives. G3: (Bethesda) 5(8):1543-1550 (2015).
Weber, et al. A modular cloning system for standardized assembly of multigene constructs. PLoS One. Feb. 18, 2011;6(2):e16765. doi: 10.1371/journal.pone.0016765.
Welz, et al. 5-(Benzylmercapto)-1H-tetrazole as activator for 2′-O-TBDMS phosphoramidite building blocks in RNA synthesis. Tetrahedron Lett. 2002; 43(5):795-797.
Westin et al., Anchored multiplex amplification on a microelectronic chip array Nature Biotechnology, 18:199-202 (2000) (abstract only).
Whitehouse, Adrian et al. “Analysis of the mismatch and insertion/deletion binding properties of Thermus thermophilus, HB8, MutS”, Biochemical and Biophysical Research Communications, vol. 233, 834-837 (1997).
Wiedenheft et al., RNA-guided genetic silencing systems in bacteria and archaea. Nature, 482:331-338, 2012.
Wijshoff, Herman. Structure and fluid-dynamics in Piezo inkjet printheads. Thesis. Venio, The Netherlands, published 2008, p. 1-185.
Wirtz, Denis, “Direct measurement of the transport properties of a single DNA molecule”, Physical Review Letters, vol. 75, No. 12, 2436-2439 (Sep. 18, 1995).
Withers-Martinez, Chrislaine et al., “PCR-based gene synthesis as an efficient approach for expression of the A+ T-rich malaria genome”, Protein Engineering, vol. 12, No. 12, 1113-1120 (1999).
Wood, Richard D. et al., “Human DNA repair genes”, Science, vol. 291, 1284-1289 (Feb. 16, 2001).
Wosnick, et al. Rapid construction of large synthetic genes: total chemical synthesis of two different versions of the bovine prochymosin gene. Gene. 1987;60(1):115-27.
Wright and Church, An open-source oligomicroarray standard for human and mouse. Nature Biotechnology, 20:1082-1083, 2002.
Wu, et al. “Sequence-Specific Capture of Protein-DNA Complexes for Mass Spectrometric Protein Identification” PLoS One. Oct. 20, 2011, vol. 6, No. 10.
Wu, et al. RNA-mediated gene assembly from DNA arrays. Angew Chem Int Ed Engl. May 7, 2012;51(19):4628-32. doi: 10.1002/anie.201109058.
Wu, et al. Specificity of the nick-closing activity of bacteriophage T4 DNA ligase. Gene. 1989;76(2):245-54.
Wu, Xing-Zheng et al., “An improvement of the on-line electrophoretic concentration method for capillary electrophoresis of proteins an experimental factors affecting he concentration effect”, Analytical Sciences, vol. 16, 329-331 (Mar. 2000).
Xiong, et al. A simple, rapid, high-fidelity and cost-effective PCR-based two-step DNA synthesis method for long gene sequences. Nucleic Acids Res. 2004, 32(12):e98.
Xiong et al., Chemical gene synthesis: Strategies, softwares, error corrections, and applications. FEMS Microbiol. Rev., 32:522-540, 2008.
Xiong, et al. Non-polymerase-cycling-assembly-based chemical gene synthesis: Strategies, methods, and progress. Biotechnology Advances. 26(2):121-134, 2008.
Xu et al., Design of 240,000 orthogonal 25mer DNA barcode probes. PNAS, 106(7):2289-2294, 2009.
Yang, et al “Purification, cloning, and characterization of the CEL I nuclease”, Biochemistry, 39(13):3533-35, 2000.
Yazdi, et al., A Rewritable, Random-Access DNA-Based Storage System, Scientific Reports, 5, Article No. 14138, 27 pages, 2015.
Yehezkel et al., De novo DNA synthesis using single molecule PCR Nucleic Acids Research, 36(17):e107, 2008.
Yes HMDS vapor prime process application note Prepared by UC Berkeley and University of Texas at Dallas and re-printed by Yield Engineering Systems, Inc., 6 pages (http://www.yieldengineering.com/Portals/0/HMDS%20Application%20Note.pdf (Published online Aug. 23, 2013).
Youil, Rima et al., “Detection of 81 of 81 known mouse Beta-Giobin promoter mutations with T4 Endonuclease VII⋅ The EMC Method”, Genomics, 32:431-435, 1996.
Young, et al. Two-step total gene synthesis method. Nucleic Acids Res. 32(7):e59, 2004.
Zhang and Seelig, Dynamic DNA nanotechnology using strand-displacement reactions, Nat. Chem., 3(2):103-113, 2011.
Zheleznaya, et al. Nicking endonucleases. Biochemistry (Mosc). 74(13):1457-66, 2009.
Zheng et al. Manipulating the Stereoselectivity of Limonene Epoxide Hydrolase by Directed Evolution Based on Iterative Saturation Mutagenesis. J. Am. Chem. Soc. 132:15744-15751 (2010).
Zhirnov et al., Nucleic acid memory. Nature Materials, 15:366, 2016.
Zhou, et al. “Establishment and application of a loop-mediated isothermal amplification (LAMP) system for detection of cry1Ac transgenic sugarcane” Scientific Reports May 9, 2014, vol. 4, No. 4912.
Zhou et al., Microfluidic PicoArray synthesis of oligodeoxynucleotides and simultaneous assembling of multiple DNA sequences Nucleic Acids Research, 32(18):5409-5417, 2004.
Alberts et al.: Molecular Biology of the Cell. 4th edition. New York: Garland Science; 2002. The Generation of Antibody Diversity. https://www.ncbi.nlm.nih.gov/books/NBK26860/.
Almagro et al.: Progress and Challenges in the Design and Clinical Development of Antibodies for Cancer Therapy. Frontiers in immunology; 8, 1751 (2018) doi:10.3389/fimmu.2017.01751 https://www.frontiersin.org/articles/10.3389/fimmu.2017.01751/full.
Assembly manual for the POSaM: The ISB Piezoelelctric Oligonucleotide Synthesizer and Microarrayer, The Institute for Systems Biology, May 28, 2004 (50 pages).
Chervin et al.: Design of T-cell receptor libraries with diverse binding properties to examine adoptive T-cell responses. Gene Therapy. 20(6):634-644 (2012).
Douthwaite et al.: Affinity maturation of a novel antagonistic human monoclonal antibody with a long VH CDR3 targeting the Class A GPCR formyl-peptide receptor 1; mAbs, vol. 7, Iss. 1, pp. 152-166 (Jan. 1, 2015).
Eroshenko et al.: Gene Assembly from Chip-Synthesized Oligonucleotides; Current Protocols in Chemical biology 4: 1-17 (2012).
European Patent Application No. 14834665.3 Further Examination Report dated Nov. 28, 2018.
European Patent Application No. 16847497.1 Extended European Search Report dated Jan. 9, 2019.
European Patent Application No. 16871446.7 European Search Report dated Apr. 10, 2019.
European Patent Application No. 16871446.7 First Official Action dated Nov. 13, 2019.
European Patent Application No. 17844060.8 Extended Search Report dated Apr. 20, 2020.
European Patent Application No. 17872347.4 Extended European Search Report dated Jun. 30, 2020.
European Patent Application No. 17881617.9 European Search Report and Written Opinion dated Jul. 2, 2020.
Galka et al.: QuickLib, a method for building fully synthetic plasmid libraries by seamless cloning of degenerate oligonucleotides. PLOS ONE, 12, e0175146:1-9 (2017).
Galka et al.: QuickLib, a method for building fully synthetic plasmid libraries by seamless cloning of degenerate oligonucleotides. PLOS ONE, 12, e0175146:S1 figure (2017).
Galka et al.: QuickLib, a method for building fully synthetic plasmid libraries by seamless cloning of degenerate oligonucleotides. PLOS ONE, 12, e0175146:S1 Table (2017).
Galka et al.: QuickLib, a method for building fully synthetic plasmid libraries by seamless cloning of degenerate oligonucleotides. PLOS ONE, 12, e0175146:52 figure (2017).
Hauser et al.: Trends in GPCR drug discovery: new agents, targets and indications. Nature Reviews Drug Discovery, 16, 829-842 (2017). doi:10.1038/nrd.2017.178 https://www.nature.com/articles/nrd.2017.178.
Hötzel et al.: A strategy for risk mitigation of antibodies with fast clearance. mAbs, 4(6), 753-760 (2012). doi:10.4161/mabs.22189 https://www.ncbi.nlm.nih.gov/pubmed/23778268.
International Application No. PCT/US2017/026232 International Preliminary Report on Patentability dated Feb. 26, 2019.
International Application No. PCT/US2017/045105 International Preliminary Report on Patentability dated Feb. 5, 2019.
International Application No. PCT/US2017/052305 International Preliminary Report on Patentability dated Apr. 30, 2019.
International Application No. PCT/US2017/062391 International Preliminary Report on Patentability dated May 21, 2019.
International Application No. PCT/US2018/019268 International Preliminary Report on Patentability dated Sep. 6, 2019.
International Application No. PCT/US2018/050511 International Search Report and Written Opinion dated Jan. 11, 2019.
International Application No. PCT/US2018/057857 International Search Report and Written Opinion dated Mar. 18, 2019.
International Application No. PCT/US2019/012218 International Search Report and Written Opinion dated Mar. 21, 2019.
International Application No. PCT/US2019/032992 International Search Report and Written Opinion dated Oct. 28, 2019.
International Application No. PCT/US2019/032992 Invitation to Pay Additional Fees dated Sep. 6, 2019.
Lee: Covalent End-Immobilization of Oligonucleotides onto Solid Surfaces; Thesis, Massachusetts Institute of Technology, Aug. 2001 (315 pages).
Malecek et al.: Engineering improved T cell receptors using an alanine-scan guided T cell display selection system. Journal of Immunological Methods. Elsevier Science Publishers. 392(1):1-11 (2013).
Martinez-Torrecuadradaet al.: Targeting the Extracellular Domain of Fibroblast Growth Factor Receptor 3 with Human Single-Chain Fv Antibodies Inhibits Bladder Carcinoma Cell Line Proliferation; Clinical Cancer Research; vol. 11; pp. 6282-6290 (2005).
Mazor et al.: Isolation of Full-Length IgG Antibodies from Combinatorial Libraries Expressed in Escherichia coli; Antony S. Dimitrov (ed.), Therapeutic Antibodies: Methods and Protocols, vol. 525, Chapter 11, pp. 217-239 (2009).
Jo et al.: Engineering therapeutic antibodies targeting G-protein-coupled receptors; Experimental & Molecular Medicine; 48; 9 pages (2016).
Lausted et al.: POSaM: a fast, flexible, open-source, inkjet oligonucleotide synthesizer and microarrayer; Genome Biology 2004, 5:R58.
PCT/US2018/037152 International Preliminary Report on Patentability dated Dec. 26, 2019.
PCT/US2018/037161 International Preliminary Report on Patentability dated Dec. 17, 2019.
PCT/US2018/050511 International Preliminary Report on Patentability dated Mar. 26, 2020.
PCT/US2018/056783 International Preliminary Report on Patentability dated Apr. 30, 2020.
PCT/US2018/057857 International Preliminary Report on Patentability dated Apr. 28, 2020.
PCT/US2019/012218 International Preliminary Report on Patentability dated Jul. 16, 2020.
PCT/US2019/068435 International Search Report and Written Opinion dated Apr. 23, 2020.
PCT/US2020/019371 International Search Report and Written Opinion dated Jun. 25, 2020.
PCT/US2020/019986 Invitation to Pay Additional Fees dated Jun. 5, 2020.
PCT/US2020/019988 Invitation to Pay Additional Fees dated Jun. 8, 2020.
Rajpal et al.: A general method for greatly improving the affinity of antibodies by using combinatorial libraries. Proc. Natl. Acad. Sci. 102(24):8466-8471 (2005).
Solomon et al.: Genomics at Agilent: Driving Value in DNA Sequencing.https://www.agilent.com/labs/features/2010_genomics.html, 8 pages (Aug. 5, 2010).
U.S. Appl. No. 14/241,874 Final Office Action dated Jan. 28, 2019.
U.S. Appl. No. 14/885,963 Office Action dated Feb. 5, 2016.
U.S. Appl. No. 15/015,059 Final Office Action dated Jul. 17, 2019.
U.S. Appl. No. 15/015,059 Office Action dated Aug. 19, 2019.
U.S. Appl. No. 15/015,059 Office Action dated Feb. 7, 2019.
U.S. Appl. No. 15/151,316 Final Office Action dated Jul. 9, 2020.
U.S. Appl. No. 15/151,316 Office Action dated Oct. 4, 2019.
U.S. Appl. No. 15/156,134 Final Office Action dated Jan. 3, 2020.
U.S. Appl. No. 15/156,134 Office Action dated Apr. 4, 2019.
U.S. Appl. No. 15/187,714 Final Office Action dated Sep. 17, 2019.
U.S. Appl. No. 15/187,714 Office Action dated Apr. 4, 2019.
U.S. Appl. No. 15/268,422 Final Office Action dated Oct. 3, 2019.
U.S. Appl. No. 15/268,422 Office Action dated Mar. 1, 2019.
U.S. Appl. No. 15/272,004 Office Action dated Jun. 12, 2020.
U.S. Appl. No. 15/377,547 Final Office Action dated Feb. 8, 2019.
U.S. Appl. No. 15/433,909 Non-Final Office Action dated Feb. 8, 2019.
U.S. Appl. No. 15/602,991 Office Action dated May 31, 2019.
U.S. Appl. No. 15/603,013 Final Office Action dated Nov. 6, 2019.
U.S. Appl. No. 15/619,322 Final Office Action dated Mar. 30, 2020.
U.S. Appl. No. 15/619,322 Office Action dated Aug. 14, 2019.
U.S. Appl. No. 15/709,274 Notice of Allowance dated Apr. 3, 2019.
U.S. Appl. No. 15/729,564 Office Action dated May 30, 2019.
U.S. Appl. No. 15/816,995 Office Action dated May 19, 2020.
U.S. Appl. No. 15/816,995 Office Action dated Sep. 20, 2019.
U.S. Appl. No. 15/816,995 Restriction Requirement dated Apr. 4, 2019.
U.S. Appl. No. 15/835,342 Office Action dated Dec. 2, 2019.
U.S. Appl. No. 15/835,342 Restriction Requirement dated Sep. 10, 2019.
U.S. Appl. No. 15/844,395 Office Action dated Jan. 24, 2020.
U.S. Appl. No. 15/844,395 Restriction Requirement dated May 17, 2019.
U.S. Appl. No. 15/921,479 Final Office Action dated Jun. 15, 2020.
U.S. Appl. No. 15/921,479 Office Action dated Nov. 12, 2019.
U.S. Appl. No. 15/921,479 Restriction Requirement dated May 24, 2019.
U.S. Appl. No. 15/960,319 Office Action dated Aug. 16, 2019.
U.S. Appl. No. 15/991,992 Office Action dated May 21, 2020.
U.S. Appl. No. 15/991,992 Restriction Requirement dated Mar. 10, 2020.
U.S. Appl. No. 16/006,581 Office Action dated Sep. 25, 2019.
U.S. Appl. No. 16/031,784 Office Action dated May 12, 2020.
U.S. Appl. No. 16/039,256 Restriction Requirement dated May 18, 2020.
U.S. Appl. No. 16/128,372 Restriction Requirement dated May 18, 2020.
U.S. Appl. No. 16/239,453 Office Action dated May 11, 2020.
U.S. Appl. No. 16/239,453 Office Action dated Nov. 7, 2019.
U.S. Appl. No. 16/384,678 Office Action dated Jan. 21, 2020.
U.S. Appl. No. 16/409,608 Office Action dated Sep. 9, 2019.
U.S. Appl. No. 16/530,717 Final Office Action dated Apr. 15, 2020.
U.S. Appl. No. 16/530,717 Office Action dated Sep. 6, 2019.
U.S. Appl. No. 16/535,777 Office Action dated Jan. 23, 2020.
U.S. Appl. No. 16/535,779 First Action Interview dated Feb. 10, 2020.
U.S. Appl. No. 15/151,316 Final Office Action dated Feb. 21, 2019.
U.S. Appl. No. 15/603,013 Office Action dated Jun. 26, 2019.
U.S. Appl. No. 15/921,537 Office Action dated Apr. 1, 2020.
Cui et al.: Information Security Technology Based on DNA Computing. International Workshop on Anti-Counterfeiting, Security and Identification (ASID); IEEE Xplore 4 pages (2007).
Hopcroft et al.: What is the Young's Modulus of Silicon?. Journal of Microelectromechanical Systems. 19(2):229-238 (2010).
Jaiswal et al.: An architecture for creating collaborative semantically capable scientific data sharing infrastructures. Proceeding WIDM '06 Proceedings of the 8th annual ACM international workshop on Web information and data management. ACM Digital Library pp. 75-82 (2006).
PCT/US2020/019986 International Search Report and Written Opinion dated Jul. 29, 2020.
PCT/US2020/019988 International Search Report and Written Opinion dated Jul. 29, 2020.
U.S. Appl. No. 15/835,342 Final Office Action dated Sep. 8, 2020.
U.S. Appl. No. 16/039,256 Office Action dated Aug. 20, 2020.
van der Velde: Thesis. Finding the Strength of Glass. Delft University of Technology. 1-16 (2015).
Related Publications (1)
Number Date Country
20190118154 A1 Apr 2019 US
Provisional Applications (1)
Number Date Country
62575287 Oct 2017 US